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The present paper studies some common fixed-point theorems for pairs of a
single-valued and a multivalued coincidentally commuting mappings in D-metric
spaces satisfying a certain generalized contraction condition. Our result general-
izes more than a dozen known fixed-point theorems in D-metric spaces including
those of Dhage (2000) and Rhoades (1996).
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1. Introduction. The concept of a D-metric space introduced by the first

author in [1] is as follows. A nonempty set, together with a function ρ :X×X×
X → [0,∞), is called a D-metric space and denoted by (X,ρ) if the function ρ,

called a D-metric on X, satisfies the following properties:

(i) ρ(x,y,z)= 0� x =y = z (coincidence),

(ii) ρ(x,y,z)= 0= ρ(p{x,y,z}) (symmetry), where p is a permutation,

(iii) ρ(x,y,z)≤ ρ(x,y,a)+ρ(x,a,z)+ρ(a,y,z) for all x,y,z,a∈X (tetra-

hedral inequality).

It is known that the D-metric ρ in a continuous function on X3 in the topol-

ogy of D-metric convergence is Hausdorff. The details of a D-metric space and

its topological properties appear in Dhage [8]. Some specific examples of a

D-metric space are presented in Dhage [2].

A sequence {xn} ⊂ X is called convergent and converges to a point x if

limm,nρ(xm,xn,x) = 0. Again a sequence {xn} ⊂ X is called D-Cauchy if

limm,n,p ρ(xm,xn,xp)= 0. A complete D-metric space X is one in which every

D-Cauchy sequence converges to a point in X. A subset S of a D-metric space

X is called bounded if there exists a constant k > 0 such that ρ(x,y,z)≤ k for

all x,y,z ∈X and the constant k is called a D-bound of S. The smallest among

all such D-bounds k of S is called the diameter of X and it is denoted by δ(S).
Let 2X and CB(X) denote the classes of nonempty closed and nonempty,

closed, bounded subsets of X, respectively. A correspondence F : X → 2X is

called a multivalued mapping on a D-metric space X, and a point u ∈ X is

called a fixed point of F if u∈ Fu.
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In [3], the first author has defined a notion of the generalized or Kasusai

D-metric on X. Let κ : (CB(X))3 → [0,∞) be a function defined by

κ(A,B,C)= inf
{
ε > 0 |A∪B ⊂N(c,ε), B∪C ⊂N(A,ε), C∪A⊂N(B,ε)},

(1.1)

where N(A,ε) = ∪a∈AN(a,ε), N(a,ε) = {x ∈ N∗(a,ε) | ρ(a,x,y) < ε for all

y ∈N∗(a,ε)}, and N∗(a,ε)= {x ∈X | ρ(a,x,x) < ε}.
The definition (1.1) is equivalent to

κ(A,B,C)=max
{

sup
a∈A, b∈B

D(a,b,c), sup
b∈B, c∈C

D(b,c,A), sup
c∈C, a∈A

D(c,a,B)
}
,

(1.2)

where D(a,b,c)= inf{ρ(a,b,c) | c ∈ C}.
Define

D(A,B,C)= inf
{
ρ(a,b,c) | a∈A, b ∈ B, c ∈ C},

δ(A,B,C)= sup
{
ρ(a,b,c) | a∈A, b ∈ B, c ∈ C}. (1.3)

Notice that D and δ are continuous functions on (CB(X))3 and satisfy

D(A,B,C)≤ κ(A,B,C)≤ δ(A,B,C). (1.4)

A multivalued mapping F :X → CB(X) is called continuous if

lim
m,n

ρ
(
xm,xn,x

)= 0 �⇒ κ(Fxm,Fxn,Fx)= 0. (1.5)

In [3], the first author has proved some fixed-point theorem for multivalued

contraction mappings in D-metric spaces, and in [5] he has proved some com-

mon fixed-point theorems for coincidentally commuting single-valued map-

pings in D-metric spaces satisfying a condition of generalized contraction.

In this paper, we prove some common fixed-point theorems for a pair of

singlevalued and multivalued mappings in a D-metric space satisfying a con-

traction condition more general than that given in Dhage [1, 2, 3, 4, 5, 7] and

Rhoades [12]. The results of this paper are new to the fixed-point theory in

D-metric spaces and include nearly a dozen of known fixed-point theorems as

special cases (see [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12]).

2. Preliminaries. Before going to the main results of this paper, we give

some preliminaries needed in the sequel.

Let F : X → 2X . Then by an orbit of F at a point x ∈ X we mean a set OF(x)
in X defined by

OF(x)=
{
x0 = x, xn+1 ∈ Fxn, n≥ 0

}
. (2.1)
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An orbit OF(x) is called bounded if δ(OF(x)) <∞, and a D-metric space X
is called F -orbitally bounded if OF(x) is bounded for each x ∈ X. Again an F -

orbit OF(x) is called complete if every D-Cauchy sequence in OF(x) converges

to a point in X. A D-metric space X is said to be F -orbitally complete if OF(x)
is complete for each x ∈X. Finally, F is called F -orbitally continuous if for any

sequence {xn} ⊆OF(x), we have

lim
m,n

ρ
(
xm,xn,x∗

)= 0 �⇒ lim
m,n

κ
(
Fxm,Fxn,Fx∗

)= 0 (2.2)

for each x ∈X.

Let Φ denote the class of all functions φ : [0,∞) → [0,∞) satisfying the

following properties:

(i) φ is continuous,

(ii) φ is nondecreasing,

(iii) φ(t) < t, t > 0,

(iv)
∑∞
n=1φn(t) <∞ for all t ∈ [0,∞).

The functionφ is called a Lipschitz control function or Lipschitz growth func-

tion and the usual growth function isφ(t)=αt, 0≤ t < 1. The following lemma

concerning the function φ appears in [7].

Lemma 2.1. If φ∈ Φ, then φn(t)= 0 for each n∈N and limnφn(t)= 0 for

each t ∈ [0,∞).
We need the following D-Cauchy principle of Dhage [7] in the sequel.

Lemma 2.2 (D-Cauchy principle). Let {xn} be a bounded sequence in a D-

metric space X with D-bound k satisfying, for some positive real number r ,

ρ
(
xn,xn+1,xm

)≤ [φn(kr )]1/r
(2.3)

for all m>n ∈ N, where φ : [0,∞)→ [0,∞) satisfies
∑∞
n=1φn(t) <∞ for each

t ∈ [0,∞). Then {xn} is a D-Cauchy sequence in X.

Proof. The proof appears in [7], but for the sake of completeness we give

the details. Let p,t ∈N be arbitrary but fixed. Then from (2.3) it follows that

ρ
(
xn,xn+1,xn+p

)≤ [φn(kr )]1/r ,

ρ
(
xn,xn+1,xn+p+t

)≤ [φn(kr )]1/r ,
(2.4)

for all n∈N.

Now by repeated application of the tetrahedral inequality, we obtain

ρ
(
xn,xn+p,xn+p+t

)
≤ ρ(xn,xn+1,xn+p

)+ρ(xn,xn+1,xn+p+t
)+ρ(xn+1,xn+p,xn+p+t

)
≤ ρ(xn,xn+1,xn+p

)+ρ(xn,xn+1,xn+p+t
)+ρ(xn+1,xn+2,xn+p

)
+ρ(xn+1,xn+2,xn+p+t

)+ρ(xn+2,xn+p,xn+p+t
)
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≤ 2
[
φn

(
kr
)]1/r +2

[
φn+1(kr )]1/r +ρ(xn+2,xn+p,xn+p+t

)
≤ 2

{[
φn

(
kr
)]1/r +···+[φn+p−2(kr )]1/r

}
+ρ(xn+p−1,xn+p,xn+p+t

)

≤ 2
n+p−1∑
j=n

[
φj
(
kr
)]1/r .

(2.5)

Since
∑∞
n=1φn(t) < ∞ for each t ∈ [0,∞), we have

∑∞
j=1[φj(kr )]1/r < ∞ and

so limn
∑n+p−1
j=n [φj(kr )]1/r = 0. Now from (2.5) it follows that

lim
n→∞ρ

(
xn,xn+p,xn+p+t

)= 0. (2.6)

This proves that {xn} is aD-Cauchy sequence in X and the proof of the lemma

is complete.

As a direct application of Lemma 2.2, we obtain the following result proved

in [5].

Lemma 2.3. Let {xn} be a bounded sequence in a D-metric space X with

D-bound k satisfying

ρ
(
xn,xn+1,xm

)≤ λnk (2.7)

for all m>n∈N, where 0≤ λ < 1. Then {xn} is D-Cauchy.

We use contractive conditions of the form

ar ≤φ(br ) (2.8)

for some positive real number r , where a and b are nonnegative real numbers

and φ ∈ Φ, because sometimes inequality (2.8) holds, but for the same real

numbers a and b, the inequality

a≤φ(b) (2.9)

does not hold. To see this, let φ :R+ →R+ be a function defined by

φ(t)= αt
1+t , 0≤α< 1. (2.10)

Obviously the function φ is continuous, nondecreasing and satisfies φ(t)=
αt/(1+t) < t for t > 0. Again since

∞∑
n=1

φn(t)=
∞∑
n=1

αnt
1+t+···+αn−1t

<
∞∑
n=1

αn <∞, (2.11)

we have that φ∈ Φ.
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Now for a= 1/2 and b = 2/3, we have, by (2.9),

1
2
≤φ

(
2
3

)
= (2/3)α

1+2/3
= 2

5
α, (2.12)

which is not true since 0≤α< 1. But for the same values of a and b, we have

a positive real number r = 2 such that

(
1
2

)2

= 1
4
≤ 4α

13
=φ

((
2
3

)2
)

(2.13)

for 13/16≤α< 1. Hence inequality (2.8) holds. Thus inequality (2.9) does not

imply inequality (2.8). Actually, inequalities (2.8) and (2.9) are independent. To

show that inequality (2.8) does not imply inequality (2.9), let a= 1/4, b = 4/9,

and r = 1/2. Clearly, inequality (2.8) does not hold, but for the same values of

a, b, and r , one has

1
4
≤ 4

α
13
= α(4/9)

1+4/9
=φ

(
4
9

)
(2.14)

for α ≥ 13/16, and so inequality (2.9) holds. Thus inequalities (2.8) and (2.9)

are independent.

In the following sections, we will prove the main results of this paper.

3. Weak commuting mappings in D-metric spaces. Let F : X → 2X and

g :X →X. Then the pair {F,g} of maps is called limit coincident if limnFxn =
{limngxn} for some sequence {xn} in X, and coincident if there exists a point

u∈X such that Fu= {gu}. Again two maps F and g are called limit commut-

ing if limnFgxn = {limngFxn}, where {xn} is a sequence inX, and commuting

if Fgx = {gFx} for all x ∈X. Two maps F and g are called limit coincidentally

commuting if their limit coincidence implies the limit commutativity on X.

Similarly, they are called coincidentally commuting if they are commuting at

the coincidence points. Again two maps F and g are said to be limit pseudocom-

muting if limnFgxn∩ limngFxn �=φ, that is, limnD(Fgxn,gFxn,gFxn) = 0,

where {xn} is a sequence in X, and pseudocommuting if Fgx∩gFx ≠∅ for

each x ∈X. Finally, the pair {F,g} is called limit coincidentally pseudocommut-

ing if its limit coincidence implies the limit pseudocommutativity on X, and

coincidentally pseudocommuting if it is pseudocommuting at the coincidence

points. It is known that a coincidentally commuting pair is limit coincidentally

commuting and a coincidentally pseudocommuting pair is limit coincidentally

pseudocommuting, but the converse implications need not hold. A pair of

maps {F,g} is weak commuting if it is either limit commuting, coincidentally

commuting, limit pseudocommuting, or coincidentally pseudocommuting on

X. Below, we will prove some common fixed-point theorems for each of these

weak commuting mappings on D-metric spaces.
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3.1. Limit coincidentally commuting maps inD-metric spaces. Let F :X →
2X and g :X →X. By an (F/g)-orbit of the pair {F,g} of maps at a point x ∈X,

we mean a set OF(gx) in X defined by

OF(gx)=
{
yn |y0 = gx0, yn = gxn ∈ Fxn−1, n∈N, where x0 = x

}
(3.1)

for some sequence {xn} in X. The orbit OF(gx) is well defined for each x ∈X
if F(X)⊆ g(X). By OF(gx) we denote the closure of the set OF(gx) in X.

A D-metric space X is called (F/g)-orbitally bounded if δ(OF(gx)) <∞ for

each x ∈ X. Further X is called (F/g)-orbitally complete if every D-Cauchy

sequence {xn} ⊂ OF(gx) converges to a point in X for each x ∈ X. Finally, a

mapping T : X → CB(X) is called (F/g)-orbitally continuous if for any {xn} ⊂
OF(gx), xn→ x∗ implies that Txn→ Tx∗ for each x ∈X.

Theorem 3.1. Let F :X → CB(X) and g :X →X be two mappings satisfying,

for some positive real number r ,

δr (Fx,Fy,Fz)

≤φ(max
{
ρr (gx,gy,gz),δr (Fx,Fy,gz),δr (gx,Fx,gz),

δr (gy,Fy,gz),δr (gx,Fy,gz),δr (gy,Fx,gz)
}) (3.2)

for all x,y,z ∈X, where φ∈ Φ. Suppose that

(a) F(X)⊆ g(X) and g(X) is bounded,

(b) {F,g} is limit coincidentally commuting,

(c) F or g is (F/g)-orbitally continuous.

Further if X is (F/g)-orbitally complete D-metric space, then F and g have a

unique common fixed point u ∈ X such that Fu = {u} = gu. Moreover, if g is

continuous at u, then F is also continuous at u in the Kasubai D-metric on X.

Proof. Let x ∈X be arbitrary and define a sequence {yn} in X as follows.

Take x0 = x and y0 = gx0. Choose a point y1 ∈ Fx0 = X1. Since F(X)⊆ g(X),
there is a point x1 ∈X such thaty1 = gx1. Again choose a pointy2 ∈ Fx1 =X2.

By hypothesis (a), there is a point x2 ∈ X such that y2 = gx2. Proceeding in

this way, by induction there is a sequence {xn} of points in X such that

y0 = gx0, yn+1 = gxn+1 ∈Xn+1 = Fxn, n= 0,1,2, . . . . (3.3)

From hypothesis (a), it follows that

δ
(
Xm,Xn,Xp

)≤ δ(g(X))= k <∞ (3.4)

for all m,n,p ∈N.

Now there are two cases.

Case 1. Suppose that yr = yr+1 for some r ∈ N. Then we have gxr =
gxr+1 =u for some u∈X.
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We will show that Fxr = {u}. Suppose not. Then by (3.2),

δr
(
Fxr ,Fxr ,u

)
= δr (Fxr ,Fxr ,gxr+1

)
≤ δr (Fxr ,Fxr ,Fxr )
≤φ(max

{
ρr
(
gxr ,gxr ,gxr

)
,δr

(
gxr ,Fxr ,gxr

)
,δr

(
Fxr ,Fxr ,gxr

)})
≤φ(max

{
0,δr

(
gxr ,Fxr ,gxr

)
,δr

(
Fxr ,Fxr ,u

)})
=φ(max

{
δr
(
u,Fxr ,u

)
,δr

(
Fxr ,Fxr ,u

)})
=φ(δr (u,Fxr ,u))

(3.5)

because δr (Fxr ,Fxr ,u)≤φ(δr (Fxr ,Fxr ,u)) is not possible in view ofφ∈ Φ.

Again by (3.2),

δr
(
Fxr ,u,u

)= δr (Fxr ,gxr+1,gxr+1
)

≤ δr (Fxr ,Fxr ,Fxr )
≤φ(max

{
δr
(
u,Fxr ,u

)
,δr

(
Fxr ,Fxr ,u

)})
=φ(δr (Fxr ,Fxr ,u)).

(3.6)

Substituting (3.6) in (3.5), we obtain

δr
(
Fxr ,Fxr ,u

)≤φ2(δr (Fxr ,Fxr ,u)), (3.7)

which is a contradiction since φ ∈ Φ. Hence Fxr = u. Since F and g are limit

coincidentally commuting, one has Fgxr = {gFxr}.
We will show that u is a common fixed point of F and g such that Fu =

{u} = gu.

Now,

δr (Fu,gu,u)= δr (FFxr ,Fgxr ,Fxr )
≤φ(max

{
ρr
(
gFxr ,ggxr ,gxr

)
,δr

(
FFxr ,Fgxr ,gxr

)
,

δr
(
gFxr ,FFxr ,gxr

)
,δr

(
ggxr ,Fgxr ,gxr

)
,

δr
(
gFxr ,Fgxr ,gxr

)
,δr

(
ggxr ,FFxr ,gxr

)})
=φ(max

{
ρr
(
gFxr ,ggxr ,gxr

)
,δr

(
ggxr ,FFxr ,gxr

)})
=φ(δr (Fu,gu,u)),

(3.8)

which is possible only when Fu= {u} = gu since φ∈ Φ.

Case 2. Assume that yn �= yn+1 for each n ∈N. We will show that {yn} is

a D-Cauchy sequence in X. Let x = x0, y = x1, and z = xm−1, m ≥ 1. Then by

(3.2),
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ρr
(
y1,y2,ym

)
≤ δr (Fx0,Fx1,Fxm−1

)
≤φ(max

{
ρr
(
gx0,gx1,gxm−1

)
,δr

(
Fx0,Fx1,gxm−1

)
,δr

(
gx0,Fx0,gxm−1

)
,

δr
(
gx1,Fx1,gxm−1

)
,δr

(
gx0,Fx1,gxm−1

)
,δr
(
gx1,Fx0,gxm−1

)})
≤φ(max

{
δr
(
X0,X1,Xm−1

)
,δr

(
X1,X2,Xm−1

)
,δr

(
X0,X1,Xm−1

)
,

δr
(
X1,X2,Xm−1

)
,δr

(
X0,X2,Xm−1

)
,δr

(
X1,X1,Xm−1

)})
≤φ

(
max

0≤a≤1, 1≤b≤2
δr
(
Xa,Xb,Xm−1

))

≤φ(kr ),
(3.9)

that is,

ρ
(
y1,y2,ym

)≤ [φ(kr )]1/r . (3.10)

Similarly, letting x = x1, y = x2, and z = zm−1, m≥ 2 in (3.2), we obtain

ρr
(
y2,y3,ym

)
≤ δr (Fx1,Fx2,Fxm−1

)
≤φ(max

{
ρr
(
gx1,gx2,gxm−1

)
,δr

(
Fx1,Fx2,gxm−1

)
,

δr
(
gx1,Fx1,gxm−1

)
,δr

(
gx2,Fx2,gxm−1

)
,

δr
(
gx1,Fx2,gxm−1

)
,δr

(
gx2,Fx1,gxm−1

)})
≤φ(max

{
δr
(
Fx0,Fx1,Fxm−2

)
,δr

(
Fx1,Fx2,Fxm−2

)
,

δr
(
Fx0,Fx1,Fxm−2

)
,δr

(
Fx1,Fx2,Fxm−2

)
,

δr
(
Fx0,Fx2,Fxm−2

)
,δr

(
Fx1,Fx1,Fxm−2

)})
≤φ

(
φ
(

max
0≤a≤2, 1≤b≤3

δr
(
Xa,Xb,Xm−2

)))

≤φ(φ(kr ))
=φ2(kr ),

(3.11)

that is,

ρ
(
y2,y3,ym

)≤ [φ2(kr )]1/r . (3.12)

In general, by induction,

ρ
(
yn,yn+1,ym

)≤ [φn(kr )]1/r
(3.13)

for all m>n∈N.

Hence, the application of Lemma 2.2 yields that {yn} is aD-Cauchy sequence

in X. The D-metric space X being complete, there is a point u ∈ X such that

limnyn = u. The definition of {yn} implies that limngxn = u. We will show

that limnFxn = {u}.
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Now,

lim
n
δr
(
Fxn,Fxn,u

)
= lim

n
δr
(
Fxn,Fxn,yn+1

)
≤ lim

n
δr
(
Fxn,Fxn,Fxn

)
≤ lim

n
φ
(
max

{
ρr
(
gxn,gxn,gxn

)
,δr

(
Fxn,Fxn,gxn

)
,δr

(
gxn,Fxn,gxn

)})
= lim

n
φ
(
max

{
δr
(
Fxn,Fxn,u

)
,0
})

=φ
(

lim
n
δr
(
Fxn,Fxn,u

))
,

(3.14)

which implies that limnFxn =u. Thus we have

lim
n
Fxn = {u} = lim

n
gxn. (3.15)

Since F and g are limit coincidentally commuting, one has

lim
n
Fgxn =

{
lim
n
gFxn

}
. (3.16)

Suppose that g is (F/g)-orbitally continuous on X. Then we have

lim
n
Fgxn = lim

n
gFxn = lim

n
ggxn = gu. (3.17)

First, we will show that u is a common fixed point of F and g. Suppose not.

Then we have

δr (u,u,gu)= lim
n
δr
(
Fxn,Fxn,gFxn

)
= lim

n
δr
(
Fxn,Fxn,Fgxn

)
≤ lim

n
φ
(
max

{
ρr
(
gxn,gxn,ggxn

)
,

δr
(
Fxn,Fxn,ggxn

)
,δr

(
gxn,Fxn,ggxn

)})
=φ

(
max

{
lim
n
δr
(
gxn,gxn,ggxn

)
, lim
n
δr
(
Fxn,Fxn,ggxn

)})
=φ(δr (u,u,gu)),

(3.18)

which is a contradiction and hence gu=u.

Again

δr (Fu,gu,u)

= lim
n
δr
(
Fu,Fxn,Fgxn

)
≤ lim

n
φ
(
max

{
ρr
(
gu,gxn,ggxn

)
,δr

(
Fu,Fxn,ggxn

)
,δr

(
gu,Fu,ggxn

)
,

δr
(
gxn,Fxn,ggxn

)
,δr

(
gu,Fxn,ggxn

)
,δr

(
gxn,Fu,ggxn

)})
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=φ(max
{
ρr (gu,u,gu),δr (Fu,u,gu),δr (gu,Fu,gu),

δr (u,u,gu),δr (gu,u,gu),δr (u,Fu,gu)
})

=φ(δr (Fu,gu,u)),
(3.19)

which is possible only when Fu= {u} = gu since φ∈ Φ. Thus u is a common

fixed point of F and g.

Next, suppose that F is (F/g)-orbitally continuous on X. Then we have

lim
n
Fgxn = lim

n
gFxn = lim

n
FFxn = Fu= {z}. (3.20)

We will show that z is a common fixed point of F and g. Since F(X)⊆ g(X),
there is a point v ∈X such that Fu= gv = z. We will show that Fv = gv = {z}.
By (3.2),

δr (Fv,gv,Fv)

= lim
n
δr
(
Fv,Fv,FFxn

)
≤ lim

n
φ
(
max

{
ρr
(
gv,gv,gFxn

)
,δr

(
Fv,gv,gFxn

)
,δr

(
gv,Fv,gFxn

)})
=φ(max

{
δr (gv,gv,gv),δr (Fv,gv,z)

})
,

(3.21)

that is,

δr (Fv,gv,z)≤φ(δr (Fv,gv,z)), (3.22)

which implies that Fv = gv = {z} since φ∈ Φ.

Since F and g are limit coincidentally commuting, they are coincidentally

commuting on X. Therefore, we have Fgv = gFv . Now, proceeding with the

arguments as in Case 1, it is proved that z is a common fixed point of F and g.

To prove the uniqueness, let z∗ (�= z) be another common fixed point of F
and g. Then by (3.2),

ρr
(
z,z,z∗

)= δr (Fz,Fz,Fz∗)
≤φ(max

{
ρr
(
gz,gz,gz∗

)
,δr

(
Fz,Fz,gz∗

)
,

δr
(
gz,Fz,gz∗

)
,δr

(
gz,Fz,gz∗

)})
=φ(ρr (z,z,z∗)),

(3.23)

which is a contradiction. Hence z = z∗. Then F and g have a unique common

fixed point z ∈X with Fz = {z} = gz.

Finally, suppose that g is continuous at the common fixed point z of F and

g. Then we will prove that F is also continuous at z. Let {zn} be any sequence
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in X converging to the common fixed point z. Since g is continuous on X, we

have

lim
m,n

ρ
(
zm,zn,z

)= 0 �⇒ lim
m,n

ρ
(
gzm,gzn,gz

)= 0. (3.24)

From (1.2), it follows that

κ
(
Fzm,Fzn,Fz

)≤ δ(Fzm,Fzn,Fz). (3.25)

Now,

δr
(
Fzm,Fzn,Fz

)
≤φ(max

{
ρr
(
gzm,gzn,gz

)
,δr

(
Fzm,Fzn,gz

)
,δr

(
gzm,Fzm,gz

)
,

δr
(
gzn,Fzn,gz

)
,δr

(
gzm,Fzn,gz

)
,δr

(
gzn,Fzm,gz

)})
.

(3.26)

Therefore,

lim
m,n

δr
(
Fzm,Fzn,Fz

)
≤ lim
m,n

φ
(
max

{
ρr
(
gzm,gzn,gz

)
,δr

(
Fzm,Fzn,Fz

)
,δr

(
gzm,Fzm,z

)
,

δr
(
gzn,Fzn,z

)
,δr

(
gzm,Fzn,z

)
,δr

(
gzn,Fzm,z

)})
=φ

(
max

{
0, lim
m,n

δr
(
Fzm,Fzn,Fz

)
, lim
m
δr
(
z,Fzm,z

)
, lim
n
δr
(
z,Fzn,z

)})

=φ
(
max

{
lim
m
δr
(
z,Fzm,z

)
, lim
n
δr
(
z,Fzn,z

)})
.

(3.27)

But

lim
m
δr
(
z,Fzm,z

)
= lim

m
δr
(
Fz,Fz,Fzm

)
≤ lim

m
φ
(
max

{
ρr
(
gz,gz,gzm

)
,δr

(
Fz,Fz,gzm

)
,δr

(
gz,Fz,gzm

)})
=φ(max{0,0,0})
= 0.

(3.28)

Similarly, limnδr (z,Fzn,z)= 0. Substituting these estimates in (3.27) yields

that

lim
m,n

δr
(
Fzm,Fzn,Fz

)= 0 (3.29)

or

lim
m,n

δ
(
Fzm,Fzn,Fz

)= 0. (3.30)

Now from (3.25), it follows that

lim
m,n

κ
(
Fzm,Fzn,Fz

)= 0, (3.31)
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and so F is continuous at the common fixed point z of F and g. This completes

the proof.

Letting g = I, the identity map on X and r = 1, in Theorem 3.1, we obtain

the following corollary.

Corollary 3.2. Let F :X → CB(X) be a multivalued mapping satisfying

δ(Fx,Fy,Fz)≤φ(ρ(x,y,z),δ(Fx,Fy,z),δ(x,Fx,z),
δ(y,Fy,z),δ(x,Fy,z),δ(y,Fx,z)

) (3.32)

for all x,y,z ∈ X, where φ ∈ Φ. Further if X is F -orbitally bounded and F -

orbitally complete D-metric space, then F has a unique fixed point u ∈ X such

that Fu= {u} and F is continuous at u.

Corollary 3.3. Let F :X → CB(X) be a multivalued mapping satisfying

δ(Fx,Fy,Fz)≤ λmax
{
ρ(x,y,z),δ(Fx,Fy,z),δ(x,Fx,z),

δ(y,Fy,z),δ(x,Fy,z),δ(y,Fx,z)
} (3.33)

for all x,y,z ∈ X, where 0 ≤ λ < 1. Further if X is F -orbitally bounded and

F -orbitally complete D-metric space, then F has a unique fixed point u∈X such

that Fu= {u} and F is continuous at u.

Corollary 3.3 includes the following fixed point of Dhage [3] as a special

case.

Corollary 3.4 (see [3]). Let X be a bounded and complete D-metric

space and let F :X → CB(X) be a multivalued mapping satisfying

δ(Fx,Fy,Fz)≤ λρ(x,y,z) (3.34)

for all x,y,z ∈X, where 0≤ λ < 1. Then F has a unique fixed point u∈X such

that Fu= {u}and F is continuous at u.

Corollary 3.5. Let f ,g :X →X be two mappings satisfying

ρr (fx,fy,fz)

≤φ(max
{
ρr (gx,gy,gz),ρr (fx,fy,gz),ρr (gx,fx,gz),

ρr (gy,fy,gz),ρr (gx,fy,gz),ρr (gy,fx,gz)
}) (3.35)

for all x,y,z ∈X, where φ∈ Φ. Suppose that

(a) f(X)⊆ g(X),
(b) {f ,g} is limit coincidentally commuting,

(c) f or g is continuous.

Further ifX is (f/g)-orbitally bounded and (f/g)-orbitally completeD-metric

space, then f and g have a unique common fixed point u∈X. Moreover, if g is

continuous at u, then f is also continuous at u.
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Remark 3.6. Note that Corollary 3.5 includes the class of pairs of fixed-

point mappings of Dhage [7] characterized by the inequality

ρr (fx,fy,fz)

≤φ(max
{
ρr (gx,gy,gz),ρr (gx,fx,gz),

ρr (gy,fy,gz),ρr (gx,fy,gz),ρr (gy,fx,gz)
}) (3.36)

for all x,y,z ∈X and φ∈ Φ.

Corollary 3.7. Let f ,g : X → X be two mappings satisfying for some posi-

tive real numbers p, q, and r ,

ρr
(
fpx,fpy,fpz

)
≤φ(max

{
ρr
(
gqx,gqy,gqz

)
,ρr

(
fpx,fpy,gqz

)
,

ρr
(
gqx,fpx,gqz

)
,ρr

(
gqy,fpy,gqz

)
,

ρr
(
gqx,fpy,gqz

)
,ρr

(
gqy,fpx,gqz

)})
(3.37)

for all x,y,z ∈X, where φ∈ Φ. Suppose that

(a) fp(X)⊆ gq(X),
(b) {f ,g} is commuting,

(c) f or g is continuous.

Further if X is an (fp/gq)-orbitally bounded and (fp/gq)-orbitally complete

D-metric space, then f and g have a unique common fixed point u∈ X. More-

over, if g is continuous at u, then fp is also continuous at u.

Proof. Let S = fp and T = gq. Then by Corollary 3.5, S and T have a unique

common fixed point u ∈ X, that is, Su = fpu = u = gqu = Tu. Now by com-

mutativity of f and g, we obtain

fu= f (fpu)= fp(fu), fu= f (gqu)= gq(fu). (3.38)

This shows that fu is again a common fixed point of fp and gq. By the

uniqueness of u, we have fu = u. Similarly it is proved that gu = u. Thus f
and g have a unique common fixed point u∈X. Further if g is continuous on

X, gq is continuous on X and by application of Corollary 3.5 yields that fp is

continuous at u. This completes the proof.

Corollary 3.7 includes the class of pairs of fixed-point mappings of Dhage

[7] characterized by the inequality

ρr
(
fpx,fpy,fpz

)
≤φ(max

{
ρr
(
gqx,gqy,gqy

)
,ρr

(
gqx,fpx,gqz

)
,

ρr
(
gqy,fpy,gqz

)
,ρr

(
gqx,fpy,gqz

)
,ρr

(
gqy,fpx,gqz

)})
(3.39)

for all x,y,z ∈X and φ∈ Φ.



2532 B. C. DHAGE ET AL.

Corollary 3.8. Let f be a self-map of a D-metric space X satisfying

ρ(fx,fy,fz)≤ λmax
{
ρ(x,y,z),ρ(fx,fy,z),ρ(x,fx,z),

ρ(y,fy,z),ρ(x,fy,z),ρ(y,fx,z)
} (3.40)

for all x,y,z ∈ X, where 0 ≤ λ < 1. Further if X is f -orbitally bounded and

f -orbitally complete, then f has a unique fixed point u∈X and f is continuous

at u.

Corollary 3.9. Let f be a self-map of a D-metric space X satisfying, for

some positive real number p,

ρ
(
fpx,fpy,fpz

)
≤ λmax

{
ρ(x,y,z),ρ

(
fpx,fpy,z

)
,ρ
(
x,fpx,z

)
,

ρ
(
y,fpy,z

)
,ρ
(
x,fpy,z

)
,ρ
(
y,fpx,z

)} (3.41)

for all x,y,z ∈ X, where 0 ≤ λ < 1. Further if X is f -orbitally bounded and

f -orbitally complete, then f has a unique fixed point u ∈ X, fp is continuous,

and f is f -orbitally continuous at u.

Note that Corollaries 3.8 and 3.9 include the fixed-point theorems of Rhoades

[12] and Dhage [9] for the mappings characterized by the inequalities

ρ(fx,fy,fz)≤ λmax
{
ρ(x,y,z),ρ(x,fx,z),

ρ(y,fy,z),ρ(x,fy,z),ρ(y,fx,z)
}
,

(3.42)

ρ
(
fpx,fpy,fpz

)≤ λmax
{
ρ(x,y,z),ρ

(
x,fpx,z

)
,

ρ
(
y,fpy,z

)
,ρ
(
x,fpy,z

)
,ρ
(
y,fpx,z

)}
,

(3.43)

for all x,y,z ∈X and 0≤ λ < 1.

3.2. Coincidentally commuting mappings. The coincidentally commuting

mappings require some stronger condition than limit coincidentally commut-

ing mappings and a good number of mathematicians have studied them on

metric and D-metric spaces for the existence of their common fixed point. See

[5, 11] and the references therein. The novelty of the fixed-point theorems for

these coincidentally commuting mappings lies in the fact that here we do not

require any of the maps under consideration to be continuous. Below, we prove

a result in this direction and derive some interesting corollaries.

Theorem 3.10. Let X be aD-metric space and let F :X → CB(X) and g :X →
X be two mappings satisfying (3.2). Further suppose that

(a) F(X)⊆ g(X),
(b) g(X) is bounded and complete,

(c) {F,g} is coincidentally commuting.
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Then F and g have a unique common fixed point u ∈ X such that Fu = {u} =
gu. Moreover, if g is continuous at u, then F is also continuous at u in the

Kasubai D-metric on X.

Proof. Let x ∈ X be arbitrary and define a sequence {yn} ⊂ X by (3.3).

Clearly the sequence {yn} is well defined since F(X)⊆ g(X). Further we note

that {yn} ⊆ g(X). We prove the conclusion of the theorem in two cases.

Case 1. Suppose that yr = yr+1 for some r ∈ N. Then proceeding with

the arguments similar to Case 1 of the proof of Theorem 3.1, it is proved that

yr =u is a common fixed point of F and g such that Fu= {u} = gu.

Case 2. Assume that yn �= yn+1 for each n ∈ N. Then following Case 2 of

the proof of Theorem 3.1, it is shown that {yn} is a D-Cauchy sequence. Since

g(X) is complete, there is a point z ∈ g(X) such that limnyn = z = limngxn.

We will show that limn Fxn = {z}.
Now,

lim
n
δr
(
Fxn,Fxn,z

)
= lim

n
δr
(
Fxn,Fxn,yn+1

)
≤ lim

n
δr
(
Fxn,Fxn,Fxn

)
≤ lim

n
φ
(
max

{
ρr
(
gxn,gxn,gxn

)
,δr

(
Fxn,Fxn,gxn

)
,δr

(
gxn,Fxn,gxn

)})
=φ

(
max

{
0, lim

n
δr
(
Fxn,Fxn,z

)})

=φ
(

lim
n
δr
(
Fxn,Fxn,z

))
,

(3.44)

which gives that limnFxn = {z}.
Since z ∈ g(X), there is a point u ∈ X such that gu = u. We will show that

Fu= {z} = gu. Now,

δr (Fu,z,z)

= lim
n
δr
(
Fu,Fxn,Fxn

)
= lim

n
δr
(
Fxn,Fxn,Fu

)
≤ lim

n
φ
(
max

{
ρr
(
gu,gxn,gxn

)
,δr

(
Fxn,Fxn,gu

)
,δr

(
gxn,Fxn,gu

)})
=φ(max{0,0,0})
=φ(0)
= 0

(3.45)

and so Fu= gu= {z}. Thusu is a coincidence point of F and g. The rest of the

proof is similar to Case 2 of the proof of Theorem 3.1. We omitted the details.
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As a consequence of Theorem 3.10, we obtain the following corollaries.

Corollary 3.11. Let f ,g : X → X be two mappings satisfying (3.35). Sup-

pose that

(a) f(X)⊆ g(X),
(b) g(X) is bounded and complete,

(c) {f ,g} is coincidentally commuting.

Then f and g have a unique common fixed point u and if g is continuous at u,

then f is also continuous at u.

Corollary 3.12. Let X be a D-metric space and let f ,g : X → X be two

mappings satisfying

ρ(fx,fy,fz)

≤ λmax
{
ρ(gx,gy,gz),ρ(fx,fy,gz),ρ(gx,fx,gz),

ρ(gy,fy,gz),ρ(gx,fy,gz),ρ(gy,fx,gz)
} (3.46)

for all x,y,z ∈ X, where 0 ≤ λ < 1. Further suppose that hypotheses (a), (b),

and (c) of Corollary 3.11 hold. Then f and g have a unique common fixed point

u∈X and if g is continuous at u, then f is also continuous at u.

Corollary 3.12 includes a common fixed-point theorem of Dhage [5] for the

mappings f and g on a D-metric space characterized by the inequality

ρ(fx,fy,gz)

≤ λmax
{
ρ(gx,gy,gz),ρ(gx,fx,gz),

ρ(gy,fy,gz),ρ(gx,fy,gz),ρ(gy,fx,gz)
} (3.47)

for all x,y,z ∈X and 0≤ λ < 1.

Corollary 3.13. Let X be a D-metric space and let f ,g : X → X be two

mappings satisfying (3.37). Further suppose that

(a) fp(X)⊆ gq(X),
(b) gp(X) is bounded and complete,

(c) {f ,g} is commuting.

Then f and g have a unique common fixed point u and if gq is continuous at

u, then fp is also continuous at u.

Notice that Corollary 3.13 includes a class of common fixed-point mappings

f and g on a D-metric space X characterized by the inequality

ρ
(
fpx,fpy,fpz

)
≤ λmax

{
ρ
(
gqx,gqy,gqz

)
,ρ
(
gqx,fpx,gqz

)
,

ρ
(
gqy,fpy,gqz

)
,ρ
(
gqx,fpy,gqz

)
,ρ
(
gqy,fpx,gqz

)} (3.48)

for all x,y,z ∈X and 0≤ λ < 1. See [5].
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4. Weak commuting mappings in compact D-metric spaces. In this sec-

tion, we prove some common fixed-point theorems for the pairs of singleval-

ued and multivalued coincidentally commuting mappings on a D-metric space

satisfying a contraction condition more general than (4.3). But in this case the

D-metric space under consideration is required to satisfy a stronger condition

of compactness and the mappings under consideration are required to satisfy

the continuity condition on the D-metric spaces. Our results of this section

generalize some earlier known fixed-point theorems such as those of Dhage

[9] and Rhoades [12] for single maps as well as for a pair of maps on D-metric

spaces.

Theorem 4.1. Let X be a compactD-metric space and let F :X → CB(X) and

g :X →X be two continuous mappings satisfying, for some positive real number

r ,

δr (Fx,Fy,Fz)

<max
{
ρr (gx,gy,gz),δr (Fx,Fy,gz),δr (gx,Fx,gz),

δr (gy,Fy,gz),δr (gx,Fy,gz),δr (gy,Fx,gz)
} (4.1)

for all x,y,z ∈X for which the right-hand side is not zero. Further suppose that

(a) F(X)⊆ g(X),
(b) {F,g} is limit coincidentally commuting.

Then F and g have a unique common fixed point u ∈ X such that Fu = {u} =
gu.

Proof. From inequality (4.3), it follows that if F and g have a common fixed

point u ∈ X, then it is unique and Fu = {u} = gu. Since X is compact and δ
is continuous, both sides of inequality (4.1) are bounded on X. Now, there are

two cases.

Case 1. Suppose that the right-hand side of (4.1) is zero for some x,y,z ∈
X. Then, we have

Fx = gx = gz, Fy = gy = gz. (4.2)

Now, proceeding with the arguments similar to Case 1 of the proof of

Theorem 3.1, it is proved that u = Fx = gx is a common fixed point of F
and g and so it is unique.

Case 2. Suppose that the right-hand side of inequality (4.1) is not zero for

all x,y,z ∈X. Define a mapping T :X×X×X → (0,∞) by

T(x,y,z)= δ
r (Fx,Fy,Fz)
M(x,y,z)

, (4.3)

where

M(x,y,z)=max
{
ρr (gx,gy,gz),δr (Fx,Fy,gz),δr (gx,Fx,gz),

δr (gy,Fy,gz),δr (gx,Fy,gz),δr (gy,Fx,gz)
}
.

(4.4)
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Clearly, the function T is well defined sinceM(x,y,z) �= 0 for all x,y,z ∈X.

Since F and g are continuous, from the compactness of X it follows that the

function T attains its maximum on X3 at some point u,v,w ∈ X. Call the

value c. It is clear from (4.1) that 0 < c < 1. By the definition of c, we have

T(x,y,z)≤ c for all x,y,z ∈X. This further, in view of (4.3), implies that

δr (Fx,Fy,Fz)

≤ cM(x,y,z)
= cmax

{
ρr (gx,gy,gz),δr (Fx,Fy,Fz),δr (gx,Fx,gx),

δr (gy,Fy,gz),δr (gx,Fy,gz),δr (gy,Fx,gz)
}

(4.5)

for all x,y,z ∈X.

As X is compact, it is complete and g(X) is bounded in view of the con-

tinuity of g on X. Now, the desired conclusion follows by an application of

Theorem 3.1. This completes the proof.

Now we derive some interesting corollaries.

Corollary 4.2. Let X be a compact D-metric space and let F : X → CB(X)
be a continuous mapping satisfying

δ(Fx,Fy,Fz) <max
{
ρ(x,y,z),δ(Fx,Fy,z),δ(x,Fx,z),

δ(y,Fy,z),δ(x,Fy,z),δ(y,Fx,z)
} (4.6)

for all x,y,z ∈X for which the right-hand side is not zero. Then F has a unique

fixed point u∈X such that Fu= {u}.
Proof. The proof follows by letting g = I in Theorem 4.1, where I is the

identity map on X.

Corollary 4.3 (see [3]). Let X be a compact D-metric space and let F :X →
CB(X) be a continuous mapping satisfying

δ(Fx,Fy,Fz) < ρ(x,y,z) (4.7)

for all x,y,z ∈ X for which ρ(x,y,z) �= 0. Then F has a unique fixed point

u∈X such that Fu= {u}.
Corollary 4.4. Let X be a compact D-metric space and let f ,g : X → X be

two continuous mappings satisfying

ρ(fx,fy,fz) <max
{
ρ(gx,gy,gz),ρ(fx,fy,gz),ρ(gx,fx,gz),

ρ(gy,fy,gz),ρ(gx,fy,gz),ρ(gy,fx,gz)
} (4.8)
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for all x,y,z ∈X for which the right-hand side is not zero. Further suppose that

(a) f(X)⊆ g(X),
(b) {f ,g} is limit coincidentally commuting.

Then f and g have a unique common fixed point.

Proof. The proof follows by letting F = {f}, a single-valued mapping in

Theorem 4.1.

Corollary 4.5. Let X be a compact D-metric space and let f : X → X be a

continuous mapping satisfying

ρ(fx,fy,fz) <max
{
ρ(x,y,z),ρ(fx,fy,z),ρ(x,fx,z),

ρ(y,fy,z),ρ(x,fy,z),ρ(y,fx,z)
} (4.9)

for all x,y,z ∈X for which the right-hand side is not zero. Then f has a unique

fixed point.

Proof. The conclusion follows by letting g = I in Corollary 4.4, where I is

the identity map on X.

Note that Corollaries 4.4 and 4.5 include the fixed-point theorems of Dhage

[5] and Rhoades [12] for the mappings f and g on a D-metric space X charac-

terized by the inequalities

ρ(fx,fy,fz) <max
{
ρ(gx,gy,gz),ρ(gx,fx,gz),

ρ(gy,fy,gz),ρ(gx,fy,gz),ρ(gy,fx,gz)
}
,

(4.10)

ρ(fx,fy,fz) <max
{
ρ(x,y,z),ρ(x,fx,z),

ρ(y,fy,z),ρ(x,fy,z),ρ(y,fx,z)
}
,

(4.11)

respectively.

Theorem 4.6. Let X be a D-metric space and let F : X → CB(X), g : X → X
be two continuous mappings satisfying (4.1). Suppose further that

(a) F(X)⊆ g(X),
(b) g(X) is compact,

(c) {f ,g} is coincidentally commuting.

Then F and g have a unique common fixed point u ∈ X such that Fu = {u} =
gu.

Proof. Let A = g(X). Then A is a compact D-metric space and F and g
define the maps F : A → CB(A) and g : A → A. Now, the desired conclusion

follows by an application of Theorem 4.1.

Corollary 4.7. Let X be a D-metric space and let f ,g : X → X be two

continuous mappings satisfying (4.8). Further suppose that
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(a) f(X)⊆ g(X),
(b) g(X) is compact,

(c) {f ,g} is coincidentally commuting.

Then f and g have a unique common fixed point.

5. Remarks and conclusion. It has been noted in [6, 10] that the fixed-point

theorems for the limit coincidentally commuting mappings have some nice ap-

plications to approximation theory, and therefore it is of interest to discuss

the fixed-point theorems for a wide class of coincidentally commuting map-

pings in a D-metric space. The terms “compatible" and “δ-compatible” have

been used by Jungck and Rhoades [11] for limit coincidentally commuting and

coincidentally commuting mappings, respectively, but our terminologies are

natural and more informative than the previous one patterned after [4]. Fur-

ther we note that a similar study can be made for coincidentally pseudocom-

muting mappings on aD-metric space and analogously for limit coincidentally

pseudocommuting mappings. But in order to prove fixed-point theorems for

these classes of weakly pseudocommuting mappings, we require a stronger

contraction condition for the mappings F and g under consideration:

δr (Fx,Fy,Fz)

≤φ(max
{
ρr (gx,gy,gz),Dr (Fx,Fy,gz),Dr (gx,Fx,gz),

Dr (gy,Fy,gz),Dr (gx,Fy,gz),Dr (gy,Fx,gz)
})
.

(5.1)

Obviously, condition (5.1) implies condition (3.2) on a D-metric space X and

hence the fixed-point theorems for weakly pseudocommuting mappings can

be obtained very easily with appropriate modifications. Finally, we close this

discussion with the following open question.

Open question. Can we prove fixed-point theorems for a class of multival-

ued mapping F on a D-metric space X satisfying the generalized contraction

condition

κ(Fx,Fy,Fz)≤ λmax
{
ρ(x,y,z),D(Fx,Fy,z),D(x,Fx,z),

D(y,Fy,z),D(x,Fy,z),D(y,Fx,z)
} (5.2)

for all x,y,z ∈X and 0≤ λ < 1?
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