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We study the properties of certain center-like subsets of groups, which are ob-
tained by localizing setwise commutativity conditions.
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1. Introduction. Let G denote a group with center Z = Z(G); and for each

subsetA ofG, denote by C(A) the centralizer ofA inG. In this paper, we define

several “center-like” subsets of G, investigate their properties and establish

conditions for them to coincide with Z .

2. The Freiman center. In [1], Freiman proved the following theorem.

Theorem 2.1. Let G be a group with the property that for each a,b ∈ G,

|{a,b}2| = |{a2,ab,ba,b2}| ≤ 3. Then either G is abelian or G =Q×E, where

Q is the quaternion group and E is an elementary abelian 2-group.

Motivated by this theorem, we define the Freiman center Fr (G) to be the set

{
a∈G | ∣∣{a,x}2

∣∣≤ 3 ∀x ∈G}. (2.1)

It is obvious that Z(G)⊆ Fr (G) for all groups G, and Q is a group such that

Z(Q) �= Fr (Q) = Q. Initially, it is not evident that Fr (G) has any particular

structure in general; however, if we can show that it is a subgroup of G, then

Theorem 2.1 gives information about its structure.

Lemma 2.2. Let G be a group for which Fr (G) �= Z . If a ∈ Fr (G)\Z and

b �∈ C(a), then a2 = b2 = (ab)2 = (ba)2, bab = a, and aba = b. Moreover,

a4 = b4 = 1 �= a2.

Proof. The first statement is obvious from the definition of Fr (G). If z ∈ Z ,

or more generally if z ∈ C(a,b), then a �∈ C(bz); hence a2 = (bz)2 = b2z2 = b2;

and thus z2 = 1. Since a2 = b2 for all b �∈ C(a), a2 ∈ Z and therefore a4 = 1.

Since aba = b, a2 = 1 would imply that ab = ba, contrary to our hypothesis

that b �∈ C(a); therefore a2 �= 1.
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Lemma 2.3. Let G be a group in which Fr (G) �= Z . Then

(i) Z = {z ∈G | z2 = 1};
(ii) if a∈ Fr (G)\Z and b �∈ C(a), Z = C(a,b).

Proof. (i) Let Z1 = {z ∈ G | z2 = 1}. We noted in the proof of Lemma 2.2

that Z ⊆ Z1. To show that Z1 ⊆ Z , let a∈ Fr (G)\Z , b �∈ C(a), and z ∈ Z1. Then

by Lemma 2.2, z ∈ C(a) and hence bz �∈ C(a). Therefore, b2 = a2 = (bz)2 so

that b = zbz and bz = zb. We have shown that z centralizes the complement

of the proper subgroup C(a), hence z ∈ Z .

(ii) Obviously, Z ⊆ C(a,b). It was noted in the proof of Lemma 2.2 that

C(a,b)⊆ Z1, so by (i), C(a,b)⊆ Z .

We can now show that Fr (G) is a subgroup of G.

Theorem 2.4. If G is any group, Fr (G) is a characteristic subgroup of G.

Moreover, if Fr (G) �= Z , then Fr (G) is of exponent 4.

Proof. Since a−1 = a3 for all a ∈ Fr (G)\Z , to show that Fr (G) is a sub-

group, we need only to establish closure under the group operation. Let a,b ∈
Fr (G). Of course, if a,b ∈ Z , there is nothing to prove. Now consider a ∈
Fr (G)\Z and b ∈ Z . If x ∈ C(a), then xab = abx; and if x �∈ C(a), Lemmas

2.2 and 2.3(i) give (ab)2 = a2b2 = a2 = x2. In either event, |{ab,x}2| ≤ 3.

We are left with the casea,b ∈ Fr (G)\Z . Ifx ∈ C(a)∩C(b), thenxab = abx;

so we assume x �∈ C(a), in which case a2 = x2. If b �∈ C(a), it follows by

Lemma 2.2 that (ab)2 = a2, so (ab)2 = x2. If b ∈ C(a), Lemma 2.3(ii) gives

x �∈ C(b); and by Lemma 2.2, we have x2 = b2 = a2 and axa= x = bxb. Thus

abxab = baxab = x; and since (ab)2 = a2b2 = a4 = 1, we have abx = xab.

We have now shown that Fr (G) is a subgroup. It is obviously invariant under

automorphisms; and if it is different from Z , it is of exponent 4 by Lemmas

2.2 and 2.3(i).

The next result follows at once from Lemma 2.2, which implies that a ∈
Fr (G)\Z and b �∈ C(a) generate a subgroup isomorphic to Q.

Theorem 2.5. If G is any group which does not contain Q as a subgroup,

then Fr (G)= Z .

In order to obtain our next major result, we need two additional lemmas.

Lemma 2.6. Let G be a group for which Fr (G) �= Z . If a ∈ Fr (G)\Z and

b �∈ C(a), then G = C(a)∪bC(a).
Proof. Note that bab−1 = bab3 = (bab)b2 = a3; and for any c �∈ C(a),

cac−1 = a3, and hence bab−1 = cac−1. Thus b−1c ∈ C(a) and c ∈ bC(a).
Lemma 2.7. Let G be a group such that Fr (G) is not commutative. If a ∈

Fr (G) is an element for which there exists b ∈ Fr (G) such that ab �= ba, then

C(a)= Z∪aZ .
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Proof. For a,b ∈ Fr (G) with ab �= ba, we have a2 = b2. Moreover, if c ∈
C(a)\Z , then by Lemma 2.3(ii), we get c �∈ C(b); hence b2 = c2. Thus (a−1c)2 =
a−2c2 = b−2b2 = 1, hence a−1c ∈ Z and c ∈ aZ .

We can now prove our main theorem on Fr (G).

Theorem 2.8. For any group G, one of the following is true:

(i) Fr (G)= Z ;

(ii) Fr (G)=G;

(iii) Fr (G)= Z∪aZ for any a∈ Fr (G)\Z .

Proof. Assume that Fr (G) �= Z . If Fr (G) is not commutative, then by Lem-

mas 2.6 and 2.7, there exist a,b ∈ Fr (G)\Z such that G = C(a)∪ bC(a) =
Z∪aZ∪bZ∪baZ ; hence G = Fr (G).

Finally, we consider the case of Fr (G) commutative but not central. Note

that for any a,b ∈ Fr (G)\Z , we have C(a) = C(b), for x ∈ C(a)\C(b) would

imply a ∈ C(b,x) = Z . Thus, for any a,b ∈ Fr (G)\Z and any x ∈ G, either

x ∈ C(a−1b) or x �∈ C(a) = C(b); and in the latter case a2 = x2 = b2 so that

(a−1b)2 = a−2b2 = 1, and hence a−1b ∈ Z . Therefore, G = C(a−1b), a−1b ∈ Z ,

and b ∈ aZ .

It is clear from Theorems 2.1 and 2.5 that (i) and (ii) can actually occur.

Seeking a finite group G for which (iii) holds, we note that |G|must be divisible

by 8 (by Theorem 2.5); and we examine the non-abelian groups of order 16. By

Lemmas 2.2 and 2.6, there must be at least 9 elements with the same square. In

fact, the only non-abelian group of order 16 with this property is the dicyclic

group Q8—type 16/14 in [2]; and this group does satisfy (iii).

3. The strong Freiman center. It is amusing to consider what happens if we

tighten the definition of Freiman center. We define the strong Freiman center

F̂r (G) to be {a∈G | |{a,x}2| ≤ 2 for all x ∈G}.
It is easy to find groups G for which F̂r (G) is empty. On the other hand, if G

is an elementary 2-group, then F̂r (G)=G. The next theorem states that there

are no other nontrivial G for which F̂r (G) �= ∅.

Theorem 3.1. If G is any group, one of the following holds:

(i) F̂r (G)=φ;

(ii) G = {1};
(iii) G is an elementary 2-group.

Proof. Note first that if G is any non-abelian group with a �∈ Z and b �∈
C(a), then |{a,b}2| ≥ 3; therefore F̂r (G)⊆ Z for all groupsG. Assume now that

F̂r (G) �=φ and a∈ F̂r (G). If |G|> 1, then for any b �= a, {a,b}2 = {a2,b2,ab};
hence a2 = b2. Thus x2 = 1 for all x ∈G.
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4. The Neumann centers. The following definitions resulted from a con-

versation between the second author and B. H. Neumann.

For a fixed positive integer n, let

Tn(G)=
{
x ∈G | xS = Sx for every n-subset S of G

}
, (4.1)

and let

T∞(G)=
{
x ∈G | xS = Sx for every infinite subset S of G

}
. (4.2)

It is clear that Z = T1(G) ⊆ Tn(G) ⊆ Tn+1(G) ⊆ T∞(G) for all n. It is easy to

see that T∞(G) and all Tn(G) are characteristic subgroups of G. Moreover, if

|G| ≤n, then Tn(G)= T∞(G)=G.

Our principal theorem in this section states that there are only two possi-

bilities for Tn(G) or T∞(G): either Z or G.

Theorem 4.1. If G is a group with |G|>n, then Tn(G)= Z ; and if G is any

infinite group, T∞(G)= Z .

Proof. We prove the first assertion; the proof of the second is essentially

the same. Let |G| > n, and suppose x ∈ G\Z . There exists y ∈ G such that

xy �=yx; and there exists a unique w ∈G such that xy =wx. Taking S to be

an n-subset containing y but not w, we have xy ∈ xS\Sx, hence x �∈ Tn(G).
Thus, Tn(G)⊆ Z .

Corollary 4.2. For any group G and any n≤ 5, Tn(G)= Z .

Remark 4.3. We can, in fact, define Tα(G) for any cardinal number α—

as {x ∈ G | xS = Sx for all subsets S of cardinality α}. Then the extension of

Theorem 4.1 states that Tα(G)= Z if α is finite and |G|>α, or if α is infinite

and |G| ≥α, and that in all other cases Tα(G)=G.
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