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A kth-order linear difference equation with constant coefficients subject to bound-
ary conditions is considered. A necessary and sufficient condition for the existence
of a unique solution for such a boundary value problem is established. The con-
dition established answers a fundamental question for well-posedness and can be
easily applied using a simple and computationally tractable algorithm that does
not require finding the roots of the associated characteristic equation.
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1. Introduction. The present paper is motivated by the fact that, in general,

the theory and the construction of solutions of boundary value problems are

more difficult than those of initial value problems [4, page 629], and by the

need for a simple criterion to determine whether a boundary value problem is

well posed [5, page 43].

Our main objective in this research is to establish an easy-to-apply crite-

rion for the fundamental question of existence and uniqueness of solutions

of a discrete boundary value problem (DBVP). For definiteness, we consider a

general kth-order linear difference equation with constant coefficients given

as

k∑
j=0

ajy(n+j)= 0, n= 0,1,2, . . . , a0ak ≠ 0, (1.1)

subject to separable boundary conditions of the form

y(i)=yi, i= 0, . . . ,k1−1, y(j)=yj, j =N,. . . ,N+k2−1, (1.2)

where k1,k2 ≥ 1, k1+k2 = k, and N > k1. We establish a criterion based upon

the parameters of the given boundary value problem, namely, the coefficients,

k, k1, and N.

In the literature, in general, existence and uniqueness theorems for DBVPs

provide sufficient conditions in which a Green’s function plays an essential role

[6, pages 243–250]. Furthermore, unlike the results established in [1, 2, 3] and
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conjectured in [7] (despite their applicability), the result established here does

not require finding the zeros of the corresponding characteristic polynomial

p(λ)=
k∑
j=0

ajλj (1.3)

which may be a difficult task for higher-degree polynomials. Similar deter-

minants (see Theorem 2.1) were used to characterize disconjugacy of linear

second-order selfadjoint difference equations in [6, page 251].

This paper is organized as follows. In Section 2, the main result, Theorem

2.1, is presented along with several preliminary results that will be needed for

the lengthy proof of the result. In Section 3, a simple algorithm for applying

the criterion is presented. In Section 4, an illustrative example is given. Finally,

in Section 5, we conclude our research with an important remark that illus-

trates the applicability of the main result to a more general type of boundary

conditions.

2. Existence and uniqueness criterion. Our main result in this research is

the following theorem.

Theorem 2.1. DBVP (1.1) and (1.2) has a unique solution if and only if the

following (N−k1×N−k1) determinant

∣∣∣∣∣∣∣∣∣∣∣

ak1 ak1+1 ··· aN−1

ak1−1 ak1 ··· aN−2

...
...

. . .
...

a2k1−N+1 a2k1−N+2 ··· ak1

∣∣∣∣∣∣∣∣∣∣∣
≠ 0, (2.1)

where aj = 0 if j < 0 or j > k.

To prove Theorem 2.1, we need to recall the following two results which

were established in [1].

Theorem 2.2. If k, m1, . . . ,mr and n1, . . . ,nk are positive integers such

that k = m1 +···+mr , 0 ≤ n1 < ··· < nk, �u(z) = (1,z, . . . ,zk−1)t , and A =
(A1 ···Ar), where

Aj =
(
�u
(
zj
)
, . . . , �u(mj−1)(zj)) (2.2)

and �u(s) is the sth componentwise derivative of the vector �u, then

|A| =

 r∏
i=1

mi−1∏
ji=0

ji!


 r∏
j=2

j−1∏
i=1

(
zj−zi

)mimj . (2.3)
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Theorem 2.3. If k,m1, . . . ,mr and n1, . . . ,nk are positive integers such that

m1+m2+···+mr =k, 0 ≤ n1 < ··· < nk, �u(z)= (zn1 ,zn2 , . . . ,znk)t , �vi(z)=
(ni−1

1 zn1 ,ni−1
2 zn2 , . . . ,ni−1

k znk)t , and B = (B1 ···Br ) such that

Bj =
(
�v1
(
zj
)··· �vmj

(
zj
))
, (2.4)

then

|B| =

 r∏
j=1

z
mj(mj−1)/2
j


|A|, (2.5)

where A= (A1 ···Ar) and

Aj =
(
�u
(
zj
)
, . . . , �u(mj−1)(zj)). (2.6)

Also, we need to establish the following two lemmas. The first lemma estab-

lishes a formula for higher-order derivatives of determinants. The second one

plays the major role in the proof of Theorem 2.1.

Lemma 2.4. If F(z) = |C1(z)···Ck(z)| such that Cj(z) : C → Ck are suffi-

ciently differentiable functions, then

F(r)(z)=
∑

α1+···+αk=r

r !
α1!···αk!

∣∣∣C(α1)
1 (z)···C(αk)k (z)

∣∣∣, (2.7)

where αi ∈ {0,1, . . . ,r}.
Proof. Clearly, the result is true for r = 1. Furthermore, if it holds for r ,

then

F(r+1) =
∑

α1+···+α2=r

r !
α1!···αk!

[∣∣∣C(α1+1)
1 (z)···C(αk)k (z)

∣∣∣+···
+
∣∣∣C(α1)

1 (z)···C(αk+1)
k

∣∣∣]

=
∑

β1+···+β2=r+1

[
r !(

β1−1
)
!···βk! +···

+ r !(
β1
)
!···(βk−1

)
!

]∣∣∣C(β1)
1 (z)···C(βk)k (z)

∣∣∣

=
∑

β1+···+β2=r+1

[(
β1+···+βk

)
r !

β1!···βk!
]∣∣∣C(β1)

1 (z)···C(βk)k (z)
∣∣∣

=
∑

β1+···+β2=r+1

(r +1)!
β1!···βk!

∣∣∣C(β1)
1 (z)···C(βk)k (z)

∣∣∣.

(2.8)

Hence, by the principle of mathematical induction, the result is true for all r .
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Lemma 2.5. Suppose that the kth-degree polynomial with complex coeffi-

cients

p(λ)= λk+ak−1λk−1+···+a1λ+a0, a0 ≠ 0, (2.9)

has r distinct roots z1, . . . ,zr with multiplicities m1, . . . ,mr , respectively, such

that m1+···+mr = k.

If

Ek
(
�,m;z1, . . . ,zr

)= ∣∣�um(z1
)··· �u(m1−1)

m
(
z1
)··· �um(zr )··· �u(mr−1)

m
(
zr
)∣∣,

0≤ � ≤ k, m≥ 0

(2.10)

where �um(z)= (1, . . . ,z�−1,z�+m,. . . ,zk+m−1)t ∈Ck, and

Dak(�,m)=

∣∣∣∣∣∣∣∣∣∣∣

a� a�+1 ··· a�+m−1

a�−1 a� ··· a�+m−2

...
...

. . .
...

a�−m+1 a�−m+2 ··· a�

∣∣∣∣∣∣∣∣∣∣∣
(2.11)

such that aj = 0 if j < 0 or j > k, then

Ek
(
�,m;z1, . . . ,zr

)= (−1)m(k−�)Dak (�,m)Vk
(
z1, . . . ,zr

)
, (2.12)

where

Vk
(
z1, . . . ,zr

)= Ek(�,0;z1, . . . ,zr
)

=

 r∏
i=1

mi−1∏
ji=0

ji!


 r∏
j=2

j−1∏
i=1

(
zj−zi

)mimj .
(2.13)

Proof. The last part of the above result follows from Theorem 2.2.

First, since z1, . . . ,zr are zeros of polynomialpwith multiplicitiesm1, . . . ,mr ,

respectively, we have




�ut0
(
z1
)

...(
�ut0
)(m1−1)(z1

)
...

�ut0
(
zr
)

...(
�ut0
)(mr−1)(zr )







a0

a1

...
ak−1


=−




zk1
...(

zk1
)(m1−1)

...

zkr
...(

zkr
)(mr−1)




. (2.14)
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Therefore, by Cramer’s rule and the invariance under the transposition prop-

erty of the determinants, we have

Ek
(
�,1;z1, . . . ,zr

)= (−1)(k−�)a�Vk
(
z1, . . . ,zr

)
, (2.15)

that is, the result holds for m= 1.

Now, if the result holds for m, then

Ek+1
(
�+1,m;z1, . . . ,zr ,z

)
= (−1)m(k−�)Dbk+1(�+1,m)Vk+1

(
z1, . . . ,zr ,z

)
,

(2.16)

where bj = aj−1 −ajz are the coefficients of the (k+ 1)-degree polynomial

q(λ)= (λ−z)p(λ). But, by Leibnitz rule of differentiation,

(−1)(k+�)�!Ek
(
�,m+1;z1, . . . ,zr

)

= ∂
�Ek+1

(
�+1,m;z1, . . . ,zr ,z

)
∂z�

∣∣∣∣
z=0

= (−1)m(k−�)
�∑
j=0

(
�
j

)
∂jDbk+1(�+1,m)

∂zj

∣∣∣∣
z=0

· ∂
�−jVk+1

(
z1, . . . ,zr ,z

)
∂z�−j

∣∣∣∣
z=0
.

(2.17)

However,

∂iVk+1
(
z1, . . . ,zr ,z

)
∂zi

∣∣∣∣
z=0

= (−1)i+ki!Ek
(
i,1;z1, . . . ,zk

)
= i!aiVk

(
z1, . . . ,zr

)
,

(2.18)

∂iDbk+1(�+1,m)
∂zi

∣∣∣∣
z=0

= (−1)ii!Mm+1,m+1−i, (2.19)

whereMrs is the rs-minor ofDak(�,m+1) if r ,s ≥ 0 and 0 otherwise. Therefore,

after some simplifications, we obtain

Ek
(
�,m+1;z1, . . . ,zr

)

= (−1)(m+1)(k−�)

 �∑
j=0

(−1)ja�−jMm+1,m+1−j


Vk(z1, . . . ,zr

)

= (−1)(m+1)(k−�)Dak (�,m+1)Vk
(
z1, . . . ,zr

)
.

(2.20)

and, hence, by the principle of mathematical induction, the result holds for all

m.

To complete the proof, we need to justify (2.18) and (2.19).

Equation (2.18) can be easily checked out by differentiating the last column

of Vk+1(z1, . . . ,zr ,z) i times, substituting z = 0 and applying the Laplace ex-

pansion of determinants through the (k+1)th column.
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As for (2.19), since bj are linear in z, by Lemma 2.4,

∂iDbk+1(�+1,m)
∂zi

=
∑

α1+···+αm=i

i!
α1!···αm!

∣∣∣C(α1)
1 (z)···C(αm)m (z)

∣∣∣, (2.21)

where αi ∈ {0,1} and Cj(z)= (b�+j ···b�+j−m+1)t . But at z = 0 and bj = aj−1,

∂iDbk+1(�+1,m)
∂zi

∣∣∣∣
z=0

= i!∣∣C1(0)···Cm−i(0)C′m−i+1(0)···C′m(0)
∣∣. (2.22)

Finally, using the fact that b′j = −aj , the result follows. This completes the

proof.

Proof of Theorem 2.1. First, without loss of generality, we assume that

ak = 1.

Now, it is not difficult to see that if the characteristic polynomial (1.3) has r
distinct characteristic roots denoted by z1,z2, . . . ,zr with corresponding mul-

tiplicities m1, . . . ,mr such that 1 ≤ r ≤ k, 1 ≤mj ≤ k, j = 1, . . . ,r , and m1+
···+mr = k, then the general solution of (1.1) is given by

y(n)=
r∑
i=1

qi(n)zni , (2.23)

where qi(n) is a polynomial in n of degreemi−1. Therefore, the existence of a

unique solution of the DBVP (1.1) and (1.2) is equivalent to the nonsingularity

of the block matrix A defined by

A= (A1 ···Ar
)
, (2.24)

where Aj is a k×mj matrix given by

Aj =




1 0 ··· 0
...

...
...

zk1−1
j

(
k1−1

)
zk1−1
j ··· (

k1−1
)mj−1zk1−1

j

zNj NzNj ··· Nmj−1zNj
...

...
...

zN+k2−1
j

(
N+k2−1

)
zN+k2−1
j ··· (

N+k2−1
)mj−1zN+k2−1

j



,

(2.25)

for j = 1, . . . ,r .
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Hence, by Theorem 2.3,

|A| =

 r∏
j=1

z
mj(mj−1)/2
j


Ek(k1,N−k1;z1, . . . ,zr

)
. (2.26)

Therefore, by Lemma 2.5, A is nonsingular if and only if Dak(k1,N −k1) ≠ 0,

and so the result follows.

3. A computational algorithm. To determine the solvability of the DBVP

(1.1) and (1.2), we propose the following easy-to-apply algorithm.

Algorithm 3.1

Input. k (order of the difference equation), ai, i= 0,1, . . . ,k (coefficients), k1

(number of initial conditions), N (starting index of final conditions).

Step 1. Form the following table:

a0 a1 a2 ··· ak 0 0 ···
0 a0 a1 ··· ak−1 ak 0 ···
0 0 a0 ··· ak−2 ak−1 ak ···
...

...
...

. . .
...

...
...

. . .

(3.1)

Step 2. Skip k1 columns by starting from the left.

Step 3. Form a determinant of size (N−k1)×(N−k1) starting from the first

row.

Output. If the determinant calculated in Step 3 is not zero, then DBVP (1.1)

and (1.2) has a unique solution.

Remark 3.2. It is worthwhile mentioning that the determinant needed in

the above algorithm corresponds to a banded matrix with constant diagonals.

In fact, there will be at most k+1 diagonals. This will definitely minimize the

cost of computations as far as computer time is concerned.

4. Applications. To illustrate the applicability of Theorem 2.1 (and Algo-

rithm 3.1), we present the following example.

Example 4.1. Consider the difference equation

y(n+k)+ay(n)= 0, a≠ 0, n= 0,1,2, . . . (4.1)

subject to the boundary conditions

y(0)=y0, y(N+1)=yN+1, . . . ,y(N+k−2)=yN+k−2, N ≥ 1. (4.2)

By Theorem 2.1, if 1≤N ≤ k−1, then a solution of the DBVP (4.1) and (4.2),

if it exists, is not unique. Furthermore, for N ≥ k, it is not difficult to see that
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a unique solution exists if and only if the N×N determinant

DN(a)=

∣∣∣∣∣∣∣∣∣∣∣

0 1

a 0 1
. . .

. . .
. . .

a 0

∣∣∣∣∣∣∣∣∣∣∣
≠ 0, (4.3)

where the missing elements are zeros.

But

DN(a)= (−a)k−1DN−k(a), N = k,k+1, . . . , (4.4)

where

D0 = 1, D1 = ··· =Dk−1 = 0. (4.5)

Therefore, one can see that Dn = 0 for all N except for N = 0,k,2k,. . . . Hence,

the DBVP (4.1) and (4.2) has a unique solution if and only if N = 0,k,2k,. . . .
Otherwise, if there is a solution, it is not unique.

5. Conclusion. Finally, it is important to mention that Theorem 2.1 is also

applicable for a wider class of boundary conditions. Namely, the boundary

conditions are described as

B




y(0)
...

y
(
k1−1

)
y(N)

...

y
(
N+k2−1

)



= �yb, (5.1)

in which B is a k×k matrix of full rank.
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