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1. Introduction and preliminaries. LetX be a complex Banach space and let

A be a closed linear operator with domain D(A), kernel N(A), and range R(A)
in X. We will say that A is semiregular if R(A) is closed and N(A) ⊆ R∞(A),
where R∞(A) :=⋂∞n=1R(An).

Denote the regular spectrum by

σγ(A) := {λ∈ C, λ−A is not semiregular}. (1.1)

The set σγ(A) was studied (under various names) by several authors, see for

instance [11, 12, 13, 14] and the references therein.

An operator A is said to be essentially semiregular if R(A) is closed and

there exists a finite-dimensional subspace G ⊆X such that N(A)⊆ R∞(A)+G.

Define further the essential regular spectrum of A by

σγe(A) := {λ∈ C, λ−A is not essentially semiregular}. (1.2)

This concept was introduced and studied for bounded operators in [13, 17].

We say that A is upper semi-Fredholm if R(A) is closed and dimN(A) <∞.

The left essential spectrum is given by

σπ(A) := {λ∈ C, λ−A is not upper semi-Fredholm}. (1.3)

Let X� denote the dual space of X and A� the adjoint operator of A. Define

the reduced minimum modulus γ(A) by setting

γ(A) := inf
{ ‖Au‖
d
(
u,N(A)

) , u∈D(A)\N(A)}. (1.4)
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It is well known (see [9]) that γ(A) = γ(A�) and γ(A) > 0 if and only if R(A)
is closed. Let H0(A) denote the quasinilpotent part of A given by

H0(A) :=
{
x ∈

⋂
n≥0

D
(
An
)

: lim
n→∞

∥∥Anx∥∥1/n = 0
}
. (1.5)

Let �= (T(t))t≥0 be a strongly continuous semigroup with generator A on X.

We will denote the type (growth bound) of � by ω0:

ω0 := lim
t→∞

ln
∥∥T(t)∥∥
t

= inf
{
ω∈R : there exists M such that

∥∥T(t)∥∥≤Meωt, t ≥ 0
}
.

(1.6)

Following [6], the semigroup � is called bounded if there exists M ≥ 1 such

that ‖T(t)‖ ≤M for all t ≥ 0. Basic materials on semigroups may be found in

[4, 6, 15].

In [5], we have studied the regular spectrum for strongly continuous semi-

groups. As a continuation of [5], the present paper deals with the essentially

regular spectrum. Moreover, we establish some stability results for strongly

continuous semigroups.

The present paper is organized as follows. In Section 2, we first prove that

the spectral inclusion for semigroups remains true for the regular spectrum,

the left essential spectrum, and the essentially regular spectrum (Theorem 2.1).

Secondly, we give necessary and sufficient conditions for the generator of a

strongly continuous semigroup to be semiregular (Theorem 2.3) and essen-

tially semiregular (Theorem 2.5).

In Section 3, we derive some stability results for strongly continuous semi-

groups. Among other results, we give necessary and sufficient conditions for

the generator of a bounded strongly continuous semigroup to have no pure

imaginary point in its spectrum (Theorem 3.3). This, in particular, provides us

with a spectral characterization of the strong stability of the ultrapower exten-

sion of a given semigroup. Finally, we discuss the strong stability of a strongly

continuous semigroup via the behavior of the resolvent of its generator, on the

imaginary axis.

Throughout this paper, we letσ(A), ρ(A),σp(A),σap(A), andσsu(A) denote,

respectively, the spectrum, the resolvent set, the point spectrum, the approxi-

mative spectrum, and the surjective spectrum of an operator A. For λ∈ ρ(A),
R(λ, A) denotes the resolvent operator (λ−A)−1 ∈ �(X) of A, where �(X)
stands for the algebra of bounded linear operators on X.

For later use, we introduce the following operator acting onX and depending

on the parameters λ∈ C and t ≥ 0:

I(λ,t)x :=
∫ t

0
eλ(t−s)T (s)xds, x ∈X. (1.7)
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It is well known (see [15]) that I(λ,t) is a bounded linear operator on X and we

have

eλtx−T(t)x = (λ−A)I(λ,t)(x) (x ∈X)
= I(λ,t)(λ−A)(x) (

x ∈D(A)). (1.8)

We conclude this section by the following result which we need in the sequel.

Lemma 1.1 [10]. If A∈�(X) is essentially semiregular, then R∞(A) is closed

and the operator Â : X/R∞(A) → X/R∞(A) induced by A is upper semi-

Fredholm.

2. Spectral inclusions. In this section, we study the regular spectrum and

the essentially regular spectrum of the generator of a strongly continuous

semigroup. We begin with the following spectral inclusions.

Theorem 2.1. For the generator A of a strongly continuous semigroup

(T(t))t≥0, there exist the spectral inclusions

etv(A) ⊆ v(T(t))\{0}, ∀t ≥ 0, (2.1)

where v ∈ {σγ,σπ ,σγe}.
To prove this result, we need the following lemma.

Lemma 2.2. Let A be the generator of a strongly continuous semigroup

(T(t))t≥0. Then, for all λ∈C, t ≥ 0, and n∈N,

(i)

(
eλt−T(t))n(x)= (λ−A)nI(λ,t)n(x) (x ∈X)

= I(λ,t)n(λ−A)n(x) (
x ∈D(An)); (2.2)

(ii) R∞(eλt−T(t))⊆ R∞(λ−A);
(iii) N((λ−A)n)⊆N((eλt−T(t))n);
(iv) H0(λ−A)⊆H0(eλt−T(t)).

Proof of Lemma 2.2. As mentioned before, I(λ,t) is a bounded linear op-

erator on X and we have

eλtx−T(t)x = (λ−A)I(λ,t)(x) (x ∈X)
= I(λ,t)(λ−A)(x) (

x ∈D(A)). (2.3)

Proceeding by induction, we get the desired result. The assertions (ii), (iii), and

(iv) follow easily from (i).

Proof of Theorem 2.1

The regular spectrum. See [5].
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The left essential spectrum. Let t0 > 0 be fixed and suppose that eλt0 	∈
σπ(T(t0)) for some λ ∈ C. We show that λ 	∈ σπ(A). Using Lemma 2.2(iii), to-

gether with dimN(eλt0−T(t0))<∞, we infer thatN(λ−A) is finite dimensional.

Now, we prove that R(λ−A) is closed. Since N(eλt0−T(t0)) is finite dimen-

sional, there exists a closed subspace Y of X such that N(eλt0−T(t0))⊕Y =X.

But, (λ−A)(N(eλt0−T(t0))∩D(A)) is finite dimensional and therefore closed.

Then, we need only to show that (λ−A)(Y ∩D(A)) is closed. From the closed-

graph theorem and the closedness of R(eλt0−T(t0)), it follows that there is a

constant C > 0 such that

∥∥eλt0x−T(t0)x∥∥≥ C‖x‖, ∀x ∈ Y . (2.4)

From Lemma 2.2(i), we obtain that, for every x ∈D(A),
∥∥eλt0x−T(t0)x∥∥≤M‖λx−Ax‖ (2.5)

for some positive constant M . The combination of inequalities (2.4) and (2.5)

gives us

‖λx−Ax‖ ≥ C
M
‖x‖, x ∈ Y ∩D(A). (2.6)

From the fact that λ−A is closed, the result follows.

The essential regular spectrum. Let t0 > 0 be fixed and suppose that

eλt0−T(t0) is essentially semiregular for some λ∈ C\{0}. We show that λ−A
is essentially semiregular. To this end, consider the closed (T(t))t≥0-invariant

subspace M := R∞(eλt0 − T(t0)) of X and the quotient semigroup (T̂ (t))t≥0

defined on X/M by

T̂ (t)x̂ := T̂ (t)x, for x̂ ∈X/M, (2.7)

with generator Â defined by

D
(
Â
)

:= {x̂, x ∈D(A)}, Âx̂ := Âx, ∀x̂ ∈D(Â). (2.8)

From Lemma 1.1, it follows that the operator eλt0 − T̂ (t0) is upper semi-

Fredholm. Thus, eλt0 ∉ σπ(T̂ (t0)). By virtue of the precedent case, we get

λ ∉ σπ(Â). In consequence, the operator λ− Â is upper semi-Fredholm. Next,

let π : X → X/M be the canonical projection. Using Lemma 2.2(ii), together

with dim(N(λ−Â)) <∞, it can be verified that

N(λ−A)⊆π−1N
(
λ−Â)⊆M+G ⊆ R∞(λ−A)+G (2.9)

for a finite-dimensional subspaceG of X. Now, we show that R(λ−A) is closed.

To do this, consider a sequence (un)n of elements of R(λ−A), which con-

verges to u. Then, there exists a sequence (vn)n of elements ofD(A) such that
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(λ−A)vn =un→u. Since R(λ−Â) is closed, there exists ŵ ∈D(Â) such that

û= (λ−Â)ŵ. Hence,

u−(λ−A)w ∈ R∞(eλt0−T(t0))⊆ R∞(λ−A)⊆ R(λ−A). (2.10)

Accordingly, u ∈ R(λ−A). Consequently, the operator λ−A is essentially

semiregular. This proves the theorem.

The next theorem gives, under suitable assumptions, necessary and suffi-

cient conditions for the generator of a strongly continuous semigroup to be

semiregular. The proof can be found in [5].

Theorem 2.3. Let (T(t))t≥0 be a strongly continuous semigroup with gen-

erator A and type ω0. If (T(t))t≥0 satisfies any of the following conditions:

(a) limt→∞(1/t)‖T(t)‖ = 0;

(b) |ω0|< γ(A),
then the following assertions are equivalent:

(i) A is semiregular;

(ii) 0∈ ρ(A);
(iii) H0(A)= {0} and R(A) is closed.

The following example shows that conditions (a) and (b) in Theorem 2.3 are

needed for the conclusion.

Example 2.4. Let H be a Hilbert space with an orthonormal basis {en}∞n=1.

LetA be the operator onH defined byAen = en+1,n= 1,2, . . ., and let T(t)= etA
be the semigroup generated by A. It is well known (see, e.g., [16, Chapter 2,

Theorems 4 and 6]) that σ(A)= {λ∈ C, |λ| ≤ 1} and σap(A)= {λ∈ C, |λ| = 1}.
Thus, A is semiregular but 0 	∈ ρ(A).

We conclude this section by the following result.

Theorem 2.5. Let A be the generator of a strongly continuous semigroup

(T(t))t≥0 satisfying limt→∞(1/t)‖T(t)‖ = 0. The following assertions are equiv-

alent:

(i) A is essentially semiregular;

(ii) A is upper semi-Fredholm.

Proof. (i)⇒(ii). Since A is essentially semiregular, there exists a finite-

dimensional subspace G of X such that N(A)⊆ R∞(A)+G. As noticed in [13],

we may assume that G ⊆N(A). Let y ∈N(A) and let x ∈D(A) and g ∈G such

that y =Ax+g. Using Lemma 2.2(i), we infer that

T(t)x = x+
∫ t

0
T(s)(y−g)ds = x+t(y−g), ∀t ≥ 0. (2.11)

Since limt→∞(1/t)‖T(t)‖ = 0, then y = g. In consequence, N(A) = G. This is

the desired result.

(ii)⇒(i). Obvious.
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Remark 2.6. Theorems 2.3 and 2.5 follow under weaker assumptions (e.g.,

limt→∞ t−n‖T(t)‖, n∈N). This follows essentially from the fact that the spec-

trum of A is contained in the left half-plane {λ∈ C, Re(λ)≤ 0}.

3. Stability results. In this section, we give some stability results for strong-

ly continuous semigroups. First, we introduce some relevant notations and

terminologies. By C− we denote the open left half of the complex plane, that

is, the set of all λ ∈ C such that Re(λ) < 0. A closed operator A is called

stable if σ(A) ⊆ C−. A strongly continuous semigroup (T(t))t≥0 is said to be

strongly stable if ‖T(t)x‖ → 0 as t →∞ for all x ∈ X. We say that (T(t))t≥0 is

uniformly stable if ‖T(t)‖→ 0 as t→∞. Recall that a strongly stable semigroup

is necessarily bounded and has no pure imaginary point in the point spectrum

of its generator. For a recent account of stability results of strongly continuous

semigroups, we refer the reader to [6, Chapter V].

We begin with the following stability results.

Theorem 3.1 [5]. Let A be the generator of a bounded strongly continuous

semigroup (T(t))t≥0. If σγ(A)∩iR=∅, then (T(t))t≥0 is strongly stable.

Theorem 3.2 [5]. Let A be the generator of a bounded strongly continuous

semigroup (T(t))t≥0. Then, the following assertions are equivalent:

(i) (T(t))t≥0 is uniformly stable;

(ii) σγ(T(t))∩Γ =∅,

where Γ stands for the unit circle of C.

In order to state the next result, we need to introduce the ultrapower semi-

group �̃ of a given semigroup �= (T(t))t≥0.

Following [20, page 35] (see also [1, 8]), we define the space �∞0 (X) as the set

of all bounded sequences (xn)n ⊆X such that

lim
t↓0

(
sup
n

∥∥T(t)xn−xn∥∥
)
= 0. (3.1)

The ultrapower semigroup �̃= (T̃ (t))t≥0 is defined on the quotient space

X̃ := �∞0 (X)/C0(X) (3.2)

by

T̃ (t)
((
xn
)
n+C0(X)

)= (T(t)xn)n+C0(X), (3.3)

where C0(X) stands for the space of all sequences in X that converge to 0.
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The semigroup �̃ is, by construction, strongly continuous. Its generator Ã
is given by

D
(
Ã
)= {(xn)n+C0(X),

(
xn
)
n ∈ �∞0 (X), xn ∈D(A) ∀n,

(
Axn

)
n ∈ �∞0 (X)

}
,

Ã
((
xn
)
n+C0(X)

)
= (Axn)n+C0(X).

(3.4)

The spectra of A and Ã are related as follows:

σ
(
Ã
)= σ(A), σp

(
Ã
)= σap

(
Ã
)= σap(A). (3.5)

Theorem 3.3. LetA be the generator of a bounded strongly continuous semi-

group �= (T(t))t≥0. Then the following assertions are equivalent:

(i) σγ(A)∩iR=∅;

(ii) σ(A)∩iR=∅;

(iii) A is stable;

(iv) for every x� ∈ X� and for every β ∈ R, ‖R(λ + iβ,A�)x�‖ =
O(1)(as λ→ 0);

(v) �̃ is strongly stable.

Proof. (i)⇒(ii). It suffices to apply Theorem 2.3 to the rescaled semigroup

(e−iλtT(t))t≥0 whose generator is A−iλ.

(ii)⇒(i). Obvious.

(ii)�(iii). This is an immediate consequence of the Hille-Yosida theorem [6,

Chapter II, Theorem 3.8].

(ii)�(iv). Applying [18, Theorem 3] to the rescaled semigroup S(t) =
e−iβT(t), β ∈ R, whose generator is A− iβ, we can assert that condition (iv)

is equivalent to σsu(A�)∩iR=∅. This is equivalent to σap(A)∩iR=∅. Using

Theorem 2.3, we infer that σ(A)∩iR=∅, which is the desired result.

(v)⇒(ii). Since �̃ is strongly stable, then σp(Ã)∩ iR = ∅. In consequence,

σap(A)∩iR=∅. Arguing as above, we get σ(A)∩iR=∅.

(ii)⇒(v). This follows from Theorem 3.1 on the basis of (3.5).

Remark 3.4. (1) It was shown in [3], under the hypothesis of Theorem 3.3,

that the condition σ(A)⊆ C− is equivalent to

sup
t>0

∥∥∥∥
∫ t

0
eiµsT(s)ds

∥∥∥∥<∞, ∀µ ∈R, ∀x ∈X. (3.6)

(2) In the general case, the condition σ(A)∩ iR = ∅ does not character-

ize, even in Hilbert spaces, the strong stability of the semigroup generated by

A. The translation semigroup T(t)f (x) := f(x+ t), t ≥ 0, on L2(R+) shows

that this condition is not necessary for strong stability. In fact, this semi-

group has the generator A = d/dx, and the spectrum of A is the left half

plane {λ ∈ C : Reλ ≤ 0}, see [1, A.III, 2.4, page 66]. Hence, σ(A)∩ iR = iR but
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limt→∞‖T(t)f‖ = 0 for every f ∈ L2(R+). However, Theorem 3.3 shows that

the condition σ(A)∩ iR = ∅ characterizes completely the strong stability of

the ultrapower extension of the semigroup generated by A.

Corollary 3.5. Let A be the generator of a bounded strongly continuous

semigroup �= (T(t))t≥0 on a reflexive Banach space X. Then, conditions (i), (ii),

(iii), (iv), and (v) of Theorem 3.3 are equivalent to

(vi) for every x ∈X and for every β∈R, ‖R(λ+iβ,A)x‖ =O(1) (as λ→ 0).

Proof. It is well known [19, Corollary 1.3.2] that the adjoint semigroup of

a strongly continuous semigroup on a reflexive Banach space is again strongly

continuous. It suffices to apply Theorem 3.3 to the adjoint semigroup whose

generator is A�.

Note that, in reflexive Banach spaces, condition (vi) implies the strong sta-

bility of the bounded semigroup generated by A (this follows from Corollary

3.5 and Theorem 3.1). In general Banach spaces setting, we have the following

proposition.

Proposition 3.6. Let A be the generator of a bounded strongly continuous

semigroup (T(t))t≥0, satisfying condition (vi). Then,

lim
t→∞

∥∥T(t)x∥∥= 0, ∀x ∈
⋂
β∈R

R(iβ−A). (3.7)

Proof. Condition (vi) implies that limλ→0λR(λ,A− iβ)x = 0 for all x ∈ X.

By the abelian mean ergodic theorem [7, page 520], it follows that R(iβ−A) is

dense in X for all β∈R. Hence,

⋂
β∈R

R(iβ−A)=
⋂
β∈R

(iβ−A)(R(iβ−A)∩D(A)). (3.8)

Using [2, Theorem 6.3(ii)] and the strong continuity of the semigroup, we get

the desired result.
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