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Let E be a Banach lattice and let M be a norm-closed and Dedekind σ -complete
ideal of E. If E contains a lattice-isometric copy of �∞, then E/M contains such a
copy as well, or M contains a lattice copy of �∞. This is one of the consequences
of more general results presented in this paper.
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1. Introduction. Let E be a locally solid linear lattice (Riesz space), for ex-

ample, a Banach lattice, let M be a closed ideal of E, and let Γ be an infi-

nite set. In [7, Theorem 1] it is proved that if E contains a lattice copy U
of �∞ and M is Dedekind σ -complete, then E/M or M contains such a copy

as well. (Here and in what follows the term lattice copy means both lattice

and topological copy, and lattice-isometric copy means both lattice and iso-

metric copy.) This is a lattice-topological version of the classical by now the-

orem of Drewnowski and Roberts which asserts that the noncontainment of

�∞ is a three-space property in the class of Banach spaces (see [3, Theorem

3.2.f] and [4]). A natural question to ask is what happens if E is a Banach lat-

tice and U is a lattice-isometric copy of �∞, that is, can we then expect that

E/M or M contains a lattice-isometric copy of �∞? A partial positive answer

to this question, even for �∞(Γ) instead of �∞, is given in Theorem 1.1 and

Corollary 1.2.

For the basic notions and results regarding Banach lattices we refer the

reader to the monographs [2, 6]. For the convenience of the reader we recall

some definitions. The lattice E is called Dedekind α-complete, where α is an

infinite cardinal number, if every subset V of E with card(V)≤α and bounded

from above has a supremum in E; if α= ℵ0 then this notion coincides with the

notion of Dedekind σ -completeness, and E is Dedekind complete provided

that it is Dedekind α-complete for every α (cf. [1]). If E = (E,‖·‖) is a Banach

lattice, then Ea denotes the largest ideal in E such that the norm restricted

to Ea is order continuous: Ea = {x ∈ E : |x| ≥ xs ↓ 0 implies ‖xs‖ → 0}; for

example, if E = �∞(Γ), then Ea = c0(Γ). We have that Ea is both norm-closed in

E and Dedekind complete, and it does not contain any of the lattice copy of

�∞ (see, e.g., [6, Proposition 2.4.10 and Corollary 2.4.3]). If M is an ideal of E,
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then Q denotes the natural quotient mapping from E onto the lattice E/M ; we

have that Q is a lattice homomorphism, that is, |Q(x)| =Q(|x|) for all x ∈ E.

Our main result reads as follows.

Theorem 1.1. Let Γ denote a set with card(Γ) ≥ α ≥ ℵ0. Let E be a Banach

lattice and let M be a norm-closed and Dedekind α-complete ideal of E. If E
contains a lattice-isometric copy of �∞(Γ), then the following alternative holds:

(i) E/M contains such a copy as well, or

(ii) M contains a lattice copy of �∞(A), where card(A)=α.

Since Dedekind α-completeness is inherited by order ideals, the following

corollary is an immediate consequence of the theorem.

Corollary 1.2. Let M be a norm-closed ideal of a Dedekind complete

(resp., Dedekind σ -complete) Banach lattice E. If E contains a lattice-isometric

copy of �∞(Γ), then E/M contains such a copy as well or M contains a lattice

copy of �∞(Γ) (resp., of �∞).

Since the ideal M = Ea contains no lattice copy of �∞, from Corollary 1.2 we

immediately obtain the following corollary.

Corollary 1.3. Let E be a Banach lattice. If E contains a lattice-isometric

copy of �∞(Γ), then E/Ea contains such a copy as well.

In particular, the quotient Banach lattice �∞(Γ)/c0(Γ) contains a lattice-

isometric copy of �∞(Γ).

Corollaries 1.2 and 1.3 apply for Orlicz spaces endowed with the Luxemburg

norm (which form a nontrivial sample class of Dedekind complete Banach lat-

tices, and which contain lattice-isometric copies of �∞ whenever their norms

are not order continuous); one can obtain similar results for Musielak-Orlicz

spaces, Lorentz-Orlicz spaces, and Calderón-Lozanovsky spaces (see [5, page

526]).

2. Proof of Theorem 1.1. The symbol eγ denotes the γth unit vector of

�∞(Γ), and if B ⊂ Γ then eB denotes the element supγ∈B eγ . The proof of the

theorem depends essentially on the following lemma.

Lemma 2.1. Let A be a set with cardA = α ≥ ℵ0, and let M be a Dedekind

α-complete and norm-closed ideal of a normed lattice E. If there exist u ∈ E+
and a set {ua : a∈A} of pairwise disjoint elements of E+ such that

(a) ua ≤u for all a∈A,

(b) bA := infa∈A‖ua‖> ‖Qu‖E/M ,

then M contains a lattice copy of �∞(A).

Proof. We partially follow an idea of the proof of [7, Proposition 1(b)]. By

(b), there exists v ∈M such that

‖u−v‖< bA. (2.1)
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From the inequality |u−v| ≥ |u−|v|| we may assume that v ≥ 0, and from (a)

and (2.1) we obtain that v 
= 0. For every a∈A, we define va := v∧ua (notice

that va ∈M for all a∈A sinceM is an ideal). From the equality ua =ua∧u for

all a ∈ A, the triangle inequality, and from the inequality |x1∧y−x2∧y| ≤
|x1−x2|, which holds in every linear lattice (see [2, Theorem 1.6]), we obtain

∥
∥va

∥
∥≥ ∥∥ua

∥
∥−‖u−v‖ ≥ bA−‖u−v‖. (2.2)

By (2.1), the number c := bA−‖u−v‖ is positive, thus from (2.2) we obtain that

‖va‖ ≥ c for all a ∈ A. Since the elements (va)a∈A are pairwise disjoint and

dominated byv , and sinceM is Dedekindα-complete, we can define an additive

function R0 from the cone �∞(A)+ into M by the rule R0(ξ) := supa∈Aξava,

where ξ = (ξa)a∈A, with

ξava ≤ R0(ξ)≤ ‖ξ‖�∞(A)v ∀a∈A. (2.3)

By [2, Theorem 1], the formula R(ξ) := R0(ξ+)−R0(ξ−), ξ ∈ �∞(A), defines a

linear (positive) mapping from �∞(A) into M . Moreover, since for every ξ ∈
�∞(A) the elements R0(ξ+) and R0(ξ−) are disjoint, we have |R(ξ)| = R(|ξ|),
that is, R is a lattice homomorphism; in particular, the range of R is a linear

sublattice ofM (see [2, page 88]). Finally, from (2.3) we obtain that c‖ξ‖�∞(A) ≤
‖R(ξ)‖ ≤ ‖ξ‖�∞(A)‖v‖ for all ξ ∈ �∞(A), and thus (see [2, page 89]) R is a

lattice-topological isomorphism.

Proof of Theorem 1.1. Let Γ =⋃ω∈Ω Γω, where card(Γω)= α for all ω ∈
Ω, card(Ω) = card(Γ), and Γω1 ∩ Γω2 = ∅ for distinct ω1,ω2 ∈ Ω. Let T be a

lattice-isometric embedding of �∞(Γ) into E. We will show that the opposite of

(ii) implies (i).

Put uω := TeΓω and uωγ := Teγ , where γ ∈ Γω. We have that, for everyω∈Ω,

the element uω and the set {uωγ : γ ∈ Γω} fulfil Lemma 2.1(a), and, by hypoth-

esis, the ideal M contains no copy of �∞(Γω). Thus, from the lemma we obtain

that

∥
∥Quω

∥
∥= 1 ∀ω∈Ω. (2.4)

Put W := {x ∈ �∞(Γ) : x|Γω = const}, and let H denote the linear-lattice isom-

etry from �∞(Ω) onto W of the form H(fω) = eΓω , ω ∈ Ω, where fω is the

ωth unit vector of �∞(Ω). We claim that the quotient mappingQ : E→ E/M re-

stricted to T(W) is an isometry (and hence, sinceQ is a lattice homomorphism,

it is a lattice isometry). To this end, let v = supω∈Ωλωuω, where (λω)ω∈Ω ∈
�∞(Ω)+ and the sup is taken in the lattice T(W). We obviously have v =
T(supω∈ΩλωeΓω), whence ‖Q(v)‖ ≤ ‖v‖ = ‖supω∈ΩλωeΓω‖ = supω∈Ωλω. On

the other hand, we have that v ≥ λωuω for all ω∈Ω, and by (2.4), we obtain
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‖Q(v)‖ ≥ supω∈Ωλω. Finally, ‖Q(v)‖ = ‖v‖ for all positive v , and hence (since

Q is a lattice homomorphism) we obtain ‖Q(v)‖ = ‖|Q(v)|‖ = ‖Q(|v|)‖ =
‖|v|‖ = ‖v‖, as claimed. Since T , H, and Q|T(W) are lattice isometries, the op-

erator QTH is a lattice isometry from �∞(Ω) into E/M , and since card(Ω) =
card(Γ), the proof is complete.

We want to point out that Lemma 2.1 can also be used to prove the following

generalization, to the Banach lattice case, of the main result of [7] quoted in the

introduction. Under the same assumptions on E,M , Γ , and α as in the theorem,

let T : �∞(Γ)→ E be a lattice-topological isomorphism. We define the number

b := inf{‖Q(TeA)‖E/M : A ⊂ Γ and cardA = α}. Then E/M contains a lattice

copy of �∞(Γ) (whenever b > 0; then we mimic the above part of the proof

of the theorem with inequality ‖Quω‖ ≥ b instead of (2.4)), or M contains a

lattice copy of �∞(A) (whenever b = 0; then we directly apply the lemma).
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