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We characterize the weak almost periodicity of a vector-valued, bounded, con-
tinuous function. We show that if the range of the function is relatively weakly
compact, then the relative weak compactness of its right orbit is equivalent to
that of its left orbit. At the same time, we give the function some other equivalent
properties.
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1. Introduction. Let S be a semitopological semigroup, let � be a Banach

space, and let �(S,�) be the space of bounded continuous functions from S
to � with supremum norm. Let f ∈ �(S,�). The right (left) translate of f by

s ∈ S is the function RSf (LSf ) such that RSf(t)= f(ts) and (LSf(t)= f(st))
for all t ∈ S. The function f is said to be weakly almost periodic if its right

orbit RSf = {RSf : s ∈ S} is relatively weakly compact in �(S,�). We denote

by ���(S,�) all such functions.

In the case that � = C, the complex number field, we will omit � from our

notations and write, for example, �(S) for �(S,C).
Recently, some authors have investigated ���(S,�) and exploited its ap-

plications in many areas [1, 2, 4, 5, 6, 7, 8, 9]. However, some questions remain

unsolved. For example, [2, Theorems 4.2.3 and 4.2.6] give a number of equiva-

lent properties for a function f ∈�(S) to be weakly almost periodic. It is natu-

ral to ask if the similar equivalent properties are true for a function in �(S,�).
In this paper, we investigate these problems and give positive answers.

It is shown in [4, Proposition 2.8] that the equivalence of relative weak com-

pactness for RSf and the left orbit LSf = {LSf : s ∈ S} holds if S admits an

identity and the range f(S) is relative compact in �. We will give an example at

the end of the paper to show that the assumptions both on S and on f(S) are

not essential to get the equivalence. We will show the equivalence under the

assumption that f(S) is relatively weakly compact. At the same time, we char-

acterize a vector-valued weakly almost periodic function by giving it as many

equivalent properties as a scalar-valued weakly almost periodic function has.

We will not assume that a semitopological semigroup S admits an identity. In

fact, if S has an identity, we can drop the condition f(S), being either relative

norm compact or relatively weakly compact (see Remark 3.6(b)).
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2. Vector-valued means. To show the main results of the paper in Section 3,

we need some facts of vector-valued means. Unless otherwise mentioned, all

the results of this section come from [8, Sections 2 and 3].

Let �,� be two normed linear spaces and let �∗ be the dual space of �. Let

�(�,�) be the space of bounded linear operators from � to �. With the norm

topology, �(�,�) is a Banach space. We can also furnish �(�,�) with the fol-

lowing two topologies, both of them make �(�,�) a locally convex topological

space [3, VI.1.2, VI.1.3]:

(1) the strong operator topology τs , which is the weakest topology of �(�,�)
relative to which the mapping µ→ µ(z) : �(�,�)→�, is continuous for

each z ∈�;

(2) the weak operator topology τw , which is the weakest topology of �(�,�)
relative to which the mapping µ→y∗[µ(z)] : �(�,�)→ C, is continuous

for each z ∈� and y∗ ∈�∗.

For �(�,�∗), we have the following topology that also makes �(�,�∗) a locally

convex topological space [3, page 476]:

(3) the weak∗ operator topology τw∗ , which is the weakest topology of

�(�,�∗) relative to which the mapping µ → [µ(z)](y) : �(�,�∗)→ C,

is continuous for each z ∈� and y ∈�.

Let S be a nonempty set, let � be a Banach space, and let 	(S,�) be the space

of bounded functions from S to � with supremum norm. Let � be a subspace

of 	(S,�) containing the constant functions.

Definition 2.1. A mean µ on � is a linear operator from � to � such that

µ(f)∈ cof(S) for all f ∈�, denoted by M(�) of all means on �.

We define the evaluation mapping ε : S →M(�) as follows: for s ∈ S, ε(s)f =
f(s), f ∈ �. The following proposition comes from [9, Propositions 1.5 and

1.6].

Proposition 2.2. Let � be a subspace of 	(S,�) containing the constant

functions. Then for both τs and τw , M(�) is convex and closed in �(�,�), and

co(ε(S)) is dense in M(�). Furthermore, if � is such that f(S) is relatively

weakly compact in � for all f ∈�, then M(�) is τw -compact.

We embed � into its double dual space �∗∗ canonically and let ι(�) denote

its canonical image in �∗∗; similarly, we embed f(S) into �∗∗ for every f ∈�

and get a subspace ι(�) of 	(S,ι(�)). A function of � may be regarded as

a function of ι(�), and vice versa. Replacing � and � by ι(�) and �∗∗ in

Definition 2.1, respectively, we getM(ι(�)). A mean ofM(�)may be regarded

as a mean ofM(ι(�)), and vice versa. This leads to the following more general

definition of means.

Definition 2.3. Let � be a subspace of 	(S,�∗∗). A linear map µ : �→�∗∗

is called a w∗ mean on � provided µ(f) ∈ cow
∗
f(S), for all f ∈ �, where

w∗ stands for the weak∗ topology σ(�∗∗,�∗). Denote by w∗M(�) the set of



VECTOR-VALUED W.A.P. FUNCTIONS 297

all w∗ means on �. In the case that � ⊂ 	(S,�), we define w∗M(�) to be

w∗M(ι(�)).

Both Definitions 2.1 and 2.3 will reduce to the definition of a scalar-valued

mean when �= C [1, 2.1.2].

Proposition 2.4. Let � be a linear subspace of 	(S,�∗∗). Then for τw∗
(1) w∗M(�) is convex and compact;

(2) let ε be the evaluation map S → w∗M(�), then co(ε(S)) is dense in

w∗M(�).

Proposition 2.5. Every member ofw∗M(�) can be extended to a member

of w∗M(	(S,�∗∗)).

We call the scalar-valued function space


= sp
{[
f(·)](x∗) : x∗ ∈�∗, f ∈�

}
(2.1)

generated space of �.

Proposition 2.6. Let � be a linear subspace of 	(S,�∗∗) containing the

constant functions, and let 
 be its generated space. Then, there is an isometric

τw∗ -σ(
∗,
) homeomorphism µ→ϕµ :w∗M(�)→M(
) such that

[
µ(f)

](
x∗
)=ϕµ

[
f(·)(x∗)] (

f ∈�, x∗ ∈�∗
)
. (2.2)

3. Main results. A nonempty set S that is a semigroup and also a topological

space is called a semitopological semigroup provided that the maps s → ts and

s → st from S to S are continuous for all t ∈ S. Let S be such a set, and let �

be a subspace of �(S,�). We say � is right (resp., left) translation invariant if

RS� = {RSf : s ∈ S, f ∈ �} ⊂ � (resp., LS� = {LSf : s ∈ S, f ∈ �} ⊂ �). We

say � is translation invariant if it is both right and left translation invariant.

Let � be a translation invariant subspace of �(S,�). For µ ∈M(�), define

Tµ : �→	(S,�) by

Tµf(s)= µ
(
Lsf

)
(f ∈�, s ∈ S) (3.1)

and Uµ : �→	(S,�) by

Uµf(s)= µ
(
Rsf

)
(f ∈�, s ∈ S). (3.2)

We call Tµ (Uµ) left (right) introversion operator determined by µ. We will say

that � is left (right) introverted if Tµ�⊂� (Uµ�⊂�) for all µ ∈M(�). We will

say that � is introverted if it is both left and right introverted.

Similarly, we define an introversion operator from � to 	(S,�∗∗) if � is a

translation invariant subspace of 	(S,�∗∗) and µ ∈w∗M(�).
To show Theorem 3.2, we need the following proposition that characterizes

weak almost periodicity of a function in �(S).
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Proposition 3.1 [2, 4.2.6]. Let S be a semitopological semigroup, let f ∈
�(S), and let 
=���(S). Then, the following statements are equivalent:

(1) f ∈���(S);
(2) LSf is relatively weakly compact in �(S);
(3) the mapping ϕ → Tϕf : M(
) → 	(S) is σ(
∗,
) → σ(	(S),	(S)∗)

continuous;

(4) the mapping ϕ → Uϕf : M(
) → 	(S) is σ(
∗,
) → σ(	(S),	(S)∗)
continuous;

(5) for all ϕ,ψ∈M(
), ϕ(Tψf)=ψ(Uϕf).
We will generalize Proposition 3.1 from scalar-valued function to vector-

valued function in the next theorem. We will use some results of the previous

section to show the theorem. To make notations short, we let

ι(�)=�
(
S,ι(�)

)
, ι(	)=	

(
S,ι(�)

)
, 	=	

(
S,�∗∗

)
. (3.3)

As in the paragraph before Definition 2.3, ι(�) is the canonical image of � in

�∗∗; an f ∈	(S,�) and its corresponding function in ι(	) will be regarded as

same function.

Note that both 	 and ι(	) have the same generated space 	(S), the space

of bounded scalar-valued functions on S.

Theorem 3.2. Let S be a semitopological semigroup and let � be a Banach

space. Let � = ���(S,�) and let f ∈ �(S,�) be such that f(S) is relatively

weakly compact in �. Then the following statements are equivalent:

(1) f ∈�, that is, RSf is relatively weakly compact in �(S,�);
(2) LSf is relatively weakly compact in �(S,�);
(3) the mapping µ → Tµf :w∗M(	)→ ι(	) is τw∗ -σ(ι(	),ι(	)∗) continu-

ous;

(4) the mapping µ → Uµf :w∗M(	)→ ι(	) is τw∗ -σ(ι(	),ι(	)∗) continu-

ous;

(5) for all µ,ν ∈w∗M(	),

µ
(
Tνf

)= ν(Uµf
)
. (3.4)

Proof. Since f(S) is relatively weakly compact in �, the functions Tµf and

Uµf are in ι(	) for all µ ∈w∗M(	).
Let ε and ε′ be the evaluation mappings on 	 and 	(S), respectively. Let

B = ccoτw∗ ε(S), and let B	(S)∗ be the unit ball of 	(S)∗. By [2, 2.1.14], B	(S)∗ =
ccow

∗
ε′(S), wherew∗ stands for σ(	(S)∗,	(S)). It follows from Propositions

2.4(2) and 2.6 that B and B	(S)∗ are τw∗ -σ(	(S)∗,	(S)) homeomorphic.

Define V : B→	 by

V(µ)= Tµf . (3.5)
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V is continuous from τw∗ to the weak∗ pointwise convergence topology P . For,

if {µα} ⊂ B and µ ∈ B are such that µα → µ in τw∗ , then

[
Tµαf(s)

](
x∗
)= [µα

(
LSf

)](
x∗
)
�→ [µ(LSf

)](
x∗
)

= [Tµf(s)
](
x∗
) (

x∗ ∈�∗, s ∈ S). (3.6)

Since B is τw∗ -compact (Proposition 2.4(1)), we have

V(B)= cco
(
RSf

)
, (3.7)

where closure in ι(	) is taken in the weak∗ pointwise convergence topology P .

Now, we show that (1) implies (3).

By the Krein-Smulian theorem [2, Theorem A.10], cco(RSf) is relatively

weakly compact in ι(�), which in view of (3.7) implies that V(B) is σ(ι(�),
ι(�)∗)-closure of cco(RSf) in ι(�) and that V(B) is σ(ι(�),ι(�)∗)-compact.

Therefore, the weak topology σ(ι(�),ι(�)∗) and the topology P coincide on

V(B). So, V is τw∗ -σ(ι(	),ι(	)∗) continuous on B.

To show (3), we define, for Φ ∈ ι(	)∗, the linear functional Φ◦T : 	(S)∗ → C
by

Φ◦T(ϕµ
)= Φ(Tµf

)
, (3.8)

where µ and ϕµ are as in (2.2). It follows from the τw∗ -σ(ι(	),ι(	)∗) con-

tinuity on B of V that Φ ◦ T is σ(	(S)∗,	(S)) continuous on B	(S)∗ . By

Grothendieck’s completeness theorem [2, Proposition A.8], Φ◦T is σ(	(S)∗,
	(S)) continuous on 	(S)∗. Now, we claim that (3) holds. For, if µα and µ
of w∗M(	) are such that µα → µ in τw∗ , then ϕµα → ϕµ in σ(	(S)∗,	(S))
(Proposition 2.6), and therefore

Φ
(
Tµαf

)= Φ◦T(ϕµα
)
�→ Φ◦T(ϕµ

)= Φ(Tµf
)
. (3.9)

Since Φ is arbitrary in ι(	)∗, we have Tµαf → Tµf in σ(ι(	),ι(	)∗). Thus (3)

holds.

By Proposition 2.4(1), B is τw∗ -compact. If (3) holds, then it follows from

(3.7) that RSf is relatively weakly compact in ι(	). Thus (1) holds. So, (1) and

(3) are equivalent.

Similarly, we show that (2) and (4) are equivalent. Next, we show that (1) and

(3) imply (5).

Let µ,ν ∈ w∗M(	) and ϕν,ϕµ ∈ M(	(S)) be as in (2.2). Since f is in

���(S,�), f(·)(x∗) is in ���(S) for all x∗ ∈�∗. By Proposition 3.1(5),

ϕν
{
Tϕµ

[
f(·)(x∗)]}=ϕµ

{
Uϕν

[
f(·)(x∗)]}. (3.10)



300 CHUANYI ZHANG

It follows from (2.2) and (3.10) that

[
ν
(
Tµf

)](
x∗
)=ϕν

{
Tϕµ

[
f(·)(x∗)]}

=ϕµ
{
Uϕν

[
f(·)(x∗)]}

= [µ(Uνf
)](
x∗
)
.

(3.11)

Since x∗ ∈�∗ is arbitrary, we have

ν
(
Tµf

)= µ(Uνf
) (

µ,ν ∈w∗M(	)
)
. (3.12)

Thus (5) holds.

Similarly, we show that (2) and (4) imply (5).

For x∗ ∈�∗ and µ ∈w∗M(ι(	)), define µ◦x∗ : ι(	)→ C by

µ◦x∗(h)= [µ(h)](x∗) (
h∈ ι(	)). (3.13)

Then, µ◦x∗ ∈ ι(	)∗. LetD = {µ◦x∗ : x∗ ∈�∗, ‖x∗‖ = 1, µ ∈w∗M(ι(	))}. By

the separation theorem, we show that ccow
∗
D = Bι(	)∗ , the unit ball of ι(	)∗,

where w∗ stands for σ(ι(	)∗, ι(	)).
To show that (5) implies (4), we need to show that the mapping µ→Uµf :

B= ccoτw∗ ε(S)→ ι(	) is τw∗ -σ(ι(	),ι(	)∗) continuous. That is, we need to

show that if µα ⊂ B and µ ∈ B are such that µα → µ in τw∗ , and if F ∈ Bι(	)∗ ,

then

F
(
Uµαf

)
�→ F(Uµf

)
. (3.14)

Note that ccow
∗
D is the unit ball of ι(	)∗. For ν ◦x∗ ∈ ccoD, we have

ν ◦x∗[Uµαf
]
�→ ν ◦x∗[Uµf

]
, (3.15)

because it follows from (3.4) and (3.13) that

ν ◦x∗[Uµαf
]= [ν(Uµαf

)](
x∗
)

= [µα
(
Tνf

)](
x∗
)
�→ [µ(Tνf

)](
x∗
)

= [ν(Uµf
)](
x∗
)

= ν ◦x∗(Uµf
)
.

(3.16)

Let A = {Uµf : µ ∈ B}. Then, A is a bounded subset of ι(	). As in the dis-

cussion for Note (ii) and (iii) before Theorem 3 of [5], we regard ccoD as a set

of bounded function on A, that is, a subset of 	(A). Then, the weak∗ closure
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ccow
∗
D in ι(	)∗ is contained in the weak closure ccowD in 	(A). Since ccowD

is also norm closed in 	(A), for F ∈ ccow
∗
D ⊂ ccowD, we have a sequence of

{νn ◦x∗n} of ccoD such that

∣∣F(h)−νn ◦x∗n(h)
∣∣ �→ 0 (3.17)

uniformly in h∈A. Since

∣∣F(Uµαf
)−F(Uµf

)∣∣≤ ∣∣F(Uµαf
)−νn ◦x∗n

(
Uµαf

)∣∣
+∣∣νn ◦x∗n

(
Uµαf

)−νn ◦x∗n
(
Uµf

)∣∣
+∣∣νn ◦x∗n

(
Uµf

)−F(Uµf
)∣∣,

(3.18)

now (3.14) is a consequence of (3.15) and (3.17).

Similarly, we show that (5) implies (3). The proof is complete.

Corollary 3.3. Let S, �, and � be as in Theorem 3.2. Let f ∈ �. Then,

Tµf ∈� for all µ ∈M(�). Furthermore, if f(S) is relatively weakly compact in

�, then Uµf ∈� for all µ ∈M(�).
Proof. As in the proof of (1) implying (3) of Theorem 3.2, we show the first

statement. If f(S) is relatively weakly compact in �, then by the theorem, LSf
is relatively weakly compact in �(S,�). Note that this time f is in �. We show

the second statement as in the proof of (2) implying (4).

For every x∗ ∈�∗, ‖x∗‖ = 1, and s ∈ S, define x∗ ◦s : �(S,�)→ C, by

x∗ ◦s(f )= x∗[f(s)] (
f ∈�(S,�)

)
. (3.19)

Then, x∗ ◦ s ∈ �(S,�)∗, the dual space of �(S,�). Set E = {x∗ ◦ s : x∗ ∈
�∗, ‖x∗‖ = 1, s ∈ S}. Let B = Ew∗ , where w∗ stands for the weak∗ topology

σ(�(S,�)∗,�(S,�)). Then, B is weak∗ compact.

For every f ∈�(S,�), define f̂ : E→ C, by

f̂
(
x∗ ◦s)= x∗[f(s)] (

x∗ ◦s ∈ E). (3.20)

We extend f̂ from E to B continuously. So we have f̂ ∈�(B).
Obviously, we have�Rtf for t ∈ S and Rtf , that is,�Rtf(x∗◦s)= x∗[Rtf (s)].

The mapping f → f̂ : �(S,�) → �(B) is one to one and linear isometric. The

space �(B) is a Banach space with norm topology. In the next theorem, we will

also equip �(B) with the P -topology, the pointwise convergence topology.
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Theorem 3.4. Let S be a semitopological semigroup, and let f ∈ �(S,�)
such that f(S) is relatively weakly compact in �. Then, the following statements

are equivalent:

(1) f ∈���(S,�);
(2) LSf is relatively weakly compact in �(S,�);
(3) �RSf is relatively compact in �(B) in the P -topology;

(4) �LSf is relatively compact in �(B) in the P -topology;

(5) limm→∞ limn→∞x∗mf(smtn) = limn→∞ limm→∞x∗mf(smtn), whenever

{x∗m} ⊂�∗, ‖x∗‖ = 1, {tn}, {sm} ⊂ S and all the limits exist;

(6) limm→∞ limn→∞x∗mf(tnsm) = limn→∞ limm→∞x∗mf(tnsm), whenever

{x∗m} ⊂�∗, ‖x∗‖ = 1, {tn},{sm} ⊂ S and all the limits exist.

Proof. The equivalence of (1) and (2) comes from Theorem 3.2.

If (1) holds, then RSf is relatively weakly compact in �(S,�). Since the map-

ping f → f̂ is one to one and linear isometric, �RSf is relatively weakly compact

in �(B). So, �RSf is relatively compact in �(B) in P -topology. Thus (3) holds.

Now, we show (3) implies (5). Let {x∗m} ⊂ �∗, ‖x∗m‖ = 1, and {tn},{sm} ⊂ S
be sequences such that the iterated limits

lim
m→∞ lim

n→∞x
∗
mf
(
smtn

)
, lim

n→∞ lim
m→∞x

∗
mf
(
smtn

)
(3.21)

exist. Thus, we have {R̂tnf} ⊂ �(B) and {x∗m ◦ sm} ⊂ E. Let ĝ ∈ �(B) be P -

topological cluster point of {R̂tnf}, and let y ∈ B be cluster point of {x∗m◦sm}.
Then,

lim
m→∞ lim

n→∞ R̂tnf
(
x∗m ◦sm

)= lim
m→∞ ĝ

(
x∗m ◦sm

)

= ĝ(y)= lim
n→∞ R̂tnf (y)

= lim
n→∞ lim

m→∞ R̂tnf
(
x∗m ◦sm

)
.

(3.22)

Note that

lim
m→∞ lim

n→∞ R̂tnf
(
x∗m ◦sm

)= lim
m→∞ lim

n→∞x
∗
mf
(
smtn

)
,

lim
n→∞ lim

m→∞ R̂tnf
(
x∗m ◦sm

)= lim
n→∞ lim

m→∞x
∗
mf
(
smtn

)
.

(3.23)

Therefore, (5) holds.

That (5) implies (1) is a consequence of Grothendieck’s double theorem [2,

A.5]. Similarly, we show the equivalence among (2), (4), and (6). The proof is

complete.

Example 3.5. Let S = N = {1,2, . . .}, the semigroup of natural numbers.

Let lp , 1 < p < ∞ be the usual sequence spaces with basis {en}∞n=1, where

en = {xk}∞k=1 with xk = 1 if k=n and xk = 0 otherwise. Define f :N→ lp by

f(n)= en (n∈N). (3.24)
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SinceN is abelian, RSf = LSf . For any subsequences {mi}, {nk} of S, and {ϕi}
of lq with ‖ϕ‖� 1, where 1/p+1/q = 1 and the norm being taken in the space

lq, we have that

lim
i

lim
k
ϕi
(
f
(
mi+nk

))= lim
i

lim
k
ϕi
(
emi+nk

)= lim
i

lim
k
ϕi,mi+nk = 0,

lim
k

lim
i
ϕi
(
f
(
mi+nk

))= lim
k

lim
i
ϕi
(
emi+nk

)= lim
k

lim
i
ϕi,mi+nk = 0,

(3.25)

whereϕi,mi+nk is the (mi+nk)th component ofϕi. Therefore, by Theorem 3.4

we have f ∈ ���(N, lp). However, f(S) is not relatively norm compact but

relatively weakly compact. SinceRSf = LSf , the two orbits of f are all relatively

weakly compact. We note that N does not admit an identity.

Remark 3.6. (a) The equivalence of (1) and (5) of Theorem 2.4 appeared in

[5, Theorem 6]; though it was assumed that S admits an identity, the proof

of Theorem 6 did not use the identity. (b) In both Theorems 3.2 and 3.4, we

assume that the range of f(S) is relatively weakly compact to show that the

relative weak compactness of LSf is equivalent to that of RSf . We do not

know if the condition of f(S) is essential. We showed in [8, Corollary 8.4] that

if S admits an identity, then f(S) is relatively weakly compact in � for all

f ∈���(S,�). Of course, if � is reflexive, then any bounded function has a

relatively weakly compact range. (c) From the proof of Theorem 3.4, we see that

to get the equivalence among (1), (3), and (5), it does not need the condition

f(S) being relatively weakly compact, neither does the equivalence among (2),

(4), and (6).
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