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We consider an inverse rearrangement semilinear partial differential equation in
a 2-dimensional ball and show that it has a unique maximizing energy solution.
The solution represents a confined steady flow containing a vortex and passing
over a seamount. Our approach is based on a rearrangement variational principle
extensively developed by G. R. Burton.
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1. Introduction. This paper is concerned with the following problem in a

bounded domain Ω:

−∆u=φ(u)+h in Ω,

u= 0 on ∂Ω,

u > 0, −∆u∈�+h,
(1.1)

whereΩ is some bounded domain inR2. In (1.1), the nonlinearity φ is unknown,

and � is a family of functions which are rearrangements of a prescribed func-

tion, hence problem (1.1) is named an inverse rearrangement semilinear elliptic

equation. Therefore, by a solution for (1.1) we mean a pair (u,φ) which satis-

fies all conditions (in some sense) of (1.1). Here we are concerned with special

types of solutions for (1.1); namely, the energy maximizing solutions. To state

the definition of such solutions, we first need some preparations.

Henceforth p is a fixed number in (2,∞) and q is its conjugate exponent, so

1/p+1/q = 1. The so-called height function h is some nonnegative function

in Lp(Ω). We let K : Lp(Ω) → H1
0(Ω) denote the standard inverse of −∆ with

Dirichlet homogeneous boundary conditions in Ω. We recall that K is continu-

ous and positive; that is,

∫
Ω
ζKζ > 0 ∀ζ ∈ Lp(Ω). (1.2)

Finally note that K is symmetric :

∫
Ω
ζKζ′ =

∫
Ω
ζ′Kζ ∀ζ,ζ′ ∈ Lp(Ω). (1.3)
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Now we can set up the energy functional associated with (1.1). We define Ψ :

Lp(Ω)→∞ as follows:

Ψ(ζ)= 1
2

∫
Ω
ζKζ+

∫
Ω
ηζ, (1.4)

where η=Kh. Next we define the variational problem

sup
ζ∈�

Ψ(ζ), (1.5)

where � denotes the set of rearrangements of some nonnegative function ζ0 ∈
Lp(Ω). We recall that ζ is a rearrangement of ζ0 whenever the sets

{
x ∈Ω : ζ(x)≥α}, {

x ∈Ω : ζ0(x)≥α
}

(1.6)

have the same Lebesgue measures for every positive α. Note that all members

ζ ∈� satisfy

‖ζ‖p =
∥∥ζ0

∥∥
p, (1.7)

where ‖ · ‖p denotes the usual norm in Lp(Ω). The solution set for (1.5) is

denoted Σ.

Definition 1.1. The pair (u,φ) is called a maximizing energy solution of

(1.1) whenever the following conditions are satisfied:

(i) u∈K(Σ)+h,

(ii) (u,φ) is a solution of (1.1).

In (i) we have

K(Σ)= {Kζ : ζ ∈ Σ}. (1.8)

The main result of this paper is the following theorem.

Theorem 1.2. If Ω is a ball centered at the origin, then there exists a unique

u and there exists an increasing function φ such that (u,φ) is a maximizing

energy solution for (1.1).

We end this section with some history of problem (1.1). This problem was

first considered in an unbounded domain, precisely in the whole of R2, by

Emamizadeh and Nycander [7]. Later Emamizadeh and Bahrami [6] considered

the problem in the half-plane. In the case of unbounded domain, we usually

face the lack of compactness which causes unavailability of the direct method

in the analysis. In the present situation, we do not need to worry about the ex-

istence of a solution since this will readily be provided using results of Burton

[2] about maximization of convex functionals over the sets of rearrangements.

However, the point here is the uniqueness that we usually do not obtain when

dealing with unbounded domains. The reader could also be referred to [3, 4, 5]

for similar problems in unbounded domains.
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2. Preliminary results. In this section, we state some lemmas which will be

used in the proof of Theorem 1.2.

Lemma 2.1. Let Φ : Lp(B)→∞ be strictly convex, weakly sequentially contin-

uous, and Gateaux differentiable. Then the variational problem

sup
ζ∈�

Φ(ζ) (2.1)

is solvable. Moreover, if ζ̂ ∈� is any such solution, then

ζ̂ =φ◦Φ′(ζ̂) (2.2)

for some increasing function φ unknown a priori.

If u ∈ H1
0(Rn) is nonnegative, u∗ will denote the essentially unique spher-

ically symmetric radially decreasing rearrangement of u; then u∗ ∈ H1
0(Rn)

also, and the inequality
∫
Rn

∣∣∇u∗∣∣2 ≤
∫
Rn
|∇u|2 (2.3)

is standard. The case of equality has been studied by Brothers and Ziemer [1];

they proved results from which the following lemma can be deduced.

Lemma 2.2. Let u∈H1
0(Rn) be nonnegative and have compact support, and

let M = esssupu (which may be infinite). Suppose that
∫
Rn

∣∣∇u∗∣∣2 =
∫
Rn
|∇u|2. (2.4)

Then,

(1) for 0 ≤ α < M , u−1(α,∞) is a translate of the ball (u∗)−1(α,∞), apart

from a set of measure zero;

(2) if additionally

{
x ∈Rn :∇u∗(x)= 0, 0<u∗(x) <M

}
(2.5)

is a set of zero measure, then u is a translate of u∗.

The following lemma is an immediate consequence of [1, Lemma 2.3(v) and

the succeeding remark].

Lemma 2.3. Let u∈H1
0(Rn) be nonnegative and M = esssupu. If

{
x ∈Rn :∇u(x)= 0, 0<u(x) <M

}
(2.6)

has zero measure, then

{
x ∈Rn :∇u∗(x)= 0, 0<u∗(x) <M

}
(2.7)

also has zero measure.
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3. Proof of the theorem. We begin by considering the solvability of (1.5).

Indeed, using elliptic regularity theory, it is clear that K : Lp(B)→W 2,p(B) is a

continuous linear operator. Since W 2,p(B) is compactly embedded into C1(B),
it follows that K : Lp(B) → Lq(B) is a linear compact operator. Therefore, Ψ
turns to be a weakly sequentially continuous functional. Moreover, since K is

positive and symmetric, it follows that Ψ is also strictly convex. The Gateaux

differentiability of Ψ is straightforward; and it is easy to see that the derivative

of Ψ at v can be identified with Kv+η. From all this we can see that Lemma 2.1

is applicable. So (1.5) is solvable, and if ζ̂ is any solution of (1.5), then

ζ̂ =φ(Kζ̂+η), (3.1)

almost everywhere in B, for an increasing function φ.

We set H1
0(B) ≡ �, and the norm on � is denoted ‖u‖ = (∫B |∇u|2)1/2. We

define a parametrized convex functional � by

�c(u)=



1
2
‖u‖−

∫
B
hu+c, u∈�,

∞, u∈ Lq(B)\�,
(3.2)

where c is a real parameter. We now consider the conjugate convex functional

�∗
c of �c defined by

�∗
c (v)= sup

u∈Lq(B)

(∫
B
uv−�c(u)

)
, v ∈ Lp(B). (3.3)

Recalling the variational setup for K, it is easy to obtain

�∗
c (v)=

1
2

∫
B
(v+h)K(v+h)−c, (3.4)

from which, by setting c = 1/2
∫
B hη, and from the symmetry property of K we

infer that

�∗
c = Ψ . (3.5)

We fix a nonnegative function v ∈ Lp(B). Then the supremum in (3.3) is at-

tained at u≡Kv+η. Therefore, from (3.3), we obtain

Ψ(v)+�c(u)=
∫
B
uv. (3.6)

Again, from (3.3), we infer that

Ψ
(
v∗
)+�c

(
u∗
)≥

∫
B
u∗v∗. (3.7)

So from (3.6), (3.7), and a standard rearrangement inequality, it follows that

Ψ
(
v∗
)+�c

(
u∗
)≥ Ψ(v)+�c(u). (3.8)
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At this stage, we make another assumption; namely, we suppose that v ∈ Σ.

Since (1.5) is solvable, Σ is not empty. Thus, from (3.8), we infer that

�c
(
u∗
)≥�c(u). (3.9)

Therefore,

1
2

∥∥u∗∥∥2−
∫
B
hu∗ ≥ 1

2
‖u‖2−

∫
B
hu. (3.10)

Since
∫
B hu ≤

∫
B hu∗, it follows from (3.10) that ‖u∗‖ ≥ ‖u‖. So, in view of

(2.3), we deduce that ‖u‖ = ‖u∗‖.
Claim. We have u=u∗.

Proof of the claim. From the maximum principle and elliptic regularity

theory, it follows that u is a positive function in C1(B). We fix x1 ∈ B. The set

S ≡ {x ∈ B :u(x)≥u(x1
)}=u−1([u(x1

)
,∞)) (3.11)

is a ball according to Lemma 2.1. If x ∈ intS, the interior of S, then, by the

maximum principle, u(x) > u(x1); thus x1 ∈ ∂S, the boundary of S. Now we

can apply the Hopf boundary point lemma to deduce that ∂u/∂ν(x1) < 0,

where ν is the unit normal to ∂S at x1 pointing outward. Therefore, the set

{
x ∈ B :∇u(x)= 0, 0<u(x) <M

}
, (3.12)

where M =maxΩu, is empty, so its measure is zero. Hence, from Lemma 2.3,

the set {x ∈ B :∇u∗(x)= 0, 0<u∗(x) <M} also has zero measure. Therefore,

by Lemma 2.2, it follows that u is a translate of u∗. However, since u is a

positive function, we infer that u=u∗ as desired. This completes the proof of

the claim.

Note that, from (3.1), we have

v =φ(u), (3.13)

almost everywhere in B, for some increasing functionφ. So v is also spherically

symmetric and radially decreasing; hence, v = v∗ = ζ∗0 . Since −∆u= v+h, it

follows that

−∆u=φ(u)+h, (3.14)

which is the differential equation in (1.1). It is easy to check that (u,φ) satisfies

all other conditions in (1.1), so (u,φ) is a maximizing energy solution of (1.1)

as desired. The function u is obviously unique; in fact,

u=Kζ∗0 . (3.15)

Thus the proof of the theorem is completed.
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