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We give conditions under which two solutionsx andy of the Kolmogorov equation
ẋ = xf(t,x) satisfy limy(t)/x(t) = 1 as t →∞. This conclusion is important for
two reasons: it shows that the long-time behavior of the population is independent
of the initial condition and it applies to ecological systems in which the coefficients
are time dependent. Our first application is to an equation of Weissing and Huis-
man for growth and competition in a light gradient. Our second application is to a
nonautonomous generalization of the Turner-Bradley-Kirk-Pruitt equation, which
even before generalization, includes several problems of ecological interest.
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1. Introduction. The Kolmogorov equation [4] of population growth in a

temporally variable environment is

ẋ = xf(t,x), x(0) > 0, (1.1)

where x is a real-valued function of the real variable t. We assume that f(t,x)
is continuous for t ≥ 0 and x > 0 and that solutions of (1.1) exist and are

positive for t > 0. If f(t,x) is continuous for x ≥ 0, then ẋ = xϕ(t), where

ϕ(t)= f(t,x(t)) is continuous, and the solution is automatically positive.

Two solutions x and y are said to be asymptotically equivalent, and we write

x ∼y , if

lim
t→∞

y(t)
x(t)

= 1. (1.2)

The relation x ∼y is an equivalence in that

x ∼ x, x ∼y ⇐⇒y ∼ x, x ∼y, y ∼ z �⇒ x ∼ z. (1.3)

If x is bounded, x ∼y implies

lim
t→∞

∣∣x(t)−y(t)∣∣= 0. (1.4)

When x ∼ y or y −x → 0 for all solutions in a suitable class K, these solu-

tions have essentially the same long-time behavior, and the effect of initial

conditions is transient. That is why the relation is important.
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Our main result gives conditions under which x ∼ y . Although we have

called it an equivalence theorem, it is also a stability theorem. We recall that

a stationary solution y = a is asymptotically stable relative to a given class

K if every other solution y ∈ K satisfies limt→∞y(t) = a. When a �= 0, this

is the same as limt→∞(y/a) = 1. In our theory, the role of a is taken by any

particular solution x ∈K, and instead of limy(t)= a we require y ∼ x. Either

solution, x or y , can be viewed as a perturbation of the other obtained by a

change in the initial condition. Hence, our main theorem asserts that any given

solution is asymptotically stable with respect to changes of initial conditions,

provided that we stay within the class K. An earlier investigation with a similar

objective is given by Cohen [1]. However, Cohen’s model is stochastic and its

analysis involves a study of certain matrix products (Hajnal [2]). The present

study, though thematically related to Cohen’s, employs completely different

methods. Further details, including clarification of the class K, are given after

the main theorem.

We will apply our theory to equations

ẋ = g(t,x) (1.5)

in which the factor x on the right is missing. For example, the remarkable

investigations of Huisman and Weissing [3, 11] lead to an equation of that kind.

However, (1.5) can be put in the form (1.1) provided that g(t,x) is continuous,

g(t,0)= 0, and

gx = ∂g∂x (1.6)

exists as a right-hand derivative at (t,0). In that case we can replace (1.5) by

ẋ = xf(t,x), where f(t,x) = g(t,x)/x for x �= 0 and f(t,0) = gx(t,0). This

remark is used below.

2. The equivalence theorem. The following hypothesis is due to Vance and

Coddington [9]:

fx(t,x)≤−γ(x)λ(t),
∫∞

0
λ(t)dt =∞. (2.1)

Here λ is continuous and nonnegative for t ≥ 0 and γ(x) is continuous and

positive for x > 0.

This hypothesis in isolation leads nowhere. The reason is that without some

other condition there is no way of knowing that

∫∞
0
γ
(
x(t)

)
λ(t)dt =∞, (2.2)
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and this is what is actually needed in the analysis. In [9, Theorems 3 and 5], it

is explicitly required that

M1 ≤ x(t)≤M2, 0≤ t <∞, (2.3)

where Mi are positive constants depending on the solution x. In Theorem 7.1,

a condition of this kind is obtained by denying the conclusion. On the interval

M1 ≤ x ≤ M2 the continuous function γ(x) has a positive lower bound δ, so

the Vance-Coddington hypothesis in its entirety implies

fx(x,t)≤−δλ(t),
∫∞

0
λ(t)dt =∞. (2.4)

If two solutions x and y are being considered, with constants δ1 and δ2, re-

spectively, we have (2.4) with

δ=min
(
δ1,δ2

)
. (2.5)

Upon replacing λ by δλ, we are led to the following new hypothesis.

Condition EI. Let I be an open interval, finite or infinite. The function

f(t,x) satisfies condition EI if there exists a continuous function λ ≥ 0, de-

pending on I, such that

∫∞
0
λ(t)dt =∞, ξ ∈ I �⇒ fx(t,ξ)≤−λ(t). (2.6)

The letters EI are intended to suggest the phrase “equivalence relative to I,”
and Theorem 2.1 will be referred to as the equivalence theorem. Condition EI
will be applied with I a value interval for the solutions x(t) under considera-

tion, that is, an interval such that x(t)∈ I for t ≥ 0. It is not required that I be

the smallest interval with this property.

The value interval I plays the same role that in the Vance-Coddington theory

is taken by their hypothesis involving γ together with the assumption that

the solutions being considered are bounded away from 0 and ∞. The new

formulation is especially useful for equations containing a parameter k, since

it may happen that all solutions exceeding k belong to one equivalence class

while those less than k belong to another. An example is given in connection

with the Turner-Bradley-Kirk-Pruitt equation below.

Here is our main theorem.

Theorem 2.1. Suppose x and y are two solutions of (1.1) with a common

value interval I = I(x)= I(y) relative to which condition EI holds. Then

infy(t) > 0 �⇒ lim
t→∞

y(t)
x(t)

= 1. (2.7)

In the light of this theorem, solutions x and y are considered to be “in a

suitable class” if I(x)= I(y)= I. The equivalence theorem implies that if one
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solution with I(x) = I is bounded away from zero, then all solutions are, and

if in addition one is bounded above, then all solutions are. It generalizes and

sharpens [9, Theorem 5]. The latter does not introduce the value interval I and

assumes a priori that both solutions are bounded away from 0 and ∞.

Proof. Let v =y/x. Then

v̇ = xẏ−yẋ
x2

= y
x
(
f(t,y)−f(t,x))= y

x
(y−x)fx(t,ξ), (2.8)

where ξ is between x(t) and y(t). Hence v̇ = (v−1)θ(t) with

θ(t)=y(t)fx(t,ξ)≤−y(t)λ(t)≤−(infy)λ(t). (2.9)

The separable equation v̇ = (v −1)θ(t) is easily solved and gives v(t) → 1,

since

∫∞
0
θ(t)dt =−∞. (2.10)

The above discussion ignores a minor technical difficulty that is now ex-

plained. Since θ(t) involves the function fx(t,ξ), where the dependence of ξ
on t is difficult to control, it is not immediately obvious that θ(t) is continuous

or even integrable. The resolution of this difficulty involves two steps, the first

of which leads to a uniqueness theorem of independent interest.

First step. Here we assume only that fx(t,ξ)≤ 0 for ξ ∈ I. This is implied

by condition EI but is much weaker. With w = v−1 the proof of Theorem 2.1

gives ẇ = θ(t)w where θ(t)≤ 0. Given t0 ≥ 0, we will show that

w
(
t0
)= 0 �⇒w(t)= 0 for t ≥ t0. (2.11)

If not, assume without loss of generality that w(t2) > 0 at some value t2 > t0.

Go back toward t0 until you first reach a value t1 at which w(t1) = 0. On the

interval (t1, t2) the mean-value theorem gives a contradiction, w(t2)≤ 0.

In terms of x and y this is a uniqueness theorem; namely, it asserts that

if x(t0) = y(t0) at some t0 ≥ 0, then x(t) = y(t) for t > t0. However, the

hypothesis fx ≤ 0 does not require that fx be bounded, and hence it does not

yield the local Lipschitz condition on which uniqueness is usually based.

Second step. In view of the above result we can assume that w(t) �= 0 for

large t. The differential equation satisfied by x and y shows that x and y are

of class C1 and hence ẇ is continuous. The equation θ = ẇ/w now shows that

θ is continuous for large t, which is what we need.

3. Persistence and extinction. Theorem 2.1 could also be worded as fol-

lows: suppose I is a value interval relative to which condition EI holds. Then
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either (i) the ratio of any two solutions x and y with value intervals I(x) =
I(y)= I tends to 1 as t→∞, or (ii) every solution with value interval I(x)= I
satisfies infx(t)= 0. It is easily shown that if

liminf
t→∞

∫ t
0
f(τ,0)dτ =−∞, (3.1)

then (ii) holds, and if

0≤ s ≤ t �⇒
∫ t
s
f (τ,0)dτ ≤ B (3.2)

for some constant B, then (i) holds. However, these remarks do not distinguish

between extinction and persistence; that is, between limx(t)= 0 and infx(t) >
0. This matter is discussed next, assuming continuity of f(x,t) for x ≥ 0 and

t ≥ 0.

Let T and c be large and small positive constants, respectively. It is said

that the long-time average of f(t,0) is bounded away from 0 positively or

negatively if, for all t > 0,

1
T

∫ t+T
t

f (τ,0)dτ ≥ c or
1
T

∫ t+T
t

f (τ,0)dτ ≤−c, (3.3)

respectively. Suppose that f(t,0) is bounded below, that fx ≤ 0, and that

fx(t,x) is bounded below for small x. Then (i) persistence holds if the long-

time average of f(t,0) is bounded away from 0 positively, and (ii) extinction

holds if it is bounded away from 0 negatively.

Part (i) of this result is essentially the same as [9, Theorem 2], if we take into

account the accompanying remarks regarding uniform continuity at x = 0.

Hence we give the proof only for (ii).

Proof of (ii). The above hypothesis for (ii) is worded so as to show a paral-

lelism with (i), but in fact this hypothesis is far stronger than necessary. Instead

of assuming that the long-time average is bounded away from 0 negatively, we

assume only that

∫∞
0
f(t,0)dt =−∞. (3.4)

Instead of the condition fx ≤ 0, we assume only that f(t,x)≤ f(t,0) for x > 0.

The differential equation now gives (ii) as follows:

x(t)= x(0)e
∫ t
0 f(τ,x(τ))dτ ≤ x(0)e

∫ t
0 f(τ,0)dτ �→ 0. (3.5)

These results are in several respects sharp. Confining attention to (i), we

note that if ẋ =−x2, then f(t,0)= 0 and fx(t,x)=−1, but all solutions tend

to 0. Thus persistence does not follow if the long-time average of f(t,0) is
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only greater than or equal to 0. In the equation

ẋ = x 1−xt
1+xt , (3.6)

we have f(t,0) = 1, |f(t,x)| ≤ 1, and fx ≤ 0. Nevertheless all solutions tend

to 0. The trouble is that fx is not bounded below. In the equation

ẋ = x(2+t sint−cost−x), (3.7)

it is easily checked that

1
2π

∫ t+2π

t
f (τ,0)dτ = 2−cost ≥ 1, (3.8)

and clearly fx = −1. Nevertheless infx(t) = 0, though the proof of this is too

long for inclusion here. Part (i) fails because f(t,0) is not bounded below.

As a final example, we consider the familiar logistic equation

ẋ = x(k−x), (3.9)

where k≥ 0 is constant. Here limt→∞x(t)= k. Hence if k > 0, then all solutions

are bounded away from 0 below, and if k= 0, then all solutions tend to 0. Our

results give a similar dichotomy for equations that are not quite so easy to

solve explicitly.

4. An equation of Weissing and Huisman. As a first application, we con-

sider the equation

Ẇ = pmax

k
ln
(

H+Iin
H+Iine−kW

)
−lW, W(0) > 0, (4.1)

which was introduced in Huisman and Weissing [3] to describe light-limited

growth and competition among phytoplankton species in a mixed water col-

umn. The function W represents the total biomass in the water column and

study of its behavior is the object of the theory. The symbol Iin represents the

light intensity at the top of the water column, k the light extinction coefficient,

H the half saturation constant of specific carbon uptake rate, pmax the maxi-

mum specific carbon uptake rate, and l the specific rate of carbon loss. In the

theory of Huisman and Weissing, these coefficients are assumed to be positive

constants. We will prove the following theorem.

Theorem 4.1. Suppose that the coefficients pmax, k, H, Iin, l in (4.1) are

positive continuous functions of t which are bounded above and bounded away

from 0. Then all solutions W are positive and bounded. Moreover, either

(i) the difference of any two solutions tends to 0 as t→∞, or

(ii) every solution satisfies infW(t)= 0.
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The conclusions (i) and (ii) are not mutually exclusive. We take all coefficients

as time-dependent because it is easy to do. More realistically, we could assume

that all coefficients are positive constants except Iin. Allowing time-dependence

of the incident intensity was mentioned as desirable in Weissing and Huisman

[11].

In the course of the proof, we will show that Ẇ =Wf(t,W) with

f(t,0)= pmax
R

1+R −l, R = Iin
H
. (4.2)

It will be seen also that f and fW are bounded and that fW ≤ 0. Hence persis-

tence or extinction follows if the long-time average of

pmax
Iin

Iin+H −l (4.3)

is bounded away from zero positively or negatively, respectively.

4.1. Reformulation. Using the ratios R = Iin/H and r = pmax/k, we write

(4.1) in the form

Ẇ = r ln
(

1+R
1+Re−kW

)
−lW. (4.4)

By hypothesis, the coefficients r , R, l, k are positive continuous functions of t,
bounded both above and away from 0. This assumption, weaker than that in

Theorem 4.1, is sufficient for our purposes. Since (4.4) implies

Ẇ ≤ r ln(1+R)−lW ≤ c1−c2W, (4.5)

where c1 and c2 are positive constants, W exists for all t > 0 and is bounded

above.

Equation (4.4) is not in Kolmogorov form. However, the procedure suggested

in the introduction gives Ẇ =Wf(t,W), where

f(t,W)= r
W

ln
(

1+R
1+Re−kW

)
−l (4.6a)

for W �= 0 and

f(t,0)= rkR
1+R −l= pmax

R
1+R −l. (4.6b)

To compute the sign of fW , we use the formula

f(t,W)= pmax

∫ 1

0

R
R+ekWs ds−l (4.7)

which is valid forW ≥ 0. Equation (4.7) can be deduced by following the deriva-

tion of (13) in Huisman and Weissing [3], using their equations (6), (2), (1), and
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the equation W =wz given in the second column, line 13, of page 508. Once

(4.7) is available, it is easily checked by evaluating the integral. The passage

from (4.6) to (4.7) is not obvious, but that from (4.7) to (4.6) is routine.

Proof. If alternative (ii) does not hold, at least one solution, y , satisfies

infy(t) > 0. Let x be any other solution. Since (4.6) has the Kolmogorov form

with continuous f , all solutions are positive and bounded as seen above. Hence,

a common value interval I for x and y has the form (0,m) where m<∞. For

ξ ∈ I,

1≤ ekξs ≤ ekms ≤ ekm ≤ b, 0≤ s ≤ 1, (4.8)

where b is an upper bound for ekm. By (4.7),

∂f
∂W

=−pmax

∫ 1

0

Rks(
R+ekWs)2 e

kWsds, (4.9)

which gives

fW(t,ξ)≤−pmax

∫ 1

0

Rks
(R+b)2ds =−pmax

kR
2(R+b)2 . (4.10)

Condition EI holds with λ equal to the (constant) minimum of the expression

on the right, and the conclusion (i) follows from Theorem 2.1.

5. Supplementary remarks

5.1. The autonomous case. If the coefficients R, r , l, k are positive con-

stants, we write f(W) instead of f(t,W) and f ′(W) instead of fW . Since

f ′(W) < 0 for W ≥ 0 and f(W) is negative for W large, the solution exists

and is positive for t ≥ 0. Its detailed behavior depends on

f(0)= pmax
R

1+R −l. (5.1)

The population persists if and only if f(0) > 0 and in that case there is a

unique value W∗ such that limW(t) =W∗. The value W∗ is the positive root

of f(W)= 0, defined implicitly by

pmax

∫ 1

0

R
R+ekW∗s ds = l. (5.2)

In particular, if a single solution is bounded away from 0 then all solutions are,

and all tend toW∗. Hence their ratio tends to 1, in agreement with Theorem 4.1.

5.2. A generalization. In [11], the authors introduce a generalization of

their theory. Under mild assumptions, they show that

Ẇ = F(G), (5.3)
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where F is increasing, F(0)= 0, and for a positive function g,

G(W)=
∫W

0
g
(
I(s)

)
ds. (5.4)

Clearly G(0) = 0. If we set H(W) = F(G(W)), then H(0) = 0 and Ẇ = H(W).
Assuming that the needed derivatives exist,

H′(W)= F ′(G(W))G′(W)= F ′(G(W))g(I(W)) (5.5)

and H′(0) = F ′(0)g(I(0)). Since I(0) = Iin in [11], all the conditions are avail-

able for a theorem analogous to Theorem 4.1. The details will not be given

here.

6. The generalized TBKP equation. With p+1, n, k, c positive constants

and x(0) > 0, the equation

ẋ = cx1−np(kn−xn)1+p
(6.1)

was introduced in Turner et al. [8] and is here called the TBKP equation. An

objection to (6.1) is that it requires initial values x0 < k. Indeed, if x > k, the

expression

(
kn−xn)1+p

(6.2)

becomes imaginary unless p has certain special values, and even then the be-

havior as x→∞ may be inappropriate.

To deal with this problem, we introduce the odd power function

y{m} = (sgny)|y|m (6.3)

and replace (6.1) by

ẋ = cx1−np(kn−xn){1+p}, x(0)= x0 > 0. (6.4)

The assumption that n, k, and p+ 1 are positive constants is retained, but

instead of the constant c we introduce a positive continuous function c(t).
We also introduce an additional growth term of the form d(t)x, where d(t) is

continuous but can change sign. Finally, we allow a quadratic self-limiting term

−e(t)x2, where e(t) is continuous and nonnegative. The generalized TBKP

equation replacing (6.1) is therefore

ẋ = c(t)x1−np(kn−xn){1+p}+d(t)x−e(t)x2, x(0)= x0 > 0. (6.5)

This has the Kolmogorov form ẋ = xf(t,x) with

f(t,x)= c(t)x−np(kn−xn){1+p}+d(t)−e(t)x. (6.6)
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Equation (6.5) includes equations of Turner et al. [8], von Bertalanffy [10],

Richards [6], and Thornley and Johnson [7] as well as the standard logistic,

Gompertz, and Malthus population growth equations. Besides time-dependent

coefficients, (6.5) allows a self-limiting term that does not appear in any of the

special cases cited. It is seen in Section 7 that all solutions exist for 0≤ t <∞
and are positive.

We will prove the following theorem.

Theorem 6.1. In (6.5), suppose that p ≥ 0 and that
∫∞

0
e(t)dt =∞. (6.7)

If a single solution is bounded away from 0, then all solutions are, and limy(t)/
x(t) = 1 holds for every pair of solutions. If, in addition, at least one solution

is bounded above, then all solutions are, and every pair satisfies limt→∞ |x(t)
−y(t)| = 0.

Proof. When y �= 0, the equation (d/dy)y{α} = α|y|α−1 holds for any

constant α and yields

fx(t,x)=−nc(t)
(
xn+pkn)x−np−1

∣∣xn−kn∣∣p−e(t). (6.8)

The result now follows from Theorems 2.1 and 7.1.

6.1. Further discussion. Theorems 4.1 and 6.1 hardly use the full force of

Theorem 2.1, in that the value interval I plays only a minor role. A more com-

plete development would distinguish the cases supx(t) < k and infx(t) > k.

For example if p > 0 as in Theorem 6.1 and

supx(t) < k, supy(t) < k, infy(t) > 0, (6.9)

then the conclusion follows from the condition
∫∞

0

(
c(t)+e(t))dt =∞, (6.10)

which can hold even when e(t) = 0. More subtle results of this kind are valid

whenp < 0. To be of practical use, however, the needed information about I(x)
must be deduced from the differential equation and the initial conditions. A

full development of these ideas would take us too far afield, and the interested

reader is referred to Redheffer [5].

7. A remark on continuity. Continuity of f(t,x) for x > 0 does not imply

x(t) > 0 for solutions of the Kolmogorov equation, as seen by the example

f(t,x)=−1/x for which ẋ =−1. Nevertheless (except in results that actually

involve f(t,0)) continuity for x > 0 suffices for the problems considered here.

Distinguishing continuity forx > 0 from that forx ≥ 0 may seem like mere hair

splitting, but in fact the following theorem increases the scope of Theorem 2.1.
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Theorem 7.1. Let ẋ = xf(t,x), where f(t,x) is continuous for x > 0. Sup-

pose further that there are continuous functions g and h, with g positive, such

that

0<x < g(t) �⇒ f(t,x) >−h(t). (7.1)

Then x(0) > 0 implies x(t) > 0 on the interval of existence of x.

Proof. Since g(t) can be reduced at will, we can, and do, assume g(0) <
x(0). Let the interval of existence be (0,γ) with γ ≤ ∞ and let (0,β) be the

longest interval on which x(t) > 0. If β < γ, then

liminf
t→β

x(t)= 0. (7.2)

Go back towards 0 from β until you first encounter a point α at which x(α)=
g(α). There must be such a point since x(0) > g(0) and x(t) < g(t) near β.

Then 0<x(t) < g(t) on (α,β), so

ẋ ≥−xh(t), α≤ t < β. (7.3)

For α≤ t < β, this gives

x(t)≥ x(α)e−
∫ t
α h(τ)dτ . (7.4)

Hence liminft→βx(t) > 0, which contradicts (7.2).

For example in the generalized TBKP equation, x ≤ k ⇒ f(t,x) ≥ d(t)−
ke(t). Theorem 7.1 applies with g(t) = k and h(t) = d(t)−ke(t). For large

x we have f(t,x) ≤ d(t), which together with the previous result shows that

x(t) exists for all t > 0 and is positive. Nevertheless f(t,x) is discontinuous

at x = 0 whenever p > 0.
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