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1. Statement of the main results. Let X1,X2, . . . be independent random

variables taking values in a measurable Abelian group (�,�) with respective

distributions P1,P2, . . . .Moreover, if these random variables are identically dis-

tributed (the i.i.d. case), then we denote by P their common distribution. We

suppose that {0} ∈ � and the group operation “+” is measurable. In other

words, a sum of arbitrary random variables in (�,�) is a random variable too.

Denote by Pois(µ) the generalized Poisson distribution with the Lévy mea-

sure µ

Pois(µ) := e−µ(�)
∞∑
k=0

µ∗k

k!
, (1.1)

where µ∗k is the k-fold convolution of a finite measure µ with itself; µ∗0 is the

unit mass concentrated at zero. Under the measurability conditions above the

convolution is well defined because we can define the convolution of probabil-

ity (i.e., normed finite) measures.

Put Sn :=∑i≤nXi. Generalized Poisson distribution with the Lévy measure

µ := ∑i≤nPi is called the accompanying Poisson law for Sn (see, e.g., Araujo

and Giné [1]). We will denote by τµ a random variable having this distribution.

The main goal of this paper is to obtain sharp moment inequalities for some

measurable functions of Sn via the analogous moments of the accompanying

Poisson law. Results of such kind are connected with the Kolmogorov problem

of approximation of the sum distributions by infinitely divisible laws as well

as with an improvement of the classical probability inequalities for the sums.
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For an arbitrary measurable function f satisfying the condition E|f(τµ)| <
∞, introduce the following notations:

φ(k) := Ef
(
Sk
)
, φm,z(k) := Ef

(
Sm,k+z

)
, (1.2)

where Sm,k := ∑
i≤kXm,i, Sm,0 = S0 = 0, and {Xm,i : i ≥ 1} are independent

copies of the random variable Xm. We assume that all the sequences {Xi},
{X1,i},{X2,i}, . . . are independent. Note that, under the moment condition above,

the functionsφ(k) exist and the functionsφm,z(k) are well defined at least for

almost all z with respect to the distribution of Sj,k for each j ≠m and integer

k≥ 0 (for details, see Section 3).

We say that a function g(k) is convex if the difference ∆g(k) := g(k+1)−
g(k) is nondecreasing.

Theorem 1.1. Let one of the following two conditions be fulfilled:

(a) the random variables {Xi} are identically distributed and φ(k) is a con-

vex function;

(b) for all z and m, all the functions φm,z(k) are convex.

Then, for each n,

Ef
(
Sn
)≤ Ef

(
τµ
)
. (1.3)

For the initial random variables which are nondegenerate at zero, let {X0
i }

be independent random variables with respective distributions

P0
i :=�

(
Xi |Xi �= 0

)
. (1.4)

For this sequence, we introduce the notations S0
k , S0

m,k, φ0(k), and φ0
m,z(k) as

above.

Proposition 1.2. Convexity of the functions φ0(k) or φ0
m,z(k) implies con-

vexity of the functions φ(k) or φm,z(k), respectively. The converse implication

is false.

Remark 1.3. If the functions in the conditions of the above two assertions

are concave, then inequality (1.3) is changed to the opposite. This follows from

the well-known connection between convex and concave functions.

A simple sufficient condition for the functions φ(k) and φm,z(k) as well

as φ0(k) and φ0
m,z(k) to be convex is as follows: for all x ∈ � and all z,h ∈⋃

i≤n suppXi, the function f satisfies the inequality

f(x+h)−f(x)≤ f(x+h+z)−f(x+z), (1.5)

where suppXi denotes a measurable subset such that Xi ∈ suppXi with prob-

ability 1.
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For example, in the i.i.d. case, the convexity (say, ofφ(k)) follows easily from

(1.5):

φ(k+1)−φ(k)≤ E
(
f
(
Sk+2

)−f (Sk+Xk+2
))=φ(k+2)−φ(k+1). (1.6)

For the Banach-space-valued summands, the following result is valid.

Theorem 1.4. Let � be a separable Banach space. Suppose that at least one

of the following two conditions is fulfilled:

(1) the function f is continuously differentiable in Fréchet sense (i.e., f ′(x)[h]
is continuous in x for each fixed h), and, for each x ∈ � and every z,h∈⋃
i≤n suppXi,

f
′
(x)[h]≤ f ′(x+z)[h]; (1.7)

(2) EXk = 0 for all k, f is twice continuously differentiable in Fréchet sense,

and f ′′(x)[h,h] is convex in x for each fixed h∈⋃i≤n suppXi.
Then all the functions in the conditions of Theorem 1.1 and in Proposition 1.2

are convex.

Corollary 1.5. If Xi ≥ 0 a.s. and f is an arbitrary convex function on

[0,∞), then inequality (1.5) is true. Moreover, if Xi are random vectors in Rk,
k ≥ 2, (as well as in the Hilbert space l2) with nonnegative coordinates, then

the function f(x) := ‖x‖2+α, where ‖·‖ is the corresponding Euclidean norm

and α≥ 0, satisfies inequalities (1.5) and (1.7). For the mean zero Hilbert-space-

valued summands, the function f(x) := ‖x‖β, where β= 2,4 or β≥ 6, satisfies

Theorem 1.4(2). Therefore, in these cases, inequality (1.3) holds under the addi-

tional necessary restriction E|f(τµ)|<∞.

Remark 1.6. In the multivariate case, conditions (1.5) and (1.7) are slightly

stronger than convexity. In particular, in general, the Euclidean norm does not

satisfy these conditions.

Remark 1.7. There exist functions f(x) which do not satisfy the condi-

tions of Theorem 1.4, but the corresponding functions in Theorem 1.1 and

Proposition 1.2 are convex. For example, in the i.i.d. one-dimensional case, we

consider the function f(x) := x5 and the centered summands {Xi}. It is clear

that the conditions of Theorem 1.4 are not fulfilled. In this case we have

φ(k)= E

( k∑
i=1

Xi

)5

= kEX5
1+10k(k−1)EX3

1EX2
1 . (1.8)

Thus, if EX3
1 ≥ 0, then the function φ(k) (as well as the function φ0(k)) is

convex, otherwise it is concave.In other words, in this case we have various
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inequality signs in (1.3) depending on positivity or negativity of the third mo-

ment of the summands.

Given a finite measure µ on (�,�) satisfying the condition µ({0}) = 0, we

denote by φµ(k) the function φ(k) in (1.2) computed in the i.i.d. case for the

summand distribution µ(·)/µ(�). Exactness of inequality (1.3) is characterized

by the following result.

Theorem 1.8. In the i.i.d. case, let the function φµ(k) be convex. Then

sup
n,P

Ef
(
Sn
)= Ef

(
τµ
)

(1.9)

whenever the expectation on the right-hand side of (1.9) is well defined, where

�(τµ)= Pois(µ) and the supremum is taken over all n and P such that nP(A\
{0})= µ(A) for all A∈�.

Remark 1.9. Taking inequality (1.3) into account, we can easily reformu-

late Theorem 1.8 for the non-i.i.d. case. Perhaps, for the first time, the idea of

employing generalized Poisson distributions for constructing upper bounds

for moments of the sums was proposed by Prokhorov [25, 26]. In particu-

lar, relations (1.3) and (1.9) were obtained by Prokhorov [26] for the functions

f(x) := x2m (m is an arbitrary natural number) and f(x) := ch(tx), t ∈R, and

for one-dimensional symmetric {Xi}. Moreover, in the case of mean zero one-

dimensional summands, these relations for the functions f(x) := exp(hx),
h ≥ 0, can be easily deduced from Prokhorov [25] (see also Pinelis and Utev

[24]).

The most general result in this direction was obtained by Utev [28] who, in

fact, rediscovered and essentially employed some results of Cox and Kemper-

man [11] regarding lower bounds for moments of sums of independent cen-

tered random variables. Under Theorem 1.4(2), he proved extremal equality

(1.9) for nonnegative functions f(x) having an exponential majorant. More-

over, he required some additional unnecessary restrictions on the sample Ba-

nach space. In our opinion, the corresponding proofs of the present paper are

simpler than that of Utev and need no additional restrictions on f(x) and the

sample space.

Relations like (1.3) and (1.9) can also be applied for obtaining sharp moment

and tail probability inequalities for sums of independent random variables

(for details, see Kemperman [17], Pinelis and Utev [23, 24], Utev [27, 28], and

Ibragimov and Sharakhmetov [15, 16]).

The above results deal with some type of convexity. However, we can obtain

moment inequalities close to those mentioned above without any convexity

conditions.
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Theorem 1.10. In the i.i.d. case, for every nonnegative measurable function

f , the following inequality holds:

Ef
(
Sn
)≤ 1

1−pEf
(
τµ
)
, (1.10)

where p := Pr(X1 �= 0).
In the non-i.i.d. case, the factor (1− p)−1 in (1.10) should be replaced by

exp(
∑
i≤npi), where pi := Pr(Xi �= 0).

It is clear that inequality (1.10) provides a sufficiently good upper bound

under the so-called Poissonian setting when the summand distributions have

large atoms at zero (i.e., the probabilities pi are small enough). Some particular

cases of inequality (1.10) are contained in Araujo and Giné [1] and in Giné et

al. [14].

2. Applications to empirical processes. In this section, we formulate some

consequences of the above theorems as well as some new analogous results

for empirical processes. For the sake of simplicity, we study the empirical pro-

cesses with one-dimensional time parameter although the results below can

be reformulated for empirical processes indexed by subsets of an arbitrary

measurable space (moreover, for abstract empirical processes indexed by a

family of measurable functions). These results are a basis for the so-called Pois-

sonization method for empirical processes. Sometimes it is more convenient

to replace an empirical process under study by the corresponding accompa-

nying Poisson point process having a simpler structure for analysis (e.g., in-

dependent “increments”). Some versions of this sufficiently popular and very

effective method can be found in many papers. In particular, some probabil-

ity inequalities connecting the distributions of empirical processes (in various

settings) and those of the corresponding Poisson processes are contained in

Borisov [3, 4, 5], Einmahl [13], Deheuvels and Mason [12], Giné et al. [14], and

others.

Introduce the so-called tail (or local) empirical process on the interval [0,n]

νn(t) :=nFn
(
t
n

)
, (2.1)

where Fn(·) is the empirical distribution function (right-continuous version)

based on a sample of size n from the (0,1)-uniform distribution. We consider

νn as a random variable in the space LS([0,n]) which is defined as the linear

span of the set of all piecewise constant right-continuous functions on [0,n]
with finitely many jumps, endowed with the cylinder σ -field. It is easy to verify

that the standard Poisson process π(t) on [0,n] (with right-continuous paths)

has the accompanying Poisson distribution for νn in this space.

Theorem 2.1. Let Φ(·) be a convex nonnegative functional on LS([0,n])
which is nondecreasing on the subset of all nonnegative functions with respect



2776 I. S. BORISOV

to the standard partial order in function spaces. Suppose that, for each func-

tion x(·) ∈ LS([0,n]), the following relation holds: limm→∞Φ(x(m)) = Φ(x),
where x(m)(t)= x([mt]/m), with [·] the integer part of a number. Moreover,

if EΦ(π) <∞, then

EΦ
(
νn
)≤ EΦ(π). (2.2)

Remark 2.2. It is well known that if a convex functional defined on a topo-

logical linear space (say, on a Banach space) is bounded in a neighborhood

of some point, then it is continuous (see, e.g., Kutateladze [20]). Thus, if the

functional in Theorem 2.1 is defined, say, on Lm([0,n],λ), where λ is a finite

measure, and satisfies the local boundedness condition, then the continuity

condition connected with the step functions x(m)(t) can be omitted.

In the sequel, in the case of Banach-space-valued random variables, we con-

sider only continuous convex functionals. For example, the functional Φ(x)
:= ‖x‖qm ≡ (

∫n
0 |x(t)|mλ(dx))q/m with arbitrary parameters m ≥ 1 and q ≥ 1,

where λ is an arbitrary finite measure on [0,n], satisfies the conditions of

Theorem 2.1.

Note that the accompanying Poisson process for the centered empirical pro-

cess ν0
n(t) := νn(t)−t, say, in Lm([0,n],λ), differs from the corresponding cen-

tered Poisson process. This process can be defined as π0(t) :=π(t)−π(n)t/n
and, by analogy with the definition of a Brownian bridge, can be called a Poisso-

nian bridge on [0,n]. For such processes, Theorem 1.4(2) can be reformulated

as follows.

Corollary 2.3. Let Φ(x) be a functional on Lm([0,n],λ) having convex

second Fréchet derivative. Then

EΦ
(
ν0
n
)≤ EΦ

(
π0) (2.3)

whenever the expectation on the right-hand side of (2.5) exists.

As an example of such a functional we can consider Φ(x) := ‖x‖mqm for any

m≥ 2 and q ≥ 3 or q = 1,2.

If we consider the processes νn and π as random elements in LS([0,δn]),
where δ < 1, then the following direct consequence of Theorems 1.10 and 2.1

above and Lemma 3.1 and Corollary 3.4 below holds.

Corollary 2.4. For every measurable functional Φ on LS([0,δn]) under

the minimal restriction E|Φ(π)|<∞, the following inequality holds:

E
∣∣Φ(νn)∣∣≤ 1

1−δE
∣∣Φ(π)∣∣. (2.4)
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Moreover, if δ=N/n, N does not depend on n, and the functional Φ satisfies

the conditions of Theorem 2.1, then

sup
n

EΦ
(
νn
)= lim

n→∞EΦ
(
νn
)= EΦ(π). (2.5)

Finally, we formulate some useful moment inequalities which deal with one-

dimensional projections of the processes νn(·) andπ(·). A direct consequence

of Corollary 1.5 is as follows.

Corollary 2.5. For every natural n and m and every t ≥ 0, the following

inequality holds:

E
(
νn(t)+x

)m ≤ E
(
π(t)+x)m, (2.6)

where x is arbitrary for even m and x ≥ 0 for odd m.

In the following assertion which complements this inequality, the above-

mentioned convexity conditions need not be fulfilled.

Theorem 2.6. For every natural n and m and every t ≥ 0, the following

inequality holds:

∣∣E
(
νn(t)+x

)2m−1∣∣≤ E
(
π(t)+x)2m−1, (2.7)

where x ∈ [−t,0) is arbitrary.

Corollary 2.7. Let f(x) be an entire function on [0,∞), that is, an analytic

function which admits Taylor expansion at all points with a converging power

series on the whole positive half-line. Assume that, for a point x0 ≥ 0, the kth

derivative of this function at x0 is nonnegative for each k ≥ 2. Then, for every

t ≥ x0,

Ef
(
νn(t)

)≤ Ef
(
π(t)

)
. (2.8)

3. Proof of the results. First we formulate two important lemmas which

play a key role in proving the above results.

Lemma 3.1. In the i.i.d. case, under the above notations, the following rela-

tions hold:

Pois
(
n�

(
X1
))=�

(
Sπ(n)

)
, (3.1)

where the standard Poisson process π(·) is independent of {Xi},

�
(
Sn
)=�

(
S0
ν(n,p)

)
, Pois

(
n�

(
X1
))=�

(
S0
π(np)

)
, (3.2)

where p := Pr(X1 �= 0), �(ν(n,p)) = Bn,p is the binomial distribution with pa-

rameters n and p; the pair (ν(n,p),π(np)) does not depend on the sequence

{X0
i }.
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The relation (3.1) is well known. It immediately follows from the above-

mentioned definition of a generalized Poisson distribution: the probability law

Pois(µ)may be interpreted as the distribution of
∑
i≤πµ Yi, where {Yi} are i.i.d.

random variables with the common distribution µ(·)/µ(�) and πµ is a Pois-

sonian random variable with parameter µ(�), which is independent of the se-

quence {Yi}.
The equalities in (3.2), which are more convenient in studying accuracy of

Poisson approximation of the sums, are contained in various forms in many

papers (see, e.g., Khintchine [18, 19], Le Cam [21, 22], Borovkov [9], Borisov

[6, 7], and others). Actually, these relations also represent versions of the total

probability formula and are easily proven.

Taking into account the representations in Lemma 3.1, we can reduce the

problem to the simplest one-dimensional case when we estimate the analogous

moments of the binomial distribution introduced in Remark 1.3. However, in

this case, we can obtain sufficiently exact inequalities for moments of arbitrary

functions using the following lemma.

Lemma 3.2. For each p ∈ (0,1),

sup
n,j

Bn,p(j)
�
(
π(np)

)
(j)

≤ 1
1−p . (3.3)

Proof. For every nonnegative integer j ≤n, we have

P
(
ν(n,p)= j)

P
(
π(np)= j)
= n(n−1)···(n−j+1)

nj(1−p)j (1−p)nenp

= exp

{
n
(
p+ log(1−p))−j log(1−p)+

j−1∑
i=0

log
(

1− i
n

)}

≤ exp
{
− log(1−p)+n(p+ log(1−p))

−(j−1) log(1−p)+n
∫ (j−1)/n

0
log(1−x)dx

}

≤ exp
{
− log(1−p)−nHp

(
j−1
n

)}
,

(3.4)

where Hp(x)= −p+x+(1−x) log((1−x)/(1−p)). The following properties

of Hp are obvious:

Hp(1)= 1−p, Hp(p)= 0,
d
dx
Hp(p)= 0,

d2

dx2
Hp(x)= 1

1−x ,
(3.5)

which implies Hp(x)≥ 0 if x ≤ 1, that is, inequality (3.3) is proven.
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Remark 3.3. Inequality (3.3) is a part of a more general result in Borisov

and Ruzankin (see [8, Lemma 1, page 1663]). It is worth noting that this upper

bound is an estimate for the so-called Radon-Nikodym derivative of a binomial

distribution with respect to the accompanying Poisson law. This problem was

studied by a number of authors (Le Cam [21], Chen [10], Barbour et al. [2], and

others). In particular, under some additional restriction on n and p, a slightly

stronger estimate is contained in Le Cam [21]. However, in general, estimate

(3.3) cannot be essentially improved. Under some restrictions on n and p, a

lower bound for the left-hand side of (3.3) has the form (1−cp)−1, where c is

an absolute positive constant.

Corollary 3.4. Let g be an arbitrary function satisfying the condition

E|g(π(λ))| < ∞ for some λ. Then, for every n and p satisfying the condition

np ≤ λ, the following inequality holds:

E
∣∣g(ν(n,p))∣∣≤ eλ−np

1−p E
∣∣g(π(λ))∣∣. (3.6)

Moreover,

lim
n→∞,np→λ−0

Eg
(
ν(n,p)

)= Eg
(
π(λ)

)
. (3.7)

Proof. Inequality (3.6) follows from Lemma 3.2 and the simple estimate

sup
j

P
(
π(np)= j)

P
(
π(λ)= j) ≤ eλ−np. (3.8)

Relation (3.7) follows from the classical Poisson limit theorem and inequality

(3.6) which provides fulfillment of the uniform integrability condition. The

corollary is proven.

Remark 3.5. Inequality (1.10) in Theorem 1.10 immediately follows from

Corollary 3.4 and representations (3.2). In the case n = 1 in Lemma 3.2 there

exists a slightly stronger upper bound for the Radon-Nikodym derivative. It is

easy to see that, in this case, the right-hand side of (3.3) can be replaced by ep . In

the non-i.i.d. case, evaluation of the moment Ef(Sn) can be reduced to that for

a new function ofn independent Bernoulli random variables ν1(1,p), . . . ,νn(1,p)
(for details, see the proof of Theorem 1.1 below). In this case, the approximat-

ing moment is calculated by independent Poisson random variables π1(p), . . . ,
πn(p) with the same parameter p. Thus, the corresponding upper bound for

the Radon-Nikodym derivative (as well as the corresponding factor on the right-

hand side of (1.10)) equals exp(
∑
i≤npi). However, in the special case when

Sn =
∑
i≤nνi(1,p), there exist better upper bounds for this derivative. For ex-

ample, in this case we can replace the factor exp(
∑
i≤npi) by (1− p̃)−2, where

p̃ =max{pi : i≤n} (see Barbour et al. [2], Borisov and Ruzankin [8]).
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It is worth noting that, under the minimal moment condition above, we can-

not replace the one-sided double limit in (3.7) by the classical double limit as

well as the condition np ≤ λ in (3.6) cannot be omitted. For example, the func-

tion g(k)= (1∨(k−2))!λ−k satisfies the above-mentioned moment condition;

however, it is easy to prove the relation

lim sup
n→∞,np→λ

Eg
(
ν(n,p)

)=∞. (3.9)

Proof of Theorem 1.1. In the i.i.d. case, inequality (1.3) is a simple con-

sequence of relation (3.1) and the classical Jensen inequality

Ef
(
τµ
)= Eφ

(
π(n)

)≥φ(n)= Ef
(
Sn
)
. (3.10)

In order to prove inequality (1.3) in the non-i.i.d. case, we introduce the

sequence of i.i.d. random variables {πi : i≥ 1} having Poisson distribution with

parameter 1, which is independent of all the sequences of random variables

introduced in (1.2) (including the initial random variables). Then we can define

the random variable τµ in the following way:

τµ :=
n∑
m=1

Sm,πm, (3.11)

where Sm,k are defined in (1.2). The further reasoning is quite analogous to the

above. Put z1 :=∑nm=2Sm,πm . Using the above arguments, we have

Ef
(
τµ
)= EEz1φ1,z1

(
π1
)≥ EEz1φ1,z1(1)= Ef

(
X1+z1

)
, (3.12)

where the symbol Ez1 denotes the conditional expectation given z1. Now we

put z2 :=X1+
∑n
m=3Sm,πm . Then, repeating the same calculation, we obtain the

estimate

Ef
(
X1+z1

)= EEz2φ2,z2

(
π2
)≥ EEz2φ2,z2(1)= Ef

(
X1+X2+

n∑
m=3

Sm,πm

)
.

(3.13)

Continuing the calculations in this way, we finally obtain inequality (1.3).

Theorem 1.1 is proven.

Proof of Proposition 1.2. The first assertion is easily verified. Indeed,

by Corollary 1.5 and Lemma 3.1 (see (3.2)) we have

φ(k+1)−φ(k)= Eφ0(ν(k+1,p)
)−Eφ0(ν(k,p))

≤φ(k+2)−φ(k+1).
(3.14)

The analogous inequality holds for the functions φm,z(k).
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In order to prove the second assertion of this proposition, we consider the

subclass of random variables satisfying the conditions EX4
1 <∞, P(X1 = 0) �= 0,

and EX1 �= 0. Put f(x) := x4. Then

φ(k)=A4
k
(
EX1

)4+6A3
kEX

2
1

(
EX1

)2+3A2
k
(
EX2

1

)2+4A2
kEX1EX3

1+kEX4
1 , (3.15)

where Amk := k(k−1)···(k−m+1). The second derivative has the form

φ′′(k)=Ak2+Bk+C, (3.16)

where A := 12(EX1)4, B := 36EX2
1(EX

2
1−(EX1)2), and

C := 22
(
EX1

)4+6
(
EX2

1

)2+8EX1EX3
1 −36EX2

1

(
EX1

)2. (3.17)

Because of positivity ofA and B, the functionφ(k) in (3.15) is convex for C ≥ 0.

If C < 0 and at leastφ′′(2) < 0, then the functionφ(k) replaces concavity with

convexity. The same representations with the above comments hold for the

function φ0(k) (with the replacement of X1 by X0
1 and C by C0 in (3.15) and

(3.17)).

Consider the case in which the first moment of X0
1 is positive and the third

moment equals zero. It is clear that we can choose the distribution ofX0
1 so that

the constant C0 will be negative with its absolute value large enough. In this

case the function φ0(k) will be of the mixed type. For example, we can define

this distribution as follows: given a positive constant K, we put X0
1 = K with

probability 8/9 and X0
1 = −2K with probability 1/8. In this case, EX0

1 = 6K/9,

E(X0
1)2 = 4K/9, and C0 <−K4.

Since EXk1 = pE(X0
1)k for each integer k, given the above-mentioned distri-

bution of X0
1 , we can consider p as a free parameter. Substituting this repre-

sentation into (3.17) we conclude that, for sufficiently small p (say, p ≤ 0.1),

the constant C will be positive. Proposition 1.2 is proven.

Proof of Theorem 1.4. The first assertion is trivial because, under con-

dition (1), from Taylor’s formula we have

f(x+h)−f(x)=
∫ 1

0
f ′(x+th)[h]dt

≤
∫ 1

0
f ′(x+z+th)[h]dt

= f(x+z+h)−f(x+z)

(3.18)

for every x ∈ � and z,h∈⋃i≤n suppXi, that is, inequality (1.5) is fulfilled.

To prove the second assertion we need only to prove this in the i.i.d. case

because, using the arguments in the proof of Theorem 1.1 above, we can reduce

the problem to the i.i.d. case. It remains to observe that, under condition (2)

and given z, the function f(x+z) has convex second derivative with respect to

x. So, we prove the assertion in the i.i.d. case. Taking into account continuity
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in x of the function f ′′(x)[h,h] for any fixed h and using Taylor’s formula,

we have

f
(
Sk+1

)−f (Sk)= f ′(Sk)[Xk+1
]+

∫ 1

0
(1−t)f ′′(Sk+tXk+1

)[
Xk+1,Xk+1

]
dt.

(3.19)

First we average both sides of (3.19) with respect to the distribution of Xk+1

and use the fact that, for any centered (in Bochner sense) random variable X
and an arbitrary linear continuous functional l(·), the equality El(X)= 0 holds.

Averaging both sides of this identity with respect to the other distributions, we

then obtain (with more convenient representation of the remainder in (3.19))

the equality

φ(k+1)−φ(k)= 1
2

Ef ′′
(
Sk+ζXk+1

)[
Xk+1,Xk+1

]
, (3.20)

where ζ is a random variable with the density 2(1− t) on the unit interval,

which is defined on the main probability space and independent of the se-

quence {Xk} (we may assume here that this space is rich enough). It is worth

noting that, because of integrability of the left-hand side of (3.19), the expecta-

tion on the right-hand side of (3.20) is well defined due to Fubini’s theorem. In

the i.i.d. case, by the classical Jensen inequality (for the conditional expectation

Eζ,Xk+2 ) we finally obtain the inequality we need:

φ(k+1)−φ(k)

= 1
2

EEζ,Xk+2f
′′(Sk+ζXk+2

)[
Xk+2,Xk+2

]

≤ 1
2

Ef ′′
(
Sk+1+ζXk+2

)[
Xk+2,Xk+2

]
=φ(k+2)−φ(k+1).

(3.21)

The proof of convexity of φ0(k) and φ0
m,z(k) is the same because, for the

centered initial summands, EX0
k = 0. The theorem is proven.

Proof of Theorem 1.8. Put n> µ(�) and consider the independent ran-

dom variables Xk ≡Xk(n) with the following common distribution:

P
(
A\{0})= µ(A)

n
, P

({0})= 1− µ(�)
n
. (3.22)

Then the corresponding random variables X0
i have the common distribution

P0(A)= µ(A)/µ(�). Therefore, for each n, by Proposition 1.2 we have the cor-

responding inequality for the moments under study. It is easy to see that, in

this case, the function φ0(k)≡φµ(k) does not depend on n and we can apply
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Lemma 3.1 and relation (3.7). Thus, we have

lim
n→∞Ef

(
Sn
)= lim

n→∞Eφµ
(
ν(n,p)

)= Eφµ
(
π(λ)

)= Ef
(
τµ
)
, (3.23)

where p = µ(�)/n and λ= µ(�). The theorem is proven.

Proof of Theorem 1.10. The claim follows immediately from Lemmas

3.1 and 3.2 and Remark 3.5.

Proof of Theorem 2.1. Because of the monotonicity and continuity con-

ditions, it is sufficient to prove the assertion for any finite-dimensional pro-

jections ν(m)n and π(m) of the processes under consideration. To this end, we

consider an arbitrary nonnegative function ψ(x1, . . . ,xk) which is convex and

increasing in every coordinate xi. We will study the moment Eψ(νn(t1), . . . ,
νn(tk)), where ti ∈ [0,n) are arbitrary points and ti < ti+1 for every i < k. We

will also assume that the corresponding Poisson moment exists.

The following so-called Markov property of νn(·) is well known: given the

quantity νn(t) (the number of the sample points to the left of t/n), two new

samples constituted by the points to the left and to the right of t/n, respec-

tively, are independent and distributed as samples (of the corresponding sizes)

from the uniform distributions on [0, t/n] and [t/n,1], respectively. In other

words, given νn(t1), the increment νn(t2)− νn(t1) coincides in distribution

with ν∗N((t2− t1)N/n), where N := n−νn(t1), and the process ν∗n (·) is an in-

dependent copy of νn(·). Thus, taking into account Corollary 1.5 and convexity

and monotonicity of the function ψ1(x) := Eψ(νn(t1), . . . ,νn(tk−1),νn(tk−1)+
x), we have

Eψ
(
νn
(
t1
)
, . . . ,νn

(
tk
))= EENψ1

(
ν∗N
((
tk−tk−1

)
N/n

))
≤ EENψ1

(
π
((
tk−tk−1

)
N/n

))
≤ Eψ1

(
π
(
tk
)−π(tk−1

))
,

(3.24)

where π(·) is a Poisson process independent of νn(·).
Therefore, we reduced the problem to evaluating the moment of a function

of the analogous (k−1)-dimensional projection νn(t1), . . . ,νn(tk−1). It remains

to observe that the function ψ2(x1, . . . ,xk−1) := Eψ(x1, . . . ,xk−1,xk−1+π(tk)−
π(tk−1)) is convex and monotone too. In other words, to prove the assertion

we may use induction on k. The theorem is proven.

Proof of Theorem 2.6. It is clear that, under the above notations, we deal

with the random variable ν(n,p) having the binomial distribution Bn,p . First

we consider the case n= 1.

Lemma 3.6. For every natural m, the function gm(t) := E(π(t)− t)m is a

polynomial on [0,∞)with nonnegative coefficients and the following inequalities
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hold:

E
(
ν(1,p)+x)2m−1 ≤ E

(
π(p)+x)2m−1

(3.25)

if x ≥−1, and

∣∣E
(
ν(1,p)+x)2m−1∣∣≤ E

(
π(p)+x)2m−1

(3.26)

if x ≥−p.

Proof. The properties of the functions gm(t) immediately follow from the

relation

gm(t)=
∞∑
k=0

(k−t)m−1(k−t) t
k

k!
e−t

=
∞∑
k=1

(k−t)m−1 tk

(k−1)!
e−t−tgm−1

= tE(π(t)−t+1
)m−1−tgm−1

= t
m−2∑
k=0

(m−1)!
k!(m−k−1)!

gk(t),

(3.27)

where m≥ 2, g0(t)≡ 1, and g1(t)≡ 0.

In order to prove (3.25) we first study the case x =−1. We have

E
(
ν(1,p)−1

)2m−1 = p−1,

E
(
π(p)−1

)2m−1 =−e−p+
∞∑
k=2

(k−1)2m−1

k!
pke−p

>−e−p+ 1
2

∞∑
k=2

(k−1)2m−3

(k−2)!
pke−p

=−e−p+ p
2

2
E
(
1+π(p))2m−3

>p−1− p
2

2
+ p

2

2
E
(
1+π(p))2m−3

>p−1,

(3.28)

wherem≥ 2 (in the casem= 1 the assertion is trivial). Inequality (3.25) follows

from (3.28) and the analogous inequality for the corresponding derivatives

with respect to x (see Corollary 2.5).

To prove (3.26) we need to deduce only the inequality

E
(
p−ν(1,p))2m−1 ≤ E

(
π(p)−p)2m−1. (3.29)



MOMENT INEQUALITIES CONNECTED WITH ACCOMPANYING . . . 2785

First we assume that p ≤ 1/2. Then we have

E
(
p−ν(1,p))2m−1 = p(1−p)(p2m−2−(1−p)2m−2)≤ 0, (3.30)

and (3.29) holds because of nonnegativity of the functions gm(t).
In the case p > 1/2 we put ν̃(1, p̃) := 1−ν(1,p), where p̃ := 1−p. By (3.29)

we then obtain

E
(
p−ν(1,p))2m−1 = E

(
ν̃(1, p̃)− p̃)2m−1 ≤ g2m−1(p̃)≤ g2m−1(p) (3.31)

due to monotonicity of the functions gm(t). The lemma is proven.

Since ν(n,p) coincides in distribution with a sum of independent copies of

the random variables ν(n−1,p) and ν(1,p), the further proof of the theorem

can be continued by induction on n (using (3.26) and the binomial formula).

The theorem is proven.
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