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A variational analysis of dynamics of soliton solution of coupled nonlinear
Schrödinger equations with oscillating terms is made, considering a birefringent
fiber with a third-order nonlinearity in the anomalous dispersion frequency region.
This theoretical model predicts optical soliton oscillations in lossy fibers.
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1. Introduction. The propagation of bright solitons in birefringent optical

fibers has been the subject of intensive theoretical and experimental investiga-

tions during the past two decades. The solitons are nonlinear pulses in fibers

when the nonlinearity induced by the optical intensity balances the dispersion

of the fiber. Studies of bright soliton propagation in fibers are demanding with

reference to the development of soliton-based optical communication, gener-

ation of short pulses, and soliton lasers. The idea of exploiting these solitons

as natural bits to transmit optical data motivates important research efforts

towards the development of models [2, 3, 5, 6, 7, 8, 9] describing solitary wave

propagation in optical fibers under different conditions. In lossless, one would

not expect solitons to distort in either the time or frequency domains regard-

less of the distance over which they propagate. This supposition is, however,

not true in the case of lossy fibers. In this paper, we follow an adiabatic ap-

proach using a variational technique [1] to study dynamics of bright solitons

generated from semiconductor lasers in a lossy birefringent fiber.

2. Variational approach to coupled nonlinear Schrödinger (CNLS) equa-

tions. The birefringence in fibers arises from the geometric and material con-

tributions [4]. The geometric contribution comes from the ellipticity of the core

of the fiber which breaks the cylindrical symmetry. The material contribution

comes from the strain within the material forming the core and cladding of

the fiber. The birefringence in fibers gives rise to two orthogonal polarization

modes that need to be considered. The dynamics of optical solitons in a lossy

birefringent fiber is important from a theoretical point of view as well as for
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the applications, and it is governed by the following CNLS equations [5, 6, 7]:
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where

B = 2
(
1+εsin2θ

)
2+εcos2θ

, A= εcos2θ
2+εcos2θ

, D = ε
2

tanθ with θ = 35◦; (2.2)

u and v are the normalized amplitudes of the fast and slow modes, respec-

tively; t is the time coordinate in a frame moving with the average group ve-

locity of the two modes measured in units of the modulational wavelength; z
is the distance along the propagation direction; δ is the normalized birefrin-

gence; ε denotes the relative strength of the cross-phase modulation; R is the

wave vector mismatch due to modal birefringence of the fiber; and γ denotes

the losses in the fiber. The oscillating terms in (2.1) arise from nonlinear po-

larization and cannot be taken off in the case of fibers with low birefringence

as it causes an instability in which the slow moving partial pulse transfers en-

ergy to the fast moving partial pulse [7]. Using the transformations (see [5, 6])

p = √B/2(ueiαz+ve−iαz) and q = √B/2(ueiαz−ve−iαz), we can write the CNLS

equations (2.1) as

i
(
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)+ 1
2
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(
f |p|2+h|q|2)+gp∗q2+iγp = 0,

i
(
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2
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(
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(2.3)

where α = (1/4)Rδ, f = (1/2B)(1+A+B+4D), f ′ = (1/2B)(1+A+B−4D),
h= (1/B)(1−A), and g = (1/2B)(1+A−B).

Since losses in the fiber lead to exponential decrease of soliton amplitude,

we use the transformations p → p′e−γz and q → q′e−γz to write (2.3) in the

form
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The spatiotemporal evolution of the wave amplitudes in the case of bright

solitons is governed by the Lagrangian density
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−∞

[
i
2

(
P ′zP ′∗−p′∗z p′

)+ i
2

(
q′zq′∗−q′∗z q′

)+ iδ
2

(
p′tq′∗−q′∗t p′

)

+ iδ
2

(
q′tp′∗−p′∗t q′

)+α(p′∗q′ +p′q′∗)+h|p′|2|q′|2e−2γz

+ 1
2

(
f |p′|4e−2γz−∣∣p′t∣∣2

)
+ 1

2

(
f ′|q′|4e−2γz−∣∣q′t∣∣2

)

+ 1
2
g
(
p′2q′∗2+q′2p′∗2)e−2γz

]
dt,

(2.5)

where p′z = ∂p′/∂z, p′t = ∂p′/∂t, and so on.

The bright soliton solutions of (2.4) using a variational technique is based

upon assuming the trial function [6]

[
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(2.6)

that describes the temporal form of the soliton pulses. The evolution parame-

ters ηr , ζr , Vr , Dr (r = 1,2 correspond to p′ and q′ solitons, respectively), and

C represent amplitude, central position, velocity of soliton’s central position

as it propagates along the fibre, phase, and initial frequency chirp of the soli-

ton, respectively. We substitute (2.6) into the Lagrangian density (2.5) and use

Euler-Lagrange equations to obtain the following system of coupled ordinary

differential equations (ODEs) for the evolution of soliton parameters:
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We evaluate the above integrals for nearly equal pulse amplitudes η1 � η2 � η,

relative phaseφ=D2−D1, relative distance between two polarization maxima

ρ = x2−x1, and V1 � V2� V . The relative parameters η12, V12,φ, and ρ defined

for p′ and q′ solitons are obtained as follows. Writing η12 = η1−η2 and using

(2.9), we get
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Similarly, writing V12 = V1−V2 and using (2.7), we get
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Also, from ρ = 2η(ζ1−ζ2) and by using (2.8), (2.13), and (2.14), we obtain
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The two solitons with opposite phases form a bound state provided that

V
η
ρ+φ= Φ =±π. (2.16)

Thus, we write (2.15) as

d2ρ
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= 16
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αη2ρ− 256
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15
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where a= (256/15)η4(h+g) and b = (16/3)αη2.

Equation (2.18) can also be written as
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Equation (2.19) is a Bessel equation. Its general solution is given by
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√
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γ
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√
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γ
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Considering γ to be small, we use asymptotic expansion of Bessel function to

write (2.20) as
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and the frequency ω of relative oscillations of soliton positions is given by

ω2 = a= 256
15

η4
(

2
B
−1
)
. (2.22)

3. Conclusion. In this paper, we have considered CNLS equations with os-

cillating terms to develop a theoretical model of a birefringent optical fiber.

This theoretical model demonstrates polarized bright soliton dynamics in a

lossy birefringent fiber. We used a variational approach to obtain frequency of

relative oscillations of soliton positions by taking into account the interaction

between different polarizations in a lossy birefringent optical fiber.
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