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It is known that two commuting continuous functions on an interval need not
have a common fixed point. However, it is not known if such two functions have
a common periodic point. We had conjectured that two commuting continuous
functions on an interval will typically have disjoint sets of periodic points. In this
paper, we first prove that S is a nowhere dense subset of [0,1] if and only if
{f ∈ C([0,1]) : Fm(f)∩S �= ∅} is a nowhere dense subset of C([0,1]). We also give
some results about the common fixed, periodic, and recurrent points of functions.
We consider the class of functions f with continuous ωf studied by Bruckner
and Ceder and show that the set of recurrent points of such functions are closed
intervals.
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1. Introduction. The subject of commuting continuous functions on an in-

terval has been considered by a group of researchers in the 20th century. In the

1920s, J. F. Ritt in a sequence of papers investigated the algebraic properties

of function composition as a binary operation on the set of rational complex

functions. In particular, he showed that commuting polynomials always have

a common fixed point. In 1954, Eldon Dyer asked whether two commuting

continuous functions must have a common fixed point. The same question

was asked by A. J. Shields in 1955 and L. Dubins in 1956. For sometimes, this

conjecture was considered by a group of people and led them to some par-

tial results. Boyce [4] and Huneke [6] answered this question in negative by the

construction of a pair of commuting continuous functions which have no fixed

point in common. In [2], we considered a generalization of the common fixed-

point problem and conjectured that in general two commuting continuous

self-maps of the intervals do not have a common periodic point. To settle the

conjecture, some partial results that gave more information about the struc-

ture of such pairs were obtained. However, in constructing such examples, we

were convinced that the construction of such pair is extremely difficult, even

though it seems that most pairs should not have any periodic points in com-

mon. Thus, in the Twenty-First Summer Symposium in Real Analysis, we posed
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Conjecture 1.1 and raised the possibility of using a Baire-category argument to

settle the problem. It is also not difficult to show that commuting continuous

self-maps of the intervals must have common recurrent points. However, this

is not true in general for the case of metric spaces. In [1], we also constructed

an example of a pair of commuting continuous self-maps of a compact metric

space with no common periodic points, which also provided an answer to a

question raised in [2].

Conjecture 1.1. Two commuting continuous functions on an interval will

typically have disjoint sets of periodic points.

Steele [7] considered the above conjecture and investigated the likelihood of

such pair f and g when P(f) is first category and pointed out the difficulties

that one might face using a Baire-category argument.

In this paper, we first provide a natural setting for the study of this problem

and give some results including a generalization of Steele’s main theorem. We

also consider the class of functions with continuous ωf(x) studied by Bruck-

ner and Ceder [5] and show that the set of recurrent points of such functions

is a closed interval. We begin with some preliminaries.

The class of continuous self-maps of a closed interval I is denoted by C(I,I).
For f ∈ C(I,I) and any integer n≥ 1, fn denotes the nth iterate of f . The or-

bit of x under f (i.e., the set {fk(x) : k ≥ 0}) is denoted by O(f ,x). The set

of cluster points of O(f ,x) is denoted by ω(f ,x). We simply use ω(x) in-

stead of ω(f ,x) when there is no room for confusion. We also use ωf(x) for

the function x → ω(f ,x). A point x is in R(f) if x ∈ ω(f ,x). Let Fn(f) =
{x ∈ I : fn(x) = x}. We call F(f) = F1(f ) the set of fixed points of f , P(f) =
∪∞n=1Fn(f) the set of periodic points of f , and R(f) the set of recurrent points

of f , respectively. A subset Y of I is called invariant under g if g(Y) ⊆ Y .

A closed, invariant, nonempty subset of I is called minimal if it contains no

proper subset that is also closed, invariant, and nonempty. Every closed, in-

variant, and nonempty subset of I contains a minimal set. If Y is a minimal set,

then Y ⊆ R(f), and if it is not the orbit of a periodic point, then it is a perfect

set. A minimal set is also nowhere dense.

Suppose � = {(f ,g) : f , g ∈ C(I,I)}. Define ρ : � → [0,∞) by ρ((f1,g1),
(f2,g2)) = ‖f1−f2‖+‖g1−g2‖ where ‖f −g‖ = sup{|f(x)−g(x)| : x ∈ I}.
The open ball about x with radius ε is denoted by Bε(x), and the interior

and closure of A are denoted by Ao and A, respectively. The set of rational

numbers is denoted by Q and the set of natural numbers is denoted by N.

For two compact subsets A and B of I, by d(A,B) and dH(A,B), we mean the

distance of the sets A and B with respect to the ordinary metric and Hausdorff

metric, respectively. Even though the results given here are true on any closed

interval I, we only prove them for I = [0,1]. In approximating a continuous

function with a polynomial, we consider its Bernstein polynomials restricted

to I. These polynomials have the interesting property that for f ∈ C(I,I) all
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its Bernstein polynomials are also in C(I,I). In the sequel, we use Theorem 1.2

given below from [3]. The proof of Theorem 1.3 is also trivial, and thus, it is

omitted.

Theorem 1.2. If f ∈ C(I,I), then P(f)= R(f).

Theorem 1.3. Let � and ρ be as defined, then (�,ρ) is a compact metric

space.

2. Main results

Lemma 2.1. Let f ∈ C(I,I) and let S be an Fσ subset of I. Then S is of first

category if and only if S does not contain an interval.

Proof. Suppose S is of first category and S =∪∞m=1Sm with each Sm closed.

Then, from the Baire-category theorem, it follows that S does not contain an

interval. On the other hand, if S does not contain an interval, then for each

m ≥ 1, Sm is a nowhere dense set, implying that S is a first-category subset

of I.

Corollary 2.2. Let f ∈ C(I,I). Then P(f) is of first category if and only if

P(f) does not contain an interval.

Theorem 2.3. The set A = {(f ,g) : P(f) and P(g) are both first category}
is a residual subset of �.

Proof. Let A1 = {(f ,g) ∈ � : P(f) is not first category} and let A2 =
{(f ,g) ∈ � : P(g) is not first category}, then we have A = � \ (A1∪A2). We

show that A is a residual subset of � by showing that A1 and A2 are first-

category subsets of �. We prove our claim for set A1; the case for A2 similarly

follows. Suppose (f ,g) ∈ A1, then P(f) is not of first category in I. Thus it

contains an interval, hence we have

A1 =
{
(f ,g)∈� : P(f) is not first category

}

= {(f ,g)∈� : P(f) contains an interval
}

=
∞⋃

m=1

{
(f ,g)∈� : Fm(f) contains an interval

}
.

(2.1)

Thus it suffices to show that, for each m ≥ 1, the set Bm = {(f ,g) ∈ � :

Fm(f) contains an interval} is a first-category subset of �. This is achieved

if we show that Bm,n = {(f ,g) ∈ � : Qn ⊆ Fm(f)} is a nowhere dense sub-

set of �, where {Qn} is an enumeration of the rational intervals (a,b) with

a,b ∈Q∩[0,1]. Suppose (f1,g1)∈ Bm,n and ε > 0, then we haveQn ⊆ Fm(f1).
Let P be a polynomial with ‖f1−P‖< ε, then (P,g1)∈ Bε((f1,g1)). It is easy to

see that Bm,n is a closed subset of � and Fm(P) has finitely many elements for
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a polynomial P , thus Fm(P) does not containQn. This implies that Bm,n = Bm,n
has no interior, hence Bm,n is a nowhere dense subset of �.

Lemma 2.4. Let S ⊂ [0,1] be a nowhere dense set and let m be a positive

integer. Then the set Am = {f ∈ C([0,1]) : Fm(f)∩S �= ∅} is a nowhere dense

subset of C([0,1]).

Proof. First we show that Am is a closed subset of C([0,1]). For this, let

{gn} ⊆ Am be a sequence and {gn} converges uniformly to g; we show that

g ∈Am. Since Fm(gn)∩S �= ∅, takeyn ∈ Fm(gn)∩S. Without loss of generality,

we may assume limn→∞yn = y0, thus y0 ∈ S. Let ε > 0 be arbitrary. Choose k
large enough so that |gm(yk)−gm(y0)|< ε, ‖gmk −gm‖< ε, and |yk−y0|< ε.
Then we have
∣∣gm

(
y0
)−y0

∣∣≤ ∣∣gm(y0
)−gm(yk

)+gm(yk
)−gmk

(
yk
)+gmk

(
yk
)−y0

∣∣

≤ ∣∣gm(y0
)−gm(yk

)∣∣+∣∣gm(yk
)−gmk

(
yk
)∣∣+∣∣gmk

(
yk
)−y0

∣∣

≤ ∣∣gm(y0
)−gm(yk

)|+∥∥gm−gmk
∥∥+∣∣yk−y0

∣∣

≤ 3ε.
(2.2)

Since ε was arbitrary, we have gm(y0) = y0, implying that y0 ∈ Fm(g)∩S,

hence g ∈Am. To show that Am is nowhere dense subset of C([0,1]), we show

that for each f ∈ Am and ε > 0, there exists a function h ∈ C([0,1]) so that

‖h−f‖< ε and Fm(h)∩S =∅. To this end, let P be a Bernstein polynomial of

f so that ‖f −P‖ < ε/4m and let E1 = F1(P)∩S = {z1,z2, . . . ,zk}. Due to the

uniform continuity of P , for ε > 0, there exists δk > 0 so that for t1, t2 ∈ [0,1],
with |t1−t2|< 4δk, we have |P(t1)−P(t2)| ≤ ε/4mk. Let δ

′
k = (1/4)min{|zi−

zj| for i �= j,δk,ε/4}. For each zi ∈ E1, we have one of the following cases.

Case 1. For all x ∈ (zi−δ′k,zi)∪(zi,zi+δ
′
k), P(x) > x.

Case 2. For all x ∈ (zi−δ′k,zi)∪(zi,zi+δ
′
k), P(x) < x.

Case 3. For all x ∈ (zi − δ′k,zi), P(x) > x, and for all x ∈ (zi,zi + δ′k),
P(x) < x.

Case 4. For all x ∈ (zi − δ′k,zi), P(x) < x, and for all x ∈ (zi,zi + δ′k),
P(x) > x.

We only prove Cases 1 and 3. Cases 2 and 4 are proved similarly.

In Case 1, choose x1 and x2 so that z1−δ′k < x1 < z1 <x2 < z1+δ′k and take

P1(x)= P(x) for x ≤ x1 or x ≥ x2, being linear on the interval [x1,x2].
In Case 3, choose x1, x2, and x3 so that z1−δ′k < x3 < z1 <x2 <x1 < z1+δ′k,

P(x3)− ε/8mk < (x1+x2)/2 < P(x3)+ ε/8mk, and [x2,x1]∩S = ∅. In this

case, take P1(x) = P(x) for x ≤ x3 or x ≥ x1, P1((x1+x2)/2) = (x1+x2)/2,

being linear on the intervals [x3,(x1+x2)/2] and [(x1+x2)/2,x1]. Therefore

we have F1(P1)∩S = F1(P)\{z1} and ‖P1−P‖ ≤ ε/4mk. Repeating this process

for each zi ∈ E1, i≥ 2, we can choose piecewise polynomials Pi in C([0,1]) so

that ‖Pi−Pi−1‖ ≤ ε/4mk and F1(Pi)∩S = F1(P)\{z1,z2,z3, . . . ,zi}. By taking
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Q1 = Pk, we have ‖Q1−f‖ ≤ ‖Q1−Pk−1‖+‖Pk−1−Pk−2‖+···+‖P1−P‖+‖P−
f‖ ≤ k(ε/4mk)+ε/4m= ε/2m and F1(Q1)∩S =∅. Since Q1 is a continuous

piecewise polynomial, F2(Q1) has finitely many elements. Thus, by replacing

the role of P with Q1 and the role of F1(P) with F2(Q1), similarly, we may

choose a piecewise polynomialQ2 in C([0,1]) so that ‖Q2−Q1‖ ≤ 3ε/4m and

F2(Q2)∩S =∅. Continuing this process, we may choose piecewise polynomials

{Qi}mi=1 ⊂ C([0,1]) so that ‖f−Q1‖ ≤ 3ε/4m, ‖Qi−Qi−1‖ ≤ 3ε/4m for 2≤ i≤
m, and Fi(Qi)∩S =∅ for 1≤ i≤m. Thus we have ‖Qm−f‖ ≤ ‖Qm−Qm−1‖+
‖Qm−1−Qm−2‖+···+‖Q1−f‖ ≤ 3ε/4m+3ε/4m+···+3ε/4m+3ε/4m ≤
m(3ε/4m) = 3ε/4 < ε, and Fm(Qm)∩S =∅. This implies that Qm �∈ Am and

hence Am is a nowhere dense subset of C([0,1]).

Lemma 2.5. Let S ⊆ [0,1] and let m be a positive integer. If the set Am =
{f ∈ C([0,1]) : Fm(f)∩S �= ∅} is a nowhere dense subset of C([0,1]), then S
is a nowhere dense subset of [0,1].

Proof. On the contrary, suppose S is somewhere dense. Then S contains

a closed interval [a,b] of positive length. Define the function f as f(x) = x,

for x ≤ a or x ≥ b, f(a+ (b−a)/8) = 1, f(a+ (b−a)/4) = a+ (b−a)/4,

f(x)= x, for a+(b−a)/4≤ x ≤ a+3(b−a)/8, f(a+(b−a)/2)= 0 and linear

elsewhere. Take ε < (1/2)min{1− (a+ (b−a)/4),a+ (b−a)/2}. It is easy to

see that for each g ∈ C([0,1]) with ‖g−f‖ < ε, there exist x1,x2 ∈ (a,b) so

that g(x1) > x1, g(x2) < x2. This implies the existence of x3 ∈ (a,b)∩F1(g)⊆
Fm(g)∩S, hence g ∈ Am, contrary to the assumption that Am is a nowhere

dense subset of C([0,1]).

By combining Lemmas 2.4 and 2.5, we have the following theorem.

Theorem 2.6. Let S ⊆ [0,1] and let m be a positive integer. Then the set

Am = {f ∈ C([0,1]) : Fm(f)∩S �= ∅} is a nowhere dense subset of C([0,1]) if

and only if S is a nowhere dense subset of [0,1].

Theorem 2.7. Let S ⊂ [0,1] be a first-category set. Then there exists a resid-

ual subset M of C([0,1]) so that P(g)∩S =∅ for each g ∈M .

Proof. Let S =∪∞n=1Sn, where Sn is nowhere dense for eachn. For each pos-

itive integer m from Theorem 2.6, we have that the set Am,n = {g ∈ C([0,1]) :

Fm(g)∩Sn �= ∅} is a nowhere dense subset of C([0,1]). Thus B = ∪∞m=1∪∞n=1

Am,n is a first-category subset of C([0,1]). Let M = C([0,1]) \ B, then M is

residual and if g ∈M , then g �∈Am,n for each m≥ 1 and n≥ 1. Thus we have

Fm(g)∩Sn =∅ for m ≥ 1 and n ≥ 1. This implies that S∩P(g) =∅ for each

g ∈M .

Theorem 2.8. The functionh :�→[0,∞) defined byh((f ,g))=d(F(f),F(g))
is a lower semicontinuous function.

Proof. The proof is straightforward and is omitted.
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Corollary 2.9. Let �= {(f ,g)∈� : f and g have a common fixed point}
and let �= {(f ,g)∈� : f and g have a common periodic point}. Then � and

� are closed and Fσ subsets of �, respectively.

Now we turn our attention to commuting continuous functions on the inter-

val and prove the following lemma that is used in Theorem 2.11.

Lemma 2.10. Let f ∈ C(I,I) where I = [0,1], and let a,b ∈ I, a �= b. If ε > 0

is a real number, then there exists a function h∈ C(I,I) such that h(a)= f(a),
h(b) �= f(b), and ‖h−f‖< ε.

Proof. We can assume ε < 1. Then, for x ∈ I = [0,1], let

h(x)= f(x)+(c−f(x))|x−a|cε, (2.3)

with c = 1/2 if f(b) �= 1/2 and c = 1/3 if f(b) = 1/2. Then h is continuous,

h(a) = f(a), h(b) �= f(b), and |h(x)− f(x)| = |(c − f(x))|x−a|cε < |x−
a|(ε/2) ≤ ε/2 for any x ∈ I. Thus, ‖h− f‖ < ε. Moreover, h(x) ∈ [0,1] for

x ∈ I. If f(x) ≥ c, 0 ≤ h(x) ≤ f(x), and f(x) ≤ h(x) ≤ 1 if f(x) < c. Thus

h∈ C(I,I).

Theorem 2.11. Let � = {(f ,g) ∈ � : f ◦g = g ◦f}, then � is a nonempty,

closed, and nowhere dense subset of �.

Proof. It is easy to see that (f ,f ) ∈ � when f is the identity function,

so � is nonempty. Suppose (fn,gn) ∈ � and (fn,gn)→ (f ,g). Then we have

fn → f , gn → g, and fn ◦ gn = gn ◦ fn for each n. We show that (f ,g) ∈
�. Let x ∈ I and ε > 0. Since f and g are uniformly continuous, we may

choose δ, so that 0 < δ < ε and for every x1, x2 in I with |x1 − x2| < δ,

we have |f(x1)−f(x2)| < ε, |g(x1)−g(x2)| < ε. Since fn → f and gn → g,

there exists N ∈ N such that n > N implies ‖fn − f‖ < δ, ‖gn − g‖ < δ.

Thus, if n > N, |f(g(x))− g(f(x))| ≤ |f(g(x))− f(gn(x))| + |f(gn(x))−
fn(gn(x))| + |gn(fn(x))−g(fn(x))| + |g(fn(x))−g(f(x))| ≤ 2δ+ 2ε ≤ 4ε.
Since ε > 0 and x were arbitrary, we have f ◦ g = g ◦ f , so (f ,g) ∈ � and

� is closed. Now we show that � is nowhere dense. Let ε > 0, (f ,g) ∈ �.

Suppose f or g is not the identity function, hence there exists x0 so that

f(x0) ≠ x0 or g(x0) ≠ x0. Suppose g(x0) ≠ x0, the case where f(x0) ≠ x0

is similar. Let h2(x) = g(x) for each x ∈ I, and let h1 ∈ C(I,I) be a func-

tion so that h1(x0)= f(x0), but h1(g(x0))≠ f(g(x0)) and ‖f −h1‖< ε. From

Lemma 2.10, with a= x0 and b = g(x0), it follows that such h1 ∈ C(I,I) exists.

Then we have (h1,h2)∈ Bε((f ,g)), and h2(h1(x0))= h2(f (x0))= g(f(x0))=
f(g(x0)) ≠ h1(g(x0)) = h1(h2(x0)). Thus � is the union of a nowhere dense

set and a singleton {(x,x)}, thus it is a nowhere dense subset of �.

Theorem 2.12. Let f and g be two commuting continuous self-maps of the

unit interval. Then we have one of the following holds:
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(i) f and g have a common periodic point;

(ii) for any two positive integers m and n, let Am,n = {x : fn(x)= gm(x)}.
Then for all x ∈Am,n, ω(f ,x) is a perfect nowhere dense set.

Proof. The set Am,n is not empty as is shown in [2], however we give the

proof for completeness. If Am,n is empty, the continuity of f and g permits us

to assume without loss of generality that

fn(x) < gm(x) ∀x ∈ I. (2.4)

Since gm(1) ≤ 1, the set S = {x ∈ I : gm(x) ≤ x} is not empty. Thus, since

S is closed, S has a minimum element c. Clearly, c = gm(c). Hence fn(c) =
fn(gm(c))= gm(fn(c)) so that fn(c)∈ S. Consequently, fn(c)≥ c = gm(c).
Since fn(c)≥ gm(c) contradicts (2.4), the assertion thatAm,n is empty is false.

Now suppose that (i) does not hold, that is, f and g do not have a common

periodic point, and let x ∈Am,n. Then fn(x)= gm(x), and hence fn(f(x))=
f(gm(x)) = gm(f(x)) and fn(g(x)) = g(fn(x)) = g(gm(x)) = gm(g(x)).
Thus if x ∈ Am,n, f(x),g(x) ∈ Am,n, and fpn(x) = gpm(x) for each positive

integer p. From this, it follows that O(g,x) is contained in Am,n whenever

x ∈ Am,n. From closeness of Am,n, it follows that ω(g,x) ⊆ Am,n. If ω(g,x)
has an isolated point, then the isolated point is a periodic point of g which is

contained in Am,n, thus also a periodic point of f , which is a contradiction. So

for eachx ∈Am,n,ω(g,x) is a perfect set. Suppose for somex ∈Am,n,ω(g,x)
is somewhere dense, then it contains an interval I0. Let I1 be the largest interval

such that I0 ⊆ I1 ⊆Am,n and x0 ∈ Io1 , then there are positive integers k1, k2 with

k1 < k2 so that gk1(x) and gk2(x) are in I1. This implies that gk2−k1(I1) ⊆ I1,

and thus g should have a periodic point in I1 that is also a periodic point of

f , which is again a contradiction. It is also easy to see that the set ω(g,x) is

an invariant set under g. Suppose A1 is a minimal set contained in ω(g,x).
Since f and g have no common periodic points, the set A1 cannot be the orbit

of a periodic point. Hence A1 is also a perfect set contained in Am,n∩ω(g,x).
Thus, for each x ∈ Am,n, ω(g,x) = ω(f ,x) is a perfect nowhere dense set

containing a perfect minimal set.

Remark 2.13. Bruckner and Ceder [5] proved thatωf is Baire 1 if and only

if any infinite ω-limit set for f is perfect. Motivated by this result, one may

extend the above Baire-1 classification of ωf to the closed subsets of I. If so,

the above theorem tells us either the two commuting continuous functions

f and g have a common periodic point or both ωf and ωg are Baire 1 on

the closed set Am,n with ω(f ,x) and ω(g,x) being nowhere dense for each

x ∈Am,n.

Remark 2.14. An argument similar to the proof of the above theorem could

give the same result if the role of Am,n is replaced with any nonempty

f -invariant closed subset of P(g) or g-invariant closed subset of P(f). In
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particular, Theorem 2.12 is also true if in its statement we replace Am,n with

F(f) or F(g).

The family of all ω-limit sets of a continuous function with the Hausdorff

metric forms a metric space. Bruckner and Ceder [5] introduced a kind of

chaos in terms of the map ωf : x →ω(f ,x). In the same paper, they proved

Lemma 2.15 and used it to prove Theorem 2.16 which characterizes the con-

tinuity of ωf .

Lemma 2.15. If ωf is continuous, then F1(f ) is connected.

Theorem 2.16. The following conditions are equivalent:

(1) ωf is continuous;

(2) {fn}∞n=1 is equicontinuous;

(3) ωf2 is continuous;

(4) F1(f 2)=∩∞n=1fn(I);
(5) F1(f 2) is connected and, for all x, {f 2n(x)}∞n=1 converges to a point of

F1(f 2);
(6) F1(f 2) is connected;

(7) ωf is lower semicontinuous;

(8) ωf is upper semicontinuous.

Using the above theorem, we show that the recurrent set of a continuous

function defined on a closed interval with continuous ωf is a closed interval.

Lemma 2.17. For any natural number n,ωfn is continuous whenωf is con-

tinuous.

Proof. From the lower semicontinuity of ωf , it follows that {fk}∞k=1 is

equicontinuous, implying that {fnk}∞k=1 is equicontinuous for each n ∈ N.

Hence ωfn is also lower semicontinuous. Thus the lemma follows from

Theorem 2.16.

Theorem 2.18. Suppose f is a continuous self-map of the unit interval with

ωf : x→ω(f ,x) continuous. Then R(f) is a closed interval.

Proof. For each m≥ 1, ωfm is continuous by Lemma 2.17, thus F1(fm)=
Fm(f) is connected by Lemma 2.15. We also have F1(f )⊆ Fn(f) for all n≥ 1,

implying that ∅ �= F1(f ) ⊆
⋂∞
n=1Fn(f), thus P(f) = ⋃∞n=1Fn(f) is connected.

Since P(f) ⊆ R(f) ⊆ P(f), we have R(f) connected. Now let {xn}∞n=1 be a se-

quence in R(f) with limn→∞xn = x0. We show that x0 ∈ R(f). Let ε be an arbi-

trary positive number. From the continuity ofωf and the fact that limn→∞xn =
x0, there exists N1 ∈ N so that |xn−x0| < ε and dH(ω(f ,xn),ω(f ,x0)) < ε
for all n ≥ N1. Since {xn} ⊆ R(f), we have xn ∈ ω(f ,xn) for each n. Thus,

for each n ≥ N1, there exists zn ∈ ω(f ,x0) so that |xn − zn| < ε, implying

that |zn−x0| < 2ε. Hence d(x0,ω(f ,x0)) ≤ 2ε, for every ε > 0, implying that

x0 ∈ω(f ,x0), hence x0 ∈ R(f). Thus we have shown that R(f) is a closed and

connected subset of the real line, hence it is a closed interval.
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Remark 2.19. Due to the fact that R(f) = ∩∞m=1 ∪∞n=m {x ∈ I : |fn(x)−
x| ≤ 1/m}, we see that the recurrent set of continuous self-maps of a closed

interval is an Fσδ set. A question of considerable interest is the classification

of such maps with Fσ recurrent set. This class of functions contains nomadic

functions. A continuous self-map of an interval is called nomadic if it has a

dense orbit at some point. It is also known that if R(f) is closed, then f has

topological entropy zero. Thus Theorem 2.18 provides another subclass of the

class of continuous self-maps of the interval with an Fσ recurrent set as well

as zero topological entropy.
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