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REAL GEL’FAND-MAZUR DIVISION ALGEBRAS
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We show that the complexification (A, ) of a real locally pseudoconvex (locally
absorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponen-
tially galbed) algebra (A, T) is a complex locally pseudoconvex (resp., locally ab-
sorbingly pseudoconvex, locally multiplicatively pseudoconvex, and exponentially
galbed) algebra and all elements in the complexification (A, ¥) of a commutative
real exponentially galbed algebra (A, T) with bounded elements are bounded if the
multiplication in (A, T) is jointly continuous. We give conditions for a commutative
strictly real topological division algebra to be a commutative real Gel’fand-Mazur
division algebra.

2000 Mathematics Subject Classification: 46H05, 46H20.

1. Introduction. Let K be one of the fields R of real numbers or C of com-
plex numbers. A topological algebra A is a topological vector space over K in
which the multiplication is separately continuous. Herewith, A is called a real
topological algebra if K = R and a complex topological algebra if K = C. We
classify topological algebras in a similar way as topological vector spaces. For
example, a topological algebra A is

(a)
(b)

(0)

a Fréchet algebra if it is complete and metrizable;

an exponentially galbed algebra (see [3, 13]) if its underlying topological
vector space is exponentially galbed, that is, for each neighborhood O
of zero in A, there exists another neighborhood U of zero such that

n
{Z;’]z:ao,...,aneU}cO (1.1)
k=0
for each n € N;

a locally pseudoconvex algebra (see [5, 7]) if its underlying topological
vector space is locally pseudoconvex, that is, A has a base {Uy, x€ s} of
neighborhoods of zero in which every set Uy is balanced (i.e., AUy € Uy
whenever |A| < 1) and pseudoconvex (i.e., Uy + Uy C 21k, for some
k € (0,1]). Herewith, every locally pseudoconvex algebra is an expo-
nentially galbed algebra.

In particular, when ky = k (kg = 1) for each & € #, then a locally pseu-
doconvex algebra A is called a locally k-convex algebra (resp., locally convex
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algebra). 1t is well known (see [14, page 4]) that the topology of a locally pseu-
doconvex algebra A can be given by means of a family #? = {py: &« € A} of
ky-homogeneous seminorms, where k, € (0,1] for each & € A. A locally pseu-
doconvex algebra is called a locally absorbingly pseudoconvex (shortly, locally
A-pseudoconvex) algebra (see [5]) if every seminorm p € P is A-multiplicative,
that is, for each a € A there are positive numbers M, (a) and N, (a) such that

p(ab) <My(a)p(b),  p(ba) <Np(a)p(b), (1.2)

for each b € A. In particular, when M, (a) = Ny(a) = p(a) for each a € A and
p € P, then A is called a locally multiplicatively pseudoconvex (shortly, locally
m-pseudoconvex) algebra.

Moreover, a topological algebra A over K with a unit element is a Q-algebra
(see [10, 15, 16]) if the set of all invertible elements of A is open in A and a
Q-algebra A is a Waelbroeck algebra (see [4, 10]) or a topological algebra with
continuous inverse (see [9, 11]) if the inversion a — a~! in A is continuous.

An element a of a topological algebra A is said to be bounded (see [6]) if for
some nonzero complex number A,, the set

{(;ﬂ)n:neN} (1.3)

is bounded in A. A topological algebra, in which all elements are bounded, will
be called a topological algebra with bounded elements.

Let now A be a topological algebra over K and m(A) the set of all closed
regular two-sided ideals of A, which are maximal as left or right ideals. In
case when the quotient algebra A/M (in the quotient topology) is topologically
isomorphic to K for each M € m(A), then A is called a Gel'fand-Mazur algebra
(see [1, 4, 2]). Herewith, A is a real Gel'fand-Mazur algebra if K =R and a
complex Gel’fand-Mazur algebra if K = C. Main classes of complex Gel’fand-
Mazur algebras have been given in [4, 2, 5]. Several classes of real Gel'’fand-
Mazur division algebras are described in the present paper.

2. Complexification of real algebras. Let A be a (not necessarily topologi-
cal) real algebra and let A = A +iA be the complexification of A. Then every
element d of A is representable in the form d = a + ib, where a,b € A and
i2 = —1. If the addition, scalar multiplication, and multiplication in A are to be
defined by

(a+ib)+(c+id)=(a+c)+i(b+4d),
(x+iB)(a+ib) = (xa-Bb)+i(axb+Ba), (2.1)
(a+ib)(c+id) = (ac—bd)+i(ad+bc),

foralla,b,c,d € Aand &, B € R, then Aisa complex algebra with zero element
05 = 04 +10, (here and later on 04 denotes the zero element of A). In case
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when A has the unit element e4, then e; = es +104 is the unit element of A.
Herewith, A is an associative (commutative) algebra if A is an associative (resp.,
commutative) algebra. Therefore, we can consider A as a real subalgebra of A
under the imbedding v from A into A defined by v(a) = a+i0, for each a € A.

A real (not necessarily topological) algebra A is called a formally real algebra
if from a,b € A and a? + b? = 04 that follows that a = b = 04 and is called a
strictly real algebra if spz(a+1i04) C R (here sp,(a) denotes the spectrum of
a € A in A). It is known (see, e.g., [7, Proposition 1.9.14]) that every formally
real division algebra is strictly real and every commutative strictly real division
algebra is formally real.

Let now (A, T) be a real topological algebra and {Uy : @ € «} a base of
neighborhoods of zero of (A,T). As usual (see [7, 17]), we endow A with the
topology T in which {Uy+iUy : @ € &} is a base of neighborhoods of zero. Itis
easy to see that (A4, T) is a topological algebra and the multiplication in (A, ¥)
is jointly continuous if the multiplication in (A, T) is jointly continuous (see
[7, Proposition 2.2.10]). Moreover, the underlying topological space of (A, T) is
a Hausdorff space if the underlying topological space of (A, T) is a Hausdorff
space.

3. Complexification of real locally pseudoconvex algebras. Let (A,T) bea
real locally pseudoconvex algebra and {py : x € s} a family of k-homogeneous
seminorms on A (where k, € (0,1] for each & € o), which defines the topology
T on A and A, the complexification of A,

Fka (Uo( + i@A)

n n
_{Z A (Ug+i04) :neN,uy,...,uy €Uy, AL,...,A, €C and Z |7\k|k"‘<1]»,
k=1 k=1

da(a+ib) =inf {|A[k«: (@ +ib) € ATy, (Uy +164)}
(3.1)

for each a + ib € A. Then Ik, (Ux +104) is the absolutely ky-convex hull of
Uy +104 for each @ € A and g is a kq-homogeneous Minkowski functional of
Tk, (Ux+104). (For real normed algebras the following result has been proved
in [8, pages 68-69] (see also [12, page 8]) and for k-seminormed algebras with
k € (0,1]in [7, pages 183-184]).

THEOREM 3.1. Let (A, T) be a real locally pseudoconvex algebra, let {py, x €
A} be a family of k-homogeneous seminorms on A (with ky € (0,1] for each
« € d), which defines the topology T on A, and let Uy = {a € A:py(a) < 1}.

Then the following statements are true for each « € A.:

(@) qu is a kq-homogeneous seminorm on A;
(b) max{pu«(a),pa(b)} <qu(a+ib)<2max{py(a),p«(b)} foreacha,b e A;
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(©) qu(a+104) = px(a) foreacha € A;
(d) Ty (Ux+104) = {a+ib € A:qu(a+ib) < 1}.

PROOF. (a) Let & € sd, (a+ib) € A\ {05}, and pu&* > max{pa(a),p«(b)}.
Then a/uy,b/ux € Uy. Since

2~k (i +i£) — 2 lka (i n i@A) 12 Vka (3 n i9A>,
H Hx Hx He
|2 ko Ko |tk R

(3.2)

then
(a+ib) € 2 ke Ty (Uy +164). (3.3)

Hence (a+ib) € AxIk, (Ux+104) for each o« € sdif |Ay| > 2!/*« . It means that
the set I, (Ux+1604) is absorbing. Consequently (see [7, Proposition 4.1.10]),
d« 1S a kq-homogeneous seminorm on A.

(b) Let again (a+ib) € A\ {0;}. Then from (3.3), it follows that g (a +ib) <
Zu’&‘“. Since this inequality is valid for each u’&"‘ >max{pq«(a),p«(b)}, then

du(a+1ib) <2max{py(a),p«(b)}. (3.4)

Letnow a+ib €Iy, (Ux+1604). Then

n

n n
a+ib = Z (Ax +iug) (ax +104) = zAkak+iZukak (3.5)
k=1 k=1 k=1

for some ai,...,a, € Uy and real numbers A4,...,A, and ui,...,u, such that

n
ST Akt i | < 1. (3.6)
k=1

Since |Ax| < |Ax+iuk| and |ug| < |Ag +iug| for each k € {1,...,n}, then

M=

n
a= ) Aag, b= Z Hrak (3.7)
k=1

k

1

belong to Iy, (Ux) = Ux.
Let now € > 0 and

1 1/kx
Hx > (m) . (38)

Then from py(a+1ib) €Ty, (Ux+104) follows that pxa, uxb € Ux Or pu(ga) <1
and p(uxb) < 1. Therefore

max {pa(a),pa(b)} < uzke < qu(+ib) +&. (3.9)
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Since ¢ is arbitrary, then from (3.9) follows that max{py(a),p«(b)} <qu(a+ib)
for each a,b € A. Taking this and inequality (3.4) into account, it is clear that
statement (b) holds.

(c)Leta € A, x € o, and p*« > gy(a+1604). Then from

(%+i9A) € T, (Ua+i04), (3.10)

it follows that a € pUy or py(a) < p*«. It means that the set of numbers pk«
for which p*« > gy(a +1i6,) is bounded below by p«(a). Therefore py(a) <
du(a+1i04).

Let now pk« > py(a). Then a € pUy and from

(% +i9A) € T (Un+1024), 3.11)
it follows that gu(a +i04) < pke. Hence gu(a +i04) < p(a). Thus gu(a +
i04) = pn(a) for eacha € A and x € 4.

(d) It is clear that the set {a+ib € A: qu(a+ib) < 1} C Ty, (Uy +10,4). Let
now a+ib €Iy, (Ux+160,4). Then

n
a+ib Z (Ax +ipg) (ax +164) (3.12)
for some ag,...,a, € Uy and real numbers A4,...,A, and py,..., U, such that
n
ST Ak + i | < 1. (3.13)
k=1

Since p(ax) <1 for each k € {1,...,n}, we can choose &, > 0 so that
max {pa(ai),...,palan)} < e < 1. (3.14)

Then ay € e4Uy for each @ € ol and each k € {1,...,1n}. Therefore

n

b S (At i) (ﬂﬂ'm) € T, (Un+10,). (3.15)
k=1 €
Hence
(a+1ib) € ey, (Uy+104) (3.16)
or qu(a+ib) < s’&“ < 1. It means that statement (d) holds. O

COROLLARY 3.2. If(A,T) isareallocally pseudoconvex Fréchet algebra, then
(A, T) is a complex locally pseudoconvex Fréchet algebra.
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PROOF. Let (A, T) be a real locally pseudoconvex Fréchet algebra and let
{pn,n €N} be a countable family of k,-homogeneous seminorms (with k,, €
(0,1] for each n € N), which defines the topology T on A. Then {g, : n € N}
defines on A a metrizable locally pseudoconvex topology T (see Theorem 3.1).
If (an +1iby) is a Cauchy sequence in (A,T), then (a,) and (b,) are Cauchy
sequences in (A, T) by Theorem 3.1(b). Because (A, T) is complete, then (a,)
converges to ap € A and (b, ) converges to by € A. Hence (a, +ib;) converges
in (A, T) to ag + iby € A by the same inequality (b). Thus (A, ¥) is a complex
locally pseudoconvex Fréchet algebra. |

THEOREM 3.3. Let (A,T) be a real locally A-pseudoconvex (locally m-
pseudoconvex) algebra and {px, «x € A} a family of ky-homogeneous A-
multiplicative (vesp., submultiplicative) seminorms on A (with ky € (0,1] for
each « € si), which defines the topology T on A. Then (A, %) is a complex locally
A-pseudoconvex (resp., locally m-pseudoconvex) algebra. (Here T denotes the
topology on A defined by the system {q«: & € 4}.)

PROOF. Let py be an A-multiplicative seminorm on A. Then for each fixed
element ag € A, there are numbers My(ag) > 0 and Ny(ag) > 0 such that
pa(aoa) < Ma(ao)pa(a),  pulaao) <Nu(ao)pula), (3.17)
for each a € A. If ag + iby is a fixed element and a + ib an arbitrary element of
A, then
du((ao +ibo)(a+ib)) = qu((aoa —bob) +i(aob +boa))

3.18
<2max {p«(aoa—bob),p«(ach +boa)} (5.18)

by Theorem 3.1(b). If now py(apoa —bob) = py(aob + bpa), then
max {p«(aoa—bob),p«(aoh +boa)}
= palaoa—Dbob)
< Ma(ao)pa(a) + Ma(bo) pa(b) (3.19)
<max {px(a),pa(b)} (Mx(ao) +Mu(bo))

1 .
< EMo((ao, bo)@a(a-i' ib)

by Theorem 3.1(b) (here My(ao,bo) = 2(My(ag) + My(by))). Hence
dua((ao+1ibg)(a+ib)) < My(ao,bo)du(a+ib) (3.20)

for each a +ib € A.

The proof for the case when py(aoa —bob) < py(aob + boa) is similar. Thus
inequality (3.20) holds for both cases. In the same way;, it is easy to show that
the inequality

du((a+1ib)(ag+1iby)) < Ny(ao,bo)qu(a+ib) (3.21)
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holds for each a + ib € A. Consequently, (A, T) is a complex locally A-pseudo-
convex algebra.

Letnow py be a submultiplicative seminorm on A. Then p(ab) < p« (@) p«(b)
for each a,b € A. If a+ib,a’ +ib’ € A, then

du((a+ib)(a’ +ib")) < 2max {py(aa’ —bb"),py(ab’ +ba’)} (3.22)

by Theorem 3.1(b). If now py(aa’ —bb’) = py(ab’ + ba’), then

max {py(aa’ —bb’),pu(ab’+ba’)}
=palaa’ —bb") < pa(@)ps(a’) + pa(b)pu(b’)

<2max{p«(a),pa(b)} max {pa(a’),pa(b)} 523
<2qq(a+ib)qu(a’ +1ib")
by Theorem 3.1(b). Hence
au((a+ib)(a’ +ib")) <4qu(a+ib)qu(a’ +ib"). (3.24)
Putting v« = 4q for each «x € o, we see that
ro((a+ib)(a’ +ib")) <ry(a+ib)ry(a’ +ib") (3.25)

for each a +ib,a’ +ib’ € A.

The proof for the case when py(aa’—bb’) < py(ab’+ba’) is similar. Hence
inequality (3.25) holds for both cases. Since the families {gy : @ € #} and
{ro: @ € A} define on A the same topology, then (A, ) is a complex locally
m-pseudoconvex algebra. O

4. Complexification of real exponentially galbed algebras. Next, we will
show that the complexification (A,%) of (A,T) is a complex exponentially
galbed algebra if (A, T) is a real exponentially galbed algebra, and all elements
of (A, T) are bounded in (A, ¥) if (A,T) is a commutative exponentially galbed
algebra in which all elements are bounded and the multiplication in (A, T) is
jointly continuous.

THEOREM 4.1. Let (A, T) be a real exponentially galbed algebra (commuta-
tive real exponentially galbed algebra with jointly continuous multiplication and
bounded elements). Then (A, T) is a complex exponentially galbed algebra (resp.,
commutative complex exponentially galbed algebra with bounded elements).

PROOF. Let (A,T) be a real exponentially galbed algebra and O a neighbor-
hood of zero in (A, ¥). Then there are a neighborhood O of zero of (A, T) such
that O +i0 c O and another neighborhood U of zero of (A, T) such that

!

‘;—:ao,...,aneU}co (4.1)

M=

0
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for each n € N. Since U + iU is a neighborhood of zero in (A, ¥) and

n .
{Z “";klbk L +1Bo,..., dn + iby € U+iU]» CO+i0cO  (42)
k=0

for each n € N, then (A, ) is a complex exponentially galbed algebra.

Let now (A,T) be a commutative real exponentially galbed algebra with
jointly continuous multiplication and bounded elements, O an arbitrary neigh-
borhood of zero of (A, T), and a +ib € A an arbitrary element. Then there are
a neighborhood O of zero of (A, T) such that O +i0 c O and A4, A, € C\ {0}

and the sets
{(%)n:neN}, {(%)n:neN} (4.3)

are bounded in (A, T). The neighborhood O defines now a balanced neigh-
borhood U of zero of (A, T) such that (4.2) holds and U defines a balanced
neighborhood V of zero of (A, T) such that VV c U (because the multiplica-
tion in (A, T) is jointly continuous). Now there are numbers pg,up > 0 such
that

n b n
() o (e

foreachn e N.Let k =4(|A4| +|Ap]). Since a+ib = (a+i04) +i(b+i60,), then

(22t i( () s0a)m+((2)" +100)

.

- (4.5)
Xk
7
for each n € N, where
1 a \( b \""
Xi = +1i04 |,
« Q""uauh((li\al) (lM) A)
k n-k (4.6)
oni = 2kin k(™ | Aa |Ap |
n k K K ’
for each k < n. Herewith
2k (n k k2" 1\"
el = 25 (1) 1Aal M1 7 < 2 a1 < (3) <1,
4.7)

a k b n—k
(M \) (|7\h|> +104 € HattyVV +104 C papty (U +1U).
a
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Since U is a balanced set, then X, € U + iU for each k € {0,...,n}. Hence

a+ib\" . ~
( ) € Ualp (O +10) C paupO (4.8)

by (4.2) for each n € N. It means that a + ib is bounded in (A, 7). Consequently,
(A, T) is a commutative complex exponentially galbed algebra with bounded
elements. |

5. Real Gel’fand-Mazur division algebras. To describe main classes of real
Gel'fand-Mazur division algebras, we first describe these real topological divi-
sion algebras (A, T) for which the complexification (A, ¥) of (A, T) is a complex
Gel'fand-Mazur division algebra.

PROPOSITION 5.1. If (A, T) is a commutative strictly real topological Haus-
dorff division algebra with continuous inversion, then the complexification (A, T)
of (A, T) is a commutative complex topological Hausdorff division algebra with
continuous inversion.

PROOF. Let A be a commutative strictly real division algebra. Then A is
a complex division algebra (see [7, Proposition 1.6.20]). Since the underlying
topological space of (A, T) is a Hausdorff space, then (A,T) is a Q-algebra.
Hence (A, T) is a commutative real Waelbroeck algebra with a unit element.
Therefore (A,T) is a commutative Waelbroeck algebra (see [7, Proposition
3.6.31] or [17, proposition on page 237]). Thus, (A,T) is a commutative com-
plex Hausdorff division algebra with continuous inversion. |

PROPOSITION 5.2. Let (A,T) be a real topological algebra and A the com-
plexification of A. If the topological dual (A, T)* of (A, T) is nonempty, then the
topological dual (A, T)* of (A, T) is also nonempty.

PROOF. If ¢ € (A,T)*, then ¢, defined by ¢(a + ib) = y(a) + iy (b) for
each a+1ib € A, is an element of (A, T)*. m|

PROPOSITION 5.3. Let A be a commutative strictly real (not necessarily topo-
logical) division algebra and A the complexification of A. Then

spila+ib) = {x+if e C:xespy(a) and B €sp,(b)}. (5.1)

PROOF. Let x+iff €spj(a+ib).Since A is a commutative strictly real divi-
sion algebra, then A is a commutative complex division algebra (see [7, Propo-
sition 1.6.20]). Therefore

a+ib—(x+iB)(ea+1i0) = (a—ces) +i(b—Bes) = 04 +104 (5.2)

if and only if x € sp,(a) and B € sp4(b). O

The main result of the present paper is the following theorem.
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THEOREM 5.4. Let (A, T) be a commutative strictly real topological division
algebra and A the complexification of A. If there is a topology T' on A such that
(A, T) is

(a) a locally pseudoconvex Hausdorff algebra with continuous inversion;

(b) a Hausdorff algebra with continuous inversion for which (A, T)* is non-
empty;

(c) an exponentially galbed Hausdorf(f algebra with jointly continuous mul-
tiplication and bounded elements;

(d) a topological Hausdorff algebra for which the spectrum sp(a) is non-

empty for each a € A,
then (A, T) and R are topologically isomorphic.

PROOF. If A isacommutative strictly real division algebra, then A is a com-
mutative complex division algebra (by [7, Proposition 1.6.20]). In case (a) the
complexification (4, ') of (A,T’) is a commutative complex locally pseudo-
convex Hausdorff division algebra with continuous inversion (by Theorem 3.1
and Proposition 5.1); in case (b) (A,T') of (A, T’) is a commutative complex
topological Hausdorff algebra with continuous inversion for which the set
(A, T')* is nonempty (by Propositions 5.1 and 5.2); in case (c) (4, F') of (A, T")
is a commutative complex exponentially galbed Hausdorff division algebra
with bounded elements (by Theorem 4.1); and in case (d) (A,F') of (A,T")
is such a commutative topological Hausdorff division algebra for which the
spectrum sp4(a + ib) is nonempty for each a +ib € A (by Proposition 5.3),
therefore (A, ) and C are topologically isomorphic (see [4, Theorem 1] and [2,
Proposition 1]). Hence every element a + ib € A is representable in the form
a +1ib = Aej for some A € C. It means that for each a € A there is a real
number u such that a = pe,s. Consequently, A is an isomorphism to R. In the
same way as in complex case (see, e.g., [4, page 122]) it is easy to show that
this isomorphism is a topological isomorphism because (A, T) is a Hausdorff
space. O

COROLLARY 5.5. Let A be a commutative strictly real division algebra. If A
has a topology T such that (A, T) is
(@) a locally pseudoconvex Hausdorff algebra with continuous inversion;
(b) a locally A-pseudoconvex (in particular, locally m-pseudoconvex) Haus-
dorff algebra;
(¢) a locally pseudoconvex Fréchet algebra;
(d) an exponentially galbed Hausdorf{f algebra with jointly continuous mul-
tiplication and bounded elements;
(e) a topological Hausdorff algebra for which the spectrum sp,(a) is non-
empty for each a € A,
then (A, T) is a commutative real Gel’fand-Mazur division algebra.

PROOF. It is easy to see that (A, T) is a commutative real Gel’fand-Mazur
division algebra (by Theorem 5.4) in cases (a), (d), and (e). Since the inversion
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is continuous in every locally m-pseudoconvex algebra and every locally A-
pseudoconvex Hausdorff algebra with a unit element having a topology T’ such
that (A, T’) is alocally m-pseudoconvex Hausdorff algebra (see [5, Lemma 2.2]),
then (A, T) is a commutative real Gel’fand-Mazur division algebra in case (b)
by (a) and Theorem 5.4.

Let now (A, T) be a commutative strictly real locally pseudoconvex Fréchet
division algebra. Then (A, T) is a commutative strictly real locally pseudocon-
vex Fréchet Q-algebra by Corollary 3.2. Therefore the inversion in (A, T) is
continuous (see [15, Corollary 7.6]). Hence (A, T) is also a commutative real
Gel'fand-Mazur division algebra by Theorem 5.4. O
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