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The nonrigid molecule group theory (NRG) in which the dynamical symmetry op-
erations are defined as physical operations is a new field in chemistry. Smeyers
in a series of papers applied this notion to determine the character table of re-
stricted NRG of some molecules. In this note, a simple method is described by
means of which it is possible to calculate character tables for the symmetry group
of molecules consisting of a number of methyl groups attached to a rigid frame-
work. We study the full NRG of trimethylamine N(CH3)3 and prove that it is a
group of order 1296 with 28 conjugacy classes. The method can be generalized
to apply to other nonrigid molecules. The full nonrigid (f-NRG) molecule group
theory is seen to be used advantageously to study the internal dynamics of such
molecules.
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1. Introduction. Group theory for nonrigid molecules (NRG), developed to

accommodate two distinct points of view, has grown in popularity recently.

Smeyers in [8] and others in [10, 12, 13] list among the areas of application

large amplitude vibrations in spectroscopy of small organic molecules.

(I) The molecular symmetry group theory (MSG) of permutation inversion

group (PI) is constructed by permutations and permutation-inversion of iden-

tical particles. The MSG group is then formed by all feasible permutations and

permutations-inversions (see [1, 5]).

In [5], Longuet-Higgins investigated the symmetry groups of nonrigid mol-

ecules, where changes from one conformation to another can occur easily. In

many cases, these symmetry groups are not isomorphic with any of the familiar

symmetry groups of rigid molecules and their character tables are not known.

It is therefore of some interest and importance to develop simple methods

of calculating these character tables, which are needed for classification of

wavefunctions, determination of selection rules, and so on.

Lomont [4] has given two methods for calculating character tables. These are

satisfactory for small group, but both of them require a knowledge of the class

constant and hence of the group multiplication table and they become very

unwieldy as soon as the order of the group becomes even moderately large.

For nonrigid molecules, whose symmetry groups may have several thousand

elements, they are usually quite impracticable.
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In [11], Stone described a method which is appropriate for molecules with a

number of XH3 groups attached to a rigid framework. It is not appropriate in

cases where the framework is linear, as in ethane and dimethylacetylene.

(II) The full and restricted nonrigid group theory (f- or r-NRG) built up with

physical operations, expressed in terms of internal coordinates that transform

one conformation into another one is isoenergetic. The r-NRG is then formed by

the complete set of physical operations which commute with given restricted

or Hamiltonian operators (for details see [6, 7]).

In [9], Smeyers and Villa investigated the r-NRG of planer trimethylamine

and proved that this is a group of order 324. Furthermore, they showed that

this molecule has a pyramidal inversion and so the order of r-NRG of trimethy-

lamine is 648.

In this note, we investigate the f-NRG of pyramidal trimethylamine and prove

that this is a group G of order 1296. Also, we show that this group does not

have a copy of r-NRG of pyramidal trimethylamine. Throughout this note, all

considered groups are assumed to be finite. Our notation is standard and is

taken mainly from [2, 3].

2. Determination of conjugacy classes. First of all, we consider the point

group of the molecule in the case of rigid state. The point group of pyramidal

trimethylamine is C3v . The process of enumerating the symmetry operations

of this molecule and arranging them in classes can be explained as adopting a

numbering convention for the central atom of molecule, central atom of every

CH3 group, and protons nuclei.

Suppose that H is the full nonrigid group of trimethylamine without inver-

sion. It is easy to see that G � Z2×H. If we compute the conjugacy classes and

character table of H, then using a well-known method for calculating conju-

gacy classes and character tables of direct product of groups, we can complete

the character table of G. So, it is enough to investigate the conjugacy classes

and character table of H.

The process of enumerating the symmetry operations of this molecule and

arranging them in classes can be explained as adopting a numbering conven-

tion for the proton and carbon nuclei. We define the operations α = (5,6,7),
β = (8,9,10), and γ = (11,12,13), which are rotations, in a positive sense for

the three methyl groups. We assume that these operations are all feasible, that

is, that the barrier to rotation of the methyl group is low.

Now we consider the first operation which leaves the framework of the mol-

ecule unchanged. Each methyl group can be left alone or rotated through 120◦

in either direction, so that there are 33 = 27 of such operations. These fall into

four classes; the class numbers 1–4 of Table 2.1 show a representative of each,

together with the number of elements in the class. These results are obtained

as follows. First, the operations are grouped according to their cycle structure;

operations which rotate different numbers of methyl groups must belong to



THE FULL NONRIGID GROUP THEORY FOR TRIMETHYLAMINE 2703

Table 2.1. The representatives of conjugacy classes.

No. Representatives Size

1 () 1

2 (5,6,7) 6

3 (5,6,7)(8,9,10) 12

4 (5,6,7)(8,9,10)(11,12,13) 8

5 (5,7)(11,13) 27

6 (5,7)(8,9,10)(11,13) 54

7 (3,4)(8,13)(9,11,10,12) 54

8 (3,4)(6,7)(8,11)(9,13)(10,12) 54

9 (3,4)(5,7,6)(8,13)(9,11,10,12) 54

10 (3,4)(5,6,7)(8,12)(9,13,10,11) 54

11 (2,3,4)(5,8,11)(6,9,12)(7,10,13) 72

12 (2,3,4)(5,9,13,7,8,12,6,10,11) 72

13 (2,3,4)(5,10,12,6,8,13,7,9,11) 72

14 (3,4)(6,7)(8,12,10,13,9,11) 108

different conjugacy classes. If now we consider the six operations which ro-

tate one methyl group, we can see that they must all belong to the same class

since operations involving rotation of the molecular framework will transform

α into α−1, β−1, or γ−1, changing the sense of the rotation. All of the opera-

tions which rotate two methyl groups and all of the operations which rotate

three methyl groups constitute two conjugacy classes of the group.

Consider next the operation which permutes the nuclei of the framework;

these fall into sets corresponding to the classes ofC3v . One of theC3 operations

of C3v applied to the framework is the permutation (2,3,4), but this is not

feasible for the molecule as the whole, and one has permutated the protons as

well.

We consider the following three permutations:

R1 = (2,3,4)(5,8,11)(6,9,12)(7,10,13),

R2 = (2,3,4)(5,9,13,7,8,12,6,10,11),

R3 = (2,3,4)(5,10,12,6,8,13,7,9,11).
(2.1)

The permutation R1 denotes the case that the protons of each methyl group

do not rotate. But R2 and R3 apply for the case that these protons rotate. Using

a tedious calculation, we can see that these permutations are not conjugate and

have the same length. Hence, we obtain three conjugacy classes of lengths 72.
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Similar methods are applied to the other classes of C3v to derive other con-

jugacy classes for trimethylamine. We now define

σv1 = (3,4)(6,7)(8,11)(9,13)(10,12),

σv2 = (3,4)(6,7)(8,12,10,13,9,11).
(2.2)

Then we obtain two conjugacy classes of lengths 54 and 108 with the repre-

sentatives σv1 and σv2 , respectively. Using similar arguments, we can calculate

all of the 14 conjugacy classes of the group H. Since G � Z2×H, we can see

that G has exactly 28 conjugacy classes. In Table 2.1, we give representatives

for the conjugacy classes of H. The conjugacy classes of the group G can be

computed from this table.

3. Determination of character table. From the conjugacy classes of the

group H in Section 2, we can see that H is a group of order 648. First of all, we

denote the conjugacy classes ofH and their centralizer orders by the following

two vectors:

A= (1a,3a,3b,3c,2a,6a,3d,9a,9b,4a,12a,12b,6b,2b),

B = (648,81,54,108,24,12,9,9,9,12,12,12,6,12).
(3.1)

From Section 2, we can see thatH has a normal subgroup T of order 108. Since

the factor groupHmodulus T is not abelian, soH/T � S3, the symmetric group

on three symbols. Now we obtain three irreducible characters of H by lifting

irreducible characters of S3. We call these characters χ1, χ2, and χ3 and we

have

χ1 = (1,1,1,1,1,1,1,1,1,1,1,1,1,1),
χ2 = (1,1,1,1,1,1,1,1,1,−1,−1,−1,−1,−1),

χ3 = (2,2,2,2,2,2,−1,−1,−1,0,0,0,0,0).
(3.2)

We now consider the action of H on the set {2,3, . . . ,13}. If we denote by P the

permutation character of this action, then we have

P = (12,3,6,9,8,5,0,0,0,4,1,1,2,2). (3.3)

Since ‖P‖ = 9, (P,χ1)= 2, and (P,χ3)= 2, P−2χ1−2χ2 is an irreducible char-

acter of H, which we denote by χ6. Consider the symmetric and antisymmetric

parts χS and χA of χ6 (see [2, page 50]). We have

χS = (21,3,0,6,5,2,0,0,0,3,0,0,0,3),

χA = (15,6,0,3,−1,−1,0,0,0,1,1,1,0,−3).
(3.4)
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Table 3.2. The character table of H and its power map.

1a 3a 3b 3c 2a 6a 3d 9a 9b 4a 12a 12b 6b 2b
2P 1a 3a 3b 3c 1a 3c 3d 9a 9b 2a 6a 6a 3b 1a
3P 1a 1a 1a 1a 2a 2a 1a 3a 3a 4a 4a 4a 2b 2b

χ1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

χ2 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1

χ3 2 2 2 2 2 2 −1 −1 −1 0 0 0 0 0

χ4 3 3 3 3 −1 −1 0 0 0 1 1 1 −1 −1

χ5 3 3 3 3 −1 −1 0 0 0 −1 −1 −1 1 1

χ6 6 −3 0 3 2 −1 0 0 0 2 −1 −1 0 0

χ7 6 −3 0 3 2 −1 0 0 0 −2 1 1 0 0

χ8 6 −3 0 3 −2 1 0 0 0 0
√

3 −√3 0 0

χ9 6 −3 0 3 −2 1 0 0 0 0 −√3
√

3 0 0

χ10 8 −1 2 −4 0 0 −1 2 −1 0 0 0 0 0

χ11 8 −1 2 −4 0 0 −1 −1 2 0 0 0 0 0

χ12 8 −1 2 −4 0 0 2 −1 −1 0 0 0 0 0

χ13 12 3 −3 0 0 0 0 0 0 0 0 0 −1 2

χ14 12 3 −3 0 0 0 0 0 0 0 0 0 1 −2

In addition, ‖χS‖ = 4 and ‖χA‖ = 2. Since (χS,χ1) = 1, (χS,χ3) = 1, and

(χS,χ6) = 1, χS −χ1 −χ3 −χ6 is an irreducible character of H, which we de-

note by χ14. On the other hand, ‖χA‖ = 2 and (χA,χ14) = 1, so χA−χ14 is an

irreducible character of H, which is denoted by χ4. Now we define χ7 = χ6χ2,

χ5 = χ4χ2, and χ13 = χ14χ2, then we obtain three irreducible characters of H
which are different from χ1, χ2, χ3, χ6, and χ14.

Finally we consider the character ψ = χ5χ6. Then ‖ψ‖ = 3 and (ψ,χ7) = 1.

So, ψ−χ7 is a sum of two irreducible characters. Since the square of character

degrees is the order of the group and the number of irreducible characters of

degree n≥ 3 is even,ψ−χ7 = χ8+χ2χ8, in which χ8 is an irreducible character

of H. Thus, we obtain two new irreducible characters χ8 and χ9 = χ2χ8. Using

orthogonality relations, we have

χ8 =
(
6,−3,0,3,−2,1,0,0,0,0,

√
3,−

√
3,0,0

)
,

χ9 =
(
6,−3,0,3,−2,1,0,0,0,0,−

√
3,
√

3,0,0
)
.

(3.5)

Using the character χ6χ14 and the powers of χ2, we can obtain other irreducible

characters. We summarize our calculations in Table 3.2, the character table of

the group H. As we mentioned above, since G � Z2×H, we can compute the

character table of G from Table 3.2.
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