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W. Freedman introduced an alternate to the Dunford-Pettis property, called the
DP1 property, in 1997. He showed that for 1 ≤ p <∞, (

⊕
α∈�Xα)p has the DP1

property if and only if each Xα does. This is not the case for (
⊕
α∈�Xα)∞. In fact,

we show that (
⊕
α∈�Xα)∞ has the DP1 property if and only if it has the Dunford-

Pettis property. A similar result also holds for vector-valued continuous function
spaces.
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Let X and Y be Banach spaces and T : X → Y a bounded linear operator.

We say that T is a DP1 operator if whenever (xn) is a sequence of norm one

elements in X such that (xn) → x ∈ X weakly with ‖x‖ = 1, then (T(xn)) →
T(x) in norm. A Banach space X is then said to have the DP1 property if,

for each Banach space Y , a bounded linear operator T : X → Y must be DP1

whenever it is weakly compact. Freedman introduced this property in [5], and

referred to it as a compromise between the Dunford-Pettis property (DPP) and

the Kadec-Klee property (KKP). (Recall that a Banach space X has the DPP if

every weakly compact T : X → Y is completely continuous, that is, T sends

weakly null sequences to norm null sequences. The Banach space X has KKP if

whenever (xn) is a sequence in X such that (xn)→ x weakly and each xn and

X belong to the unit sphere of X, SX , then ‖xn−x‖→ 0.) He also showed that,

although the DP1 property is preserved by linear isometries, it is not preserved

by isomorphisms. It then follows that the collection of DP1 operators does

not form an operator ideal. Thus the relationship between DP1 operators with

better known classes of operators is somewhat unpredictable.

Freedman proved that if X = (⊕α∈�Xα)p , 1 ≤ p < ∞, then X has the DP1

property or KKP if and only if each Xα has the DP1 property or KKP, respec-

tively. This is certainly not the case for X = (⊕α∈�Xα)∞, as the following the-

orem and corollary indicate. (We will assume that � has at least two elements,

and each Xα is nontrivial.) We first define the following terms.

If {Xα :α∈�} is a family of Banach spaces and 1≤ p <∞, define


⊕
α∈�

Xα



p

=
{
x = (xα)∈ ∏

α∈�

Xα :
∑
α∈�

∥∥xα∥∥p <∞
}
, (1)
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with ‖x‖ = (∑α‖xα‖p)1/p , and


⊕
α∈�

Xα



∞
=
{
x = (xα)∈ ∏

α∈�

Xα : sup
α

∥∥xα∥∥<∞
}
, (2)

with ‖x‖ = supα ‖xα‖.
Theorem 1. Let X = (⊕α∈�Xα)∞. If Z is a Banach space, then a bounded

linear operator T :X → Z is DP1 if and only if it is completely continuous.

Proof. Suppose that T : X → Z is DP1 but not completely continuous. Let

β∈�, Y1 =Xβ, and Y2 = (
⊕

α �=β∈�Xα). Thus X = Y1⊕∞Y2. Since T is not com-

pletely continuous, there exists a normalized weakly null sequence (xn,yn)
in Y1 ⊕∞ Y2 and ε > 0 such that ‖T((xn,yn))‖ > ε for each n ∈ N. Define

T1 : Y1 → Z and T2 : Y2 → Z by T1(x) = T((x,0)) and T2(y) = T((0,y)). It

is clear that T((x,y)) = T1(x)+T2(y). Thus, by passing to a subsequence if

needed, we may assume that either (a) ‖T1(xn)‖ > ε/2 or (b) ‖T2(yn)‖ > ε/2,

for each n∈N. Without loss of generality, we assume that (a) holds. Let y ∈ Y2

such that ‖y‖ = 1. As (xn) is weakly null in X1, the sequence ((xn,y))∞n=1 con-

verges weakly to (0,y), and each (xn,y) and (0,y) belong to SX1⊕X2 . As T is

DP1, T((xn,y))→ T((0,y)) in norm. Therefore, T1(xn)→ 0 in norm, which is

a contradiction.

Corollary 2. Let X = (⊕α∈�Xα)∞. Then X has the DP1 property if and

only if it has the DPP. Likewise, X has the KKP if and only if X is a Schur space.

Observe that if (
⊕

α∈�Xα)∞ has the DP1 property (KKP) and hence the DPP

(Schur property), then each Xα has the DPP (Schur property). If � is finite, then

the converse also holds. However, the converse need not be true for infinite

�. For instance, if X = (⊕n∈N�n2 )∞, then X contains a complemented copy of

�2 (see [6, page 61]) and hence X does not have the DPP (Schur property), even

though each �n2 has the DPP (Schur property).

We will now consider DP1 operators from C(H,X) to Y , where X and Y
are Banach spaces, H is a compact Hausdorff space with Borel subsets Σ,

and C(H,X) is the Banach space (sup-norm) of X-valued continuous func-

tions on H. If T : C(H,X) → Y is a bounded linear map, then there exists a

unique weakly regular set function m : Σ → L(X,Y∗∗) such that m̃(H) < ∞
and T(f) = ∫ f dm for each f ∈ C(H,X). This is denoted by m ↔ T . (Note

that m̃(A)= supπ∈Π(A){‖
∑
Ai∈πm(Ai)xi‖ : ‖xi‖ ≤ 1}, where Π(A) denotes the

collection of finite Σ partions of A. See [2] or [4, Chapter 3] for a discussion of

the Riesz representation theorem in this setting.) The operator m↔ T is said

to be strongly bounded if m̃(Ai)→ 0 for each pairwise disjoint sequence (Ai)
of members of Σ.

Lemma 3. If m ↔ T : C(H,X) → Y is a DP1 operator, then m is strongly

bounded.



DP1 AND COMPLETELY CONTINUOUS OPERATORS 2377

Proof. Suppose that m↔ T : C(H,X)→ Y is a DP1 operator, but m is not

strongly bounded. Then there exist sequences (Un) of pairwise disjoint open

subsets of H and (fn) in C(H,X) such that ‖fn‖ = 1, supp(fn) ⊆ Un, and

‖T(fn)‖ > ε for each n ∈ N (see [1, Theorem 2.8]). Define gn = f1+fn+1 for

each n. As (fn) is weakly null, (gn)→ f1 weakly and ‖gn‖ = 1 for each n∈N.

Since T is DP1, T(gn)→ T(f1) in norm, and hence T(fn+1)→ 0 in norm. This

is a contradiction.

Theorem 4. Let X and Y be Banach spaces, H a compact Hausdorff space

containing at least two elements, and Σ the Borel subsets of H. Then a bounded

linear operator m↔ T : C(H,X)→ Y is DP1 if and only if it is completely con-

tinuous. Thus C(H,X) has the DP1 property if and only if it has the DPP.

Proof. Suppose that m↔ T : C(H,X)→ Y is DP1 but not completely con-

tinuous. Then there exists a normalized weakly null sequence (fn) in C(H,X)
and ε > 0 such that ‖T(fn)‖ > 6ε. Let U and V be nonempty open subsets

of H such that U ∩V = ∅. As T is DP1, Lemma 3 tells us that m is strongly

bounded, and hence we may choose a regular nonnegative measure µ defined

on Σ such that limµ(A)→0 m̃(A)= 0.

For each n ∈ N, either (a) ‖∫U fndm‖ > 3ε or (b) ‖∫H\U fndm‖ > 3ε. By

passing to a subsequence, we will assume that (a) holds for all n∈N. Let ϕ1 :

H → [0,1] be a continuous function such thatϕ(U)= 1 andϕ(V)= 0. Next let

δ > 0 be such that if µ(A) < δ, then m̃(A) < ε. Use Lusin’s theorem to obtain a

continuous functionϕ2 :H → [0,1] such that if A= {x :ϕ2(x) �= χU(x)}, then

µ(A) < δ. Let g ∈ C(H,X) such that ‖g‖ = 1 and the support of g is contained

in V . For each n ∈ N, define gn = ϕ1ϕ2fn. This sequence is weakly null in

C(H,X) as (fn) is. Thus (gn+g) converges weakly to g. Also ‖gn+g‖ = 1

for each n ∈ N. As T is DP1, we have that ‖T(gn+g)−T(g)‖ → 0, and thus

‖T(gn)‖→ 0. But

∥∥T(gn)∥∥=
∥∥∥∥
∫
U∪A

gndm
∥∥∥∥

≥
∥∥∥∥
∫
U\A

gndm
∥∥∥∥−

∥∥∥∥
∫
A
gndm

∥∥∥∥
≥
∥∥∥∥
∫
U\A

fndm
∥∥∥∥−m̃(A)∥∥gn∥∥

≥
∥∥∥∥
∫
U
fndm

∥∥∥∥−m̃(A)(∥∥gn∥∥+∥∥fn∥∥)
> 3ε−2ε= ε,

(3)

which yields the desired contradiction.

Now suppose that (b) holds. Use the fact that µ is a regular “control” measure

for m̃ to obtain a closed subset K ⊆H\U such that ‖∫K f dm‖> 3ε. The proof

follows as above by replacing, in the proof of case (a), U and V with K and U ,
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respectively, and again obtaining the desired contradiction. Hence T must be

completely continuous.

We conclude with the following observation. Since every DP1 operator on

(
⊕

α∈�Xα)∞ and C(H,E) are completely continuous, they are also uncondi-

tionally converging. Perhaps a reasonable question may be whether or not all

DP1 operators are unconditionally converging. (Of course it is certainly the

case that there are unconditionally converging operators that are not DP1.) To

consider the converse notion, let ‖| · |‖ denote the norm on co, equivalent to

the usual norm, defined by Day in [3]. It was shown in [7] that (co,‖| · |‖) is

locally uniformly rotund, and hence has KKP. (See [8] for more details about

(co,‖|·|‖).) It is straightforward to show that X has the KKP if and only if for

each Y , every bounded linear operator T : X → Y (in particular, any isomor-

phism of X) is DP1. Thus, using a classical result of Besagga and Pelczynski,

we obtain the following theorem.

Theorem 5. If X and Y are Banach spaces, then a DP1 operator T : X → Y
is not unconditionally converging if and only if X contains a closed subspace Z
such that Z is isometrically isomorphic to (co,‖|·|‖) and T |Z is an isomorphism.
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