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ON MARKOVIAN COCYCLE PERTURBATIONS IN
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We introduce Markovian cocycle perturbations of the groups of transformations
associated with classical and quantum stochastic processes with stationary incre-
ments, which are characterized by a localization of the perturbation to the alge-
bra of events of the past. The Markovian cocycle perturbations of the Kolmogorov
flows associated with the classical and quantum noises result in the perturbed
group of transformations which can be decomposed into the sum of two parts. One
part in the decomposition is associated with a deterministic stochastic process ly-
ing in the past of the initial process, while another part is associated with the noise
isomorphic to the initial one. This construction can be considered as some analog
of the Wold decomposition for classical stationary processes excluding a nonde-
terministic part of the process in the case of the stationary quantum stochastic
processes on the von Neumann factors which are the Markovian perturbations of
the quantum noises. For the classical stochastic process with noncorrelated incre-
ments, the model of Markovian perturbations describing all Markovian cocycles
up to a unitary equivalence of the perturbations has been constructed. Using this
model, we construct Markovian cocycles transforming the Gaussian state ρ to the
Gaussian states equivalent to ρ.
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1. Introduction. It is well known that every stochastic process with finite

second moments and continuous in square mean can be considered as a con-

tinuous curve in the Hilbert space. In this framework, properties of the pro-

cess, such as stationarity and noncorrelativity of the increments, appear as

an invariance under the action of the group of unitaries in the Hilbert space

and an orthogonality of the curve increments, respectively. Thus to investi-

gate the stochastic process, one can use functional analysis techniques. This

approach was introduced by Kolmogorov who considered in [26, 27] a classi-

fication problem for the equivalence classes of continuous curves ξ = (ξt)t∈R
in a Hilbert space H, which are invariant with respect to a strongly continuous

one-parameter group of unitaries U = (Ut)t∈R (i.e., Ut(ξs −ξr ) = ξs+t −ξs+r )

with the transformations of equivalence defined by the formula

ξ̃t =Wξt+η, (1.1)
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where W and η are a unitary operator in H, and an element of H, corre-

spondingly. Indeed, the continuous curve ξ̃ = (ξ̃t)t∈R is invariant with respect

to the group of unitaries Ũ = (WtUt)t∈R, where the one-parameter family of

unitaries

Wt =WUtW∗U−t , t ∈R, (1.2)

satisfies the condition of multiplicative U -cocycle,

Wt+s =WtUtWsU−t , s,t ∈R. (1.3)

The multiplicative cocycle generated by a unitary operator W as in (1.2) is

said to be U -coboundary. Notice that not every cocycle (1.3) is coboundary

(1.2). Here we use ordinary definitions of the cohomologies of group theory

for 1-cocycle and 1-coboundary associated with the standard bar-resolvent of

the group R with values in the multiplicative group �(H) of all unitaries in

the Hilbert space H with the module structure defined by the group action

x→UtxU−t , x ∈�(H), t ∈R (see, e.g., [12, 18]).

Suppose that there exists a continuous curve ξ = (ξt)t∈R which is invariant

with respect to the group U , and the increments of ξ are orthogonal such that

ξt1−ξs1 ⊥ ξt2−ξs2 for all disjoint intervals (s1, t1)∩(s2, t2)=∅. The curves of

such type were called in [27] the Wiener spirals. Every multiplicative U -cocycle

(Wt)t∈R, which is strongly continuous in t, defines a new strongly continu-

ous one-parameter group of unitaries Ũ = (WtUt)t∈R. We will call Ũ a cocycle

perturbation of the group U . If (Wt)t∈R is a coboundary, then, for the cocy-

cle perturbation Ũ , there also exists an invariant curve ξ̃ which is the Wiener

spiral. Indeed, this curve can be constructed by formula (1.1), where one must

substitute for W the unitary operator generating the coboundary by means

of (1.2). For arbitrary cocycle (Wt)t∈R which is not a coboundary, it is possi-

ble that there does not exist a Wiener spiral which is invariant with respect

to the cocycle perturbation Ũ . In this paper, we introduce a subset (2.2) of

the set of all cocycles such that being given a cocycle from (2.2) generates the

cocycle perturbation possessing the invariant Wiener spiral if the perturbing

group satisfies this condition. The class of cocycle perturbations we propose

is important because in applications (see [10, 21, 24, 29, 33]), the problem of

constructing the dilation of a quantum positive evolution to a cocycle on the

Fock space is often posed. The cocycles of this type are adapted with respect

to a Fock filtration and can be constructed by the second quantization of co-

cycles from the subset (2.2) we introduce. Cocycles from (2.2) will be called

Markovian. The usage of the term “Markovian cocycle” follows from [1, 2]. The

Markovian cocycles of [1, 2] are connected with the classical Markov property

in the sense that the perturbation of the Markovian stochastic process by the



ON MARKOVIAN COCYCLE PERTURBATIONS . . . 3445

Markovian cocycle is also the Markovian stochastic process with the same al-

gebras of the present, future, and past. Our definition is different from the

definition in [1, 2]. Nevertheless, under an appropriate interpretation, the per-

turbations we consider are Markovian in the sense of the definition in these

cited papers, describing a wider class of perturbations. We consider this as a

sufficient motivation for using this terminology.

The model example of the group of unitaries U possessing an invariant

Wiener spiral is the group of shifts in the Hilbert space H = L2(R) defined by

the formula (Utη)(x)= η(x+t), η∈H. In fact, the set of functions ξt(x)= 1,

x ∈ [−t,0], ξt(x) = 0, x ∉ [−t,0], is the Wiener spiral which is invariant with

respect toU (see [27]). We will call “a past” and “a future” of the system the sub-

spaces Ht] and H[t containing functions with the support belonging to [t,+∞)
and (−∞, t], respectively. Notice that Ht] = UtH0] and H[t = UtH[0, t ∈ R. In

the case we consider, we call the cocycle W Markovian if the restriction of the

unitary operator Wt to the subspace of the future H[t is an identity transfor-

mation for every fixed t ≥ 0. In particular, this definition guarantees that the

subspace of the past H0] is invariant with respect to W−t for all t ≥ 0, which

allows to consider the restriction of the cocycle perturbation Ũ−t|H0] , t ≥ 0.

Let Ũ be a cocycle perturbation of U by the cocycle which is Markovian in the

sense of our definition. We will show that every such perturbation can be repre-

sented in the form Ũ = Ũ(1)⊕Ũ(2), where Ũ(1) is an arbitrary group of unitaries

in the subspace of the past H0] and Ũ(2) is unitarily equivalent to the initial

group of shifts. This representation can be called the Wold decomposition of

the cocycle perturbation of Ũ . The groups Ũ(1) and Ũ(2) can be interpreted as

associated with deterministic and nondeterministic parts of the process.

By a quantum stochastic process we mean (see [21, 24, 33]) a strongly con-

tinuous one-parameter family x = (xt)t∈R of linear (unbounded in general)

operators in a Hilbert space H. Usually one needs to require that all opera-

tors xt be closed and have the invariant common domain which is dense in

H. Under this definition, stationary quantum stochastic process x = (xt)t∈R
can be defined by the condition xt = αt(x0)+x1, t ∈ R, where α is a certain

group of automorphisms and x0, x1 are two fixed linear operators. In this

way, a quantum stochastic process with stationary increments is a continuous

operator-valued curve which is invariant with respect to a certain group of au-

tomorphisms α. In quantum probability theory, the role of the σ -algebras of

events associated with the stochastic process is played by the von Neumann

algebras generated by increments of the process, that is, the ultra-weak closed

algebras of bounded operators in H obtained as the second commutant of the

set of the increments xt −xs of the process x (see, e.g., [11, 21, 24]). Every

classical stochastic process ξ consisting of the random variables ξt ∈ L∞(Ω)
can be considered as a quantum, where the operators xt = Mξt forming the

process are the operators of multiplications by the functions ξt in the Hilbert

space L2(Ω).
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Definition 1.1. The flow {Tt, t ∈ R} on the probability space (Ω,�,µ) is

said to be a Kolmogorov flow (see [28]) if there exists a σ -algebra of events

�0] ⊂� such that Tt�0] =�t],

�s] ⊂�t], s < t, (1.4)

∪t�t] =�, (1.5)

∩t�t] = {∅,Ω}. (1.6)

In [15], a notion of the Kolmogorov flow was generalized into quantum prob-

ability. Here the σ -algebras of events �t] are replaced by the corresponding

von Neumann algebras. Notice that in the well-known monograph [25], where

the conditions on the spectral function of process, which result in the Kol-

mogorov flow were investigated, a term “completely nondeterministic process”

is used for the stochastic process generating the Kolmogorov flow, while the

term “Kolmogorov flow” is not used anywhere. Every classical or quantum pro-

cess with independent (in the classical sense) increments results in the Kol-

mogorov flow. We define Markovian cocycle perturbations of the classical and

quantum Kolmogorov flows such that the perturbed flows contain the parts

which are isomorphic to the initial Kolmogorov flow. Notice that in the model

situation of the Hilbert space L2(R)we considered above, the Kolmogorov flow

can be associated with the flow of shifts. Thus, the possibility to exclude the

part being the Kolmogorov flow in the perturbed dynamics can be considered

as some analogue of the Wold decomposition allowing to exclude a nondeter-

ministic part of the process.

For every classical or quantum stochastic process, a great role is played by

the set of all (not necessarily linear) functionals of the process. In particular,

for the Wiener process, we have the Wiener-Itô decomposition of the space

of all L2-functionals into an orthogonal sum, which allows to solve effectively

some stochastic differential equations (see [20]). Notice that from the view-

point of the theory of the cohomologies of groups, the stochastic process with

stationary increments determining the continuous curve being invariant with

respect to the group of transformations U is an additive (1−U )-cocycle. It is

natural to consider the ring of cohomologies of all degrees generated by the

(1−U )-cocycle of such type which can be interpreted as the space of all (nonlin-

ear) functionals of the initial stochastic process. We show that the Markovian

cocycle perturbations we introduced define homomorphisms of this ring of

cohomologies.

This paper is organized as follows. In Section 2, for the group of unitaries

U and the continuous curve ξ which is invariant with respect to U , we define a

class of the Markovian U -cocycles. The group of unitaries Ũ which is a pertur-

bation of U by the cocycle of such type determines a continuous curve ξ̃ being

invariant with respect to Ũ and connected with the curve ξ by formula (1.1),
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where W is (nonunitary in general) isometrical operator satisfying the addi-

tional property of the localization of action to “the past.” We call such isomet-

rical operators Markovian and we prove that every Markovian operator is as-

sociated with a certain perturbation by a Markovian cocycle. The investigation

we give in Section 3 shows in detail that the Markovian cocycle we introduced

determines the Wold decomposition for the cocycle perturbation. In Section 4

we construct a model of the Markovian cocycle for the stochastic process with

independent increments. The model we give allows to construct the Markov-

ian cocycles with the property Wt − I ∈ s2 (the Hilbert-Schmidt class) which

translate the fixed Gaussian measure to the equivalent Gaussian measures. In

Section 5 we give the basic notion on the theory of Kolmogorov flows in classi-

cal and quantum probability. In Section 6, we define the rings of cohomologies

generated by additive 1-cocycles and show in examples of the Wiener process

and the quantum noise that the set of all functionals of the stochastic process

with stationary increments can be considered as a ring of the cohomologies of

the group which is composed by shifts of the increments in time. Moreover, we

define a Markovian perturbation of the group resulting in a homomorphism

of the ring of cohomologies of the group. Notice that for quantum stochastic

processes x = (ξt = xt)t∈R, it is also possible to define transformations of the

form (1.1), where one must take a morphism for W and a linear operator for

η. In Section 7, we introduce the Markovian cocycle perturbations of the quan-

tum noises being a generalization of the classical processes with independent

stationary increments for the quantum case, which result in transformations

of the quantum stochastic processes of the form (1.1). The Markovian pertur-

bations we introduce determine homomorphisms of the ring of cohomologies

associated with the stochastic process in the sense of Section 6. The techniques

involved in Section 6 allow to obtain in Section 7 some analogue of the Wold de-

composition for the classical stochastic processes in the quantum case, which

permits to exclude a nondeterministic part of the process.

2. Stochastic processes with stationary increments as curves in a Hilbert

space. Let ξ = (ξt)t∈R be continuous in square mean stochastic process with

stationary increments on the probability space (Ω,Σ,µ). Without loss of gen-

erality, we can suppose that the condition ξ(0)= 0 holds. Then, in the Hilbert

spaceHξ generated by the increments ξt−ξs , s,t ∈R, one can define a strongly

continuous group of unitariesU = (Ut)t∈R shifting the increments in time such

that Ut(ξs − ξr ) = ξs+t − ξr+t , s,t,r ∈ R, where ξ satisfies the condition of

(additive) (1−U )-cocycle, that is, ξt+s = ξt +Utξs , s,t ∈ R. Denote by H the

Hilbert space with the inner product (ξ,η) = E(ξη) generated by the classes

of equivalency of the random variables ξ, η in the space (Ω,µ), which possess

finite second moments with respect to the Hilbert norm associated with the

expectation E. We will identify the random variables with the elements of the

Hilbert space H. A stochastic process ξ can be considered as a curve in the



3448 G. G. AMOSOV

Hilbert space Hξ , which is invariant with respect to the action of the group U
(see [26, 27]). The space Hξ is a subspace of H but does not coincide with it

in general. Let Ũ be an arbitrary continuation of U to a strongly continuous

group of unitaries in the Hilbert space H. Then ξ can also be considered as

the curve in H, which is invariant with respect to the action of the group Ũ .

Denote by �(ξ) the set containing all possible strongly continuous groups of

unitaries in H such that the stochastic process ξ is invariant with respect to

them. One can define in the space Hξ an increasing family of subspaces Hξ
t]

generated by the increments ξs −ξr , s,r ≤ t, associated with “a past” before

the moment t, and a decreasing family of subspaces Hξ
[t generated by the in-

crements ξs−ξr , s,r ≥ t, associated with “a future” after the moment t such

that Hξ =∨tHξ
t] =∨tHξ

[t . Notice that, for the processes with noncorrelated in-

crements, the subspaces Hξ
t] and Hξ

[t are orthogonal. Fix the group U ∈ �(ξ).
The strongly continuous one-parameter family of unitaries W = (Wt)t∈R in H
is said to be a (multiplicative) U -cocycle if the following condition holds:

Wt+s =WtUtWsU∗t , s,t ∈R, W0 = I. (2.1)

The cocycle W is called Markovian under the condition

Wtf = f , f ∈Hξ
[t, t > 0. (2.2)

Property (2.1) exactly means that the strongly continuous one-parameter fam-

ily of unitaries Ũ = (WtUt)t∈R forms a group. We consider Markovianity as a lo-

calization of the action of the cocycleW to the subspace of the past. Moreover,

the Markovian property (2.2) preserves “a causality” such that “the future” of

the system is not disturbed. Notice that our definition of a Markovian cocycle

is based on the analogous definition introduced in [1, 2] in a considerably more

general case. We defer the examples of Markovian cocycles to Section 4, where

a model of the Markovian cocycle is given for the group of shifts on the line,

which describes all cocycles up to the unitary equivalence of perturbations.

Using (2.1), we get I =W−t+t =W−tU−tWtU∗−t , t > 0, such that W−t = U∗t WtUt ,
t > 0. Thus one can rewrite (2.2) in the form

W−tf = f , f ∈Hξ
[0, t > 0. (2.3)

Consider the stochastic process ξ(1), ξ(1)(0) = 0, being a continuous curve

in the Hilbert space H, and take U(1) ∈ �(ξ(1)). Suppose W = (Wt)t∈R is a

multiplicative U(1)-cocycle in the space H.

Proposition 2.1. LetW satisfy the Markovian property (2.2). Then the fam-

ily ξ(2)t = Wtξ(1)t , t ≤ 0, ξ(2)t = ξ(1)t , t > 0, is continuous in t and is a stochastic

process with stationary increments. Furthermore, it is a curve in H invariant

with respect to the group of unitaries U(2)t =WtU(1)t , t ∈R.
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Proof. Check that ξ(2)t+s = ξ(2)t +U(2)t ξ(2)s , s,t ∈ R. In fact, for s,t ≤ 0, we

obtain

ξ(2)t+s =Wt+sξ(1)t+s =Wt+sξ(1)t +Wt+sU(1)t ξ(1)s

=WtU(1)t WsU
(1)
−t ξ

(1)
t +WtU(1)t Wsξ(1)s

=−WtU(1)t Wsξ
(1)
−t +U(2)t ξ(2)s

=−WtU(1)t ξ(1)−t +U(2)t ξ(2)t

= ξ(2)t +U(2)t ξ(2)s ,

(2.4)

where we used the identity Wsξ
(1)
−t = ξ(1)−t , s,t ≤ 0, which is correct due to (2.3).

For s,t > 0, the property we prove is true because ξ(2)t = ξ(1)t , t ≥ 0, by defini-

tion. Notice that

ξ(2)t = ξ(1)t =−U(1)t ξ(1)−t =−WtU(1)t W−tU
(1)
−t U

(1)
t ξ(1)−t

=−WtU(1)t W−tξ
(1)
−t =−U(2)t ξ(2)−t , t > 0,

(2.5)

by means of the cocycle condition (2.1) for W .

We will call an isometrical operator R : Hξ(1) → Hξ(2) Markovian if Rf = f ,

f ∈Hξ(1)
[0 .

Proposition 2.2. Given a Markovian cocycle W , there exists a limit

lim
t→+∞

W−tη=W−∞η, η∈Hξ(1) , (2.6)

such that W−∞ is a Markovian isometrical operator with the property W−∞f =
W−sf , f ∈Hξ(1)

[−s , s ≥ 0.

Proof. Notice that W−t−sf =W−sU(1)−s W−tU
(1)
s f =W−sf , f ∈Hξ(1)

[−s , s,t ≥ 0,

due to the Markovian property in the form (2.3). Hence, the limit exists for

the set of elements f ∈Hξ(1)
[−s , s ≥ 0, which is dense in Hξ(1) . Thus, the strong

limit exists by the Banach-Steinhaus theorem. The limiting operator W−∞ is

Markovian because all operators W−t , t ≥ 0, satisfy this condition.

Proposition 2.3. In the spaceH, there exists a Markovian isometrical oper-

atorR with the property ξ(2)t = Rξ(1)t , t ∈R, if and only if the stochastic processes

ξ(1) and ξ(2) are connected by a Markovian cocycleW = (Wt)t∈R by the formula

ξ(2)t =Wtξ(1)t , t ≤ 0.

Proof

Necessity. Suppose that there exists a Markovian isometrical operator R
such that ξ(2)t = Rξ(1)t , t ∈R. Check condition (2.2) for W :

Wt
(
ξ(1)r −ξ(1)s

)=U(2)t U(1)−t
(
ξ(1)r −ξ(1)s

)=U(2)t
(
ξ(1)r−t−ξ(1)s−t

)

=U(2)t
(
ξ(2)r−t−ξ(2)s−t

)= ξ(2)r −ξ(2)s , r ,s ≥ t > 0.
(2.7)
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Here we used the Markovian property for the operator R, which implies that

ξ(2)t = Rξ(1)t = ξ(1)t , t ≥ 0.

Sufficiency. Suppose that ξ(2)t = Wtξ(1)t , t ≤ 0, and a cocycle W is Mar-

kovian. Then, due to Proposition 2.2, one can define a Markovian isometrical

operatorW−∞ = s−limt→+∞W−t . Consider the process ξ̃(2)t =W−∞ξ(1)t . For t ≥ 0,

we obtain ξ̃(2)t = ξ(1)t by means of the Markovian property for W−∞. For t ≤ 0,

the representation W−∞f = W−sf , f ∈ Hξ(1)
[−s , s ≥ 0, gives ξ̃(2)t = Wtξ(1)t = ξ(2)t ,

t ≤ 0.

3. Processes with noncorrelated increments: the Wold decomposition.

Given a stationary stochastic process ξ, there exists a group of unitaries U =
(Ut)t∈R in the Hilbert space with the inner product defined by the formula

(·,·) = E(··) such that ξt = Utξ0, t ∈ R. Recall that the process ξ is said to be

nondeterministic if∧t∈RHξ
t] = 0 and deterministic if∧t∈RHξ

t] =Hξ . It is evident

that there exist processes which are neither nondeterministic nor determinis-

tic. A stationary process ξ has the unique decomposition ξ = ξ(1)⊕ξ(2), where

ξ(1) and ξ(2) are deterministic and nondeterministic processes, respectively,

such that ξ(1) and ξ(2) have noncorrelated increments. In its turn, a nonde-

termnistic process ξ(2) is uniquely defined by the Wold decomposition

ξ(2)t =
∫ t
−∞
c(t−s)ζ(ds), (3.1)

where ζ(ds) is a noncorrelated measure such that E|ζ(ds)|2 = ds and

E(ζ(∆)ζ(∆′)) = 0 for all measurable disjoint sets ∆ and ∆′ (see [35]). Thus,

every stationary process ξt = Utξ0 uniquely defines the process with noncor-

related stationary increments ζt , which is an invariant curve with respect to

the group U . This process can be called “the nondeterministic part” of ξt . In

the following, we will call the Wold decomposition the possibility to associate

with the fixed stationary process the process with stationary noncorrelated

increments, which is its nondeterministic part in the sense given above. Let

V = (Vt)t∈R+ be a strongly continuous semigroup of nonunitary isometrical

operators in a Hilbert space H. In functional analysis, the Wold decomposi-

tion is a decomposition of the form H = H(1) ⊕H(2), where subspaces H(1)

and H(2) reduce the semigroup V to a semigroup of unitary operators and

a semigroup of completely nonunitary isometrical operators, respectively. A

completely nonunitary isometrical operator is characterized by the property

that there is no subspace reducing it to a unitary operator. Every strongly

continuous semigroup consisting of completely nonunitary isometrical oper-

ators is unitary equivalent to its model, which is the semigroup of right shifts

S = (St)t∈R+ in the Hilbert space L2(R+,�) defined by (Stf )(x) = f(x− t),
x > t, and (Stf )(x) = 0, 0 ≤ x ≤ t. Recall that a deficiency index of the

generator d = s− limt→0((Vt−I)/t) of the strongly continuous semigroup V
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is a number of linear independent solutions to the equation d∗f = −f . The

Hilbert space of values � has the dimension equal to the deficiency index of the

generator of V (see [32]). In the following, we will call the deficiency index of

the generator an index of the semigroup. Notice that every semigroup of com-

pletely nonunitary isometrical operators V with the index n> 0 determines n
noncorrelated processes ξ(i), 1 ≤ i ≤ n, with noncorrelated increments such

that ξ(i)t+s = ξ(i)t +Vtξ(i)s , s,t ≥ 0. In the model case of the semigroup of right

shifts S in L2(R+,�), the processes of such type can be constructed in the

following way. Choose the orthonormal basis of the space � consisting of the

elements ei, 1≤ i≤n≤+∞, and put ξ(i) = ei⊗χ[0,t], where χ[0,t] is an indicator

function of the interval [0, t]. We will investigate a behavior of the processes

with noncorrelated increments with respect to perturbations by the Markovian

cocycles we introduced in Section 2.

Proposition 3.1. Let ξ andW be the process with noncorrelated increments

and the Markovian cocycle, respectively. Then, ξ′t = Wtξt , t ≤ 0 and ξ′t = ξt ,
t > 0, is a process with noncorrelated increments.

Proof. It follows from Proposition 2.3 that the Markovian isometrical op-

erator W−∞ = s− limt→+∞W−t connects the perturbed process with the initial

process by the formula ξ′t =W−∞ξt , t ∈R.

Let the process with noncorrelated increments ξ = (ξ)t∈R be invariant with

respect to the group of unitaries U = (Ut)t∈R.

Proposition 3.2. The restriction Vt = U−t|Hξ0] , t ≥ 0, determines a semi-

group of completely nonunitary isometrical operators with unit index in the

Hilbert space Hξ
0].

Proof. Every semigroup of completely nonunitary isometrical operators

with unit index is unitarily equivalent to its model which is the semigroup

of right shifts S = (St)t≥0 acting in the Hilbert space L2(R+) by (Stf )(x) =
f(x− t), x > t, and (Stf )(x) = 0, 0 ≤ x ≤ t (see [32]). Define a continuous

curve η = (ηt)t≥0 in L2(R+) such that ηt(x) = 1, 0 ≤ x ≤ t, and ηt(x) = 0,

x > t. Linear combinations of the elements of the curve η form a dense set

in the space L2(R+), and ηt+s = ηt+Stηs , s,t ≥ 0. Notice that the stationarity

and the orthogonality of the curve increments imply ‖ξt‖2 = ‖∑n
i=1(ξi(t/n)−

ξ(i−1)(t/n))‖2 = n‖ξt/n‖2 and ‖ξt‖2/t = σ 2 = const. Thus, the curve ξ can be

represented in the form ξt = σ 2µt , where the measure dµt with values in H
satisfies the condition µ(∆1)⊥ µ(∆2) for disjoint measurable sets ∆1,∆2 ⊂ R,

where ‖dµt‖2 = dt. Define a unitary operatorW :Hξ
0]→ L2(R+) by the formula

Wµt = ηt , then Vt =W∗StW , t ≥ 0.

Let V = (Vt)t≥0 be the semigroup of completely nonunitary isometrical op-

erators in Hξ
0] defined in Proposition 3.2.
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Proposition 3.3. The Markovian cocycle W determines a semigroup of iso-

metrical operators Ṽ = (W−tVt)t∈R+ in Hξ
0] with unit index. The Wold decom-

position Hξ
0] =H(1)⊕H(2) associated with the semigroup Ṽ can be done by the

condition H(2) =W−∞Hξ
0], where W−∞ = s− limt→+∞W−t .

Proof. It follows from Propositions 2.2 and 2.3 that there exists a limit

W−∞ = s− limt→+∞W−t such that the Markovian isometrical operator W−∞ sat-

isfies the condition Wtξt =W−∞ξt , t ≤ 0. Let H(1) be a subspace of Hξ defined

by the condition of orthogonality to all elements W−∞ξt , t ∈R. This subspace

is invariant with respect to the action of the group of unitaries WtUt , t ∈ R.

On the other hand, by means of the Markovian property forW−∞, the subspace

H(1) is orthogonal to all elementsW−∞ξt = ξt , t ≥ 0, and, therefore, H(1) ⊂Hξ
0].

Thus, we have proved that the subspace H(1) ⊂Hξ
0] is invariant with respect to

the group of unitaries (WtUt)t∈R. Hence, the restriction Vt|H(1) =W−tU−t|H(1) ,
t ≥ 0, consists of unitary operators. The subspace H(2) ⊂Hξ is determined by

the condition of orthogonality to H(1), which is H(2) = W−∞Hξ by the defini-

tion of H(1). In this way, the restriction V |H(2) is a semigroup of completely

nonunitary isometrical operators by means of Proposition 3.2.

4. A model of the Markovian cocycle for the process with noncorrelated

increments. Let S = (St)t∈R be a flow of shifts on the line acting by the formula

(Stη)(x) = η(x+ t), x,t ∈ R, η ∈ H = L2(R). The group S is naturally associ-

ated with the stochastic process ξt = χ[−t,0] with noncorrelated increments

such that ξt+s = ξt+Stξs , s,t ∈R. Let the subspace Ht] consist of functions f
with the support suppf ⊂ [−t,+∞). Then Ht] is generated by the increments

ξs−ξr , s,r ≤ t. The restrictions Tt = S−t|H0] , t ≥ 0, form the semigroup of right

shifts T . Every invariant subspace Tt�⊂�, t ≥ 0, can be described as an image

of the isometrical operator MΘ, �=MΘH0], where MΘ =�−1Θ�. Here � is the

Laplace transformation and Θ is a multiplication operator by Θ which is an in-

ner function in the semiplane Reλ≥ 0. Recall that a function Θ(λ) is said to be

inner if it is analytical in the halfplane Reλ≥ 0 and its modulus equals one on

the imaginary axis (see [32]). Denote by P[0,t], P[t,+∞), P�, and P�⊥ orthogonal

projections on the subspaces of functions with the support belonging to the

segment [0, t] and the interval [t,+∞), and on � and �⊥, respectively.

Proposition 3.3 shows that arbitrary perturbation of the group of shifts asso-

ciated with the process with noncorrelated increments by a Markovian cocycle

W is completely described by a unitary part R = Ṽ |H(1) of the semigroup of

isometries Ṽ = (W−tVt)t∈R+ . In the following theorem, we construct the Mar-

kovian cocycles resulting in the semigroup R which is unitarily equivalent to

the one we set. In this way, we introduce a model describing all Markovian

cocycles up to unitary equivalence of perturbations.

Theorem 4.1. Let R = (Rt)t∈R+ be a strongly continuous semigroup of uni-

taries in the space �⊥, where � is invariant with respect to the semigroup of
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right shifts T . Then the family of unitary operators (Wt)t∈R, defined for negative

t by the formula

W−tη=
(
RtP�⊥St−P�

)
P[t,+∞)η+MΘP[0,t]η, η∈H0],

W−tη= η, η∈H[0, t ≥ 0,
(4.1)

and extended for positive t by the formulaWt = StW∗
−tS−t , t ≥ 0, is a Markovian

cocycle such that limt→+∞W−tη = MΘη, η ∈ H0]. The semigroup R determines

a unitary part of the semigroup of isometries (W−tTt)t∈R+ in the space H0]

associated with it according to the Wold decomposition.

Proof. Notice that the projection P� and the isometrical operator MΘ are

commuting with the right shifts Tt = S−t , t ≥ 0, and the projections P[t,+∞).
Hence, the family of unitary operators W−tS−t = (RtP�⊥ − S−tP�)PH0]η +
(MΘP[0,t] + PH[0)S−t , t ≥ 0, forms a semigroup in H. The restriction Vt =
W−tS−t|H0] , t ≥ 0, is a semigroup of nonunitary isometrical operators in H0]

with the Wold decomposition H = �⊥ ⊕�. Really, the restriction Vt|� is in-

tertwined with the semigroup of right shifts by the isometrical operator MΘ

implementing a unitary map of H0] to � such that Vt|�MΘ = MΘTt , t ≥ 0.

Thus, V |� and T are unitarily equivalent. The restriction V |�⊥ = R. Therefore,

V = (W−tTt)t≥0 is the semigroup of nonunitary isometrical operators with unit

index and unitary part R.

Below, using the model of Markovian cocycle introduced in Theorem 4.1,

we construct the Markovian cocycle satisfying the property Wt− I ∈ s2, t ∈ R.

Cocycles of such type can be named inner for further applications in quantum

probability (see [3, 5, 6]). In fact, this condition appears, particularly, as the

condition of innerness for the quasifree automorphism of the Fermion algebra,

which is generated by the unitary operator W (see [3, 5, 31]). It is possible to

explain why this condition appears in the following way. Attempts to define a

measure in a Hilbert spaceH result in constructing the measure of white noise

on the space E∗ involved in the triple E ⊂H ⊂ E∗, where we denote by E∗ the

adjoint space of linear functionals on the space E which is dense inH (see [20]).

This situation is realized, particularly, if ξ ∈H are included in the parameter

set of the generalized stochastic process. Given ξ ∈ E, x ∈ E∗, denote by 〈x,ξ〉
the corresponding dual product. Notice that, if x ∈ H, then 〈x,ξ〉 = (x,ξ)
coincides with the inner product in H. Fix a positive bounded operator R in

the spaceH. Then there exists a space (Ω,µ)with the Gaussian measure µ such

that
∫
E∗ ei〈x,ξ〉dµ(x) = e−(ξ,Rξ), ξ ∈ E ⊂ H. Suppose that a unitary operator W

in H does not map elements of H but the measure µ to certain other Gaussian

measure µ̃ such that
∫
E∗ ei<x,ξ>dµ̃(x) = e−(ξ,W∗RWξ), ξ ∈ E ⊂ H. It is natural

to ask: when are the Gaussian measures determined by the operators R and

W∗RW equivalent? The Feldman criterion (see [16, 17]) gives the condition

(ξ,Rξ)−(ξ,W∗RWξ)= (ξ,∆ξ), where∆ is a Hermitian operator of the Hilbert-

Schmidt class. Thus, R−W∗RW ∈ s2, which can be rewritten as WR−RW ∈ s2.
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The condition of the type given above is satisfied for all positive operators R
if W − I ∈ s2. Notice that the condition of the Feldman type appears in [7] as

the condition of quasiequivalence for Gaussian states on the Boson algebra.

Let the inner function Θ involved in the condition of Theorem 4.1 be the

Blaschke product (see [32]) constructed from the complex numbers λk, 1≤ k≤
N ≤ +∞, in the following way. By means of [3, 4, 5], take real parts such that

Reλk < 0,
∑N
k=1 |Reλk| < +∞; imaginary parts can be chosen arbitrary, then

Θ(λ)=∏N
k=1((λ+λk)/(λ−λk)). The Blaschke product Θ(λ) is a regular analyt-

ical function in the semiplane Reλ > 0 and its module equals one on the imag-

inary axis. The corresponding subspace � of the Hilbert space H0] = L2(R+),
which is invariant with respect to the semigroup of right shifts, is determined

by the condition of orthogonality to all exponents eλkx , 1 ≤ k ≤ N. Let the

functions gk, 1 ≤ k ≤ N, be obtained by the successive orthogonalization of

the system eλkx . Then (gk,gl) = δkl and gk, 1 ≤ k ≤ N, form an orthonormal

basis of the space �⊥. Define a C0-semigroup of unitaries R = (Rt)t∈R by the

formula Rtgk = ei Imλktgk, 1≤ k≤N, t ∈R+.

Theorem 4.2. The Markovian cocycle W = (Wt)t∈R associated with the in-

ner function Θ and with the semigroup of unitaries R constructed above as in

Theorem 4.1 is inner, that is, it satisfies the condition Wt−I ∈ s2, t ∈R.

Corollary 4.3. Perturbing the semigroup of right shifts T by the inner

Markovian cocycle, it is possible to obtain the semigroup of isometrical operators

with the unitary part possessing the pure point spectrum we introduced.

Proof. The semigroup R is a unitary part of the semigroup (W−tTt)t∈R+
in the space H0] by means of Theorem 4.1. The point spectrum of R consists

of imaginary numbers i Imλk, 1≤ k≤N ≤+∞, which can be chosen arbitrary.

Proof of Theorem 4.2. Notice that W−tη−η = 0, η ∈ �⊥
0], t > 0. Thus,

we need to prove a convergence of the series
∑+∞
i=1‖W−tηi −ηi‖2 for an or-

thonormal basis (ηi)+∞i=1 of the space �0]. RepresentW−t−I|�0] as a sum of two

parts such that W−tη−η = (RtP�⊥St −P�⊥)P[t,+∞)η+ (MΘ− I)P[0,t]η, η ∈ H0],

t > 0, and prove a convergence of the series associated with these parts, that

is,

+∞∑
k=1

∥∥(RtP�⊥St−P�⊥
)
P[t,+∞)ηk

∥∥2 <+∞, (4.2)

+∞∑
k=1

∥∥(MΘ−I
)
P[0,t]ηk

∥∥2 <+∞. (4.3)

To check (4.2), it is sufficient to prove a convergence of the series
∑N
k=1‖(Rt−

P�⊥S∗t P�⊥)gk‖2, where the functions (gk)Nk=1 forming the orthonormal basis of

the space �⊥ are obtained by a successive orthogonalization of the exponents
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eλkx . One can represent Rt as a sum of R(1)t and R(2)t , where R(1)t gk = eλktgk,
R(2)t gk = (ei Imλkt − eλkt)gk, 1 ≤ k ≤ N, t > 0. Then the series

∑N
k=1‖(R(1)t −

P�⊥S∗t P�⊥)gk‖2 converges by the theorem on the triangulation of the truncated

shift (see [32]). Notice that
∑N
k=1 |ei Imλkt − eλkt| =

∑N
k=1 |1 − eReλkt| and the

last series converges because
∑N
k=1 |Reλk|<+∞. Therefore, R(2)t ∈ s1 (the first

Schatten class) such that

N∑
k=1

∥∥(Rt−P�⊥S∗t P�⊥
)
gk
∥∥2

≤
N∑
k=1

∥∥(R(1)t −P�⊥S∗t P�⊥
)
gk
∥∥2+

N∑
k=1

∥∥R(2)t gk
∥∥2 <+∞.

(4.4)

To prove (4.3), it is sufficient to find the set of functions fk(x), k ∈ Z, which

is dense in the space H[0,t] = P[0,t]H with the property that there exists a

bounded operator V with the bounded inverse V−1 such that the set of

functions (Vfk)+∞k=−∞ forms an orthonormal basis in H[0,t] and the series∑+∞
k=−∞‖(MΘ−I)fk‖2 <+∞ converges. The set of functions (fk)+∞k=−∞ satisfying

the property given above is called a Riesz basis of the space H[0,t]. A canonical

example of the Riesz basis is the set of exponents fk = eµkx , x ∈ [0, t], with

the indicators µk = −1/2|k| + i(2πk/t), k ∈ Z. Put fk(x) = 0 for x ∉ [0, t].
Then fk = f (1)k −f (2)k , where f (1)k = eµkx , x ∈R+, f (2)k = eµkx , x ≥ t, f (1)k (x)= 0,

x ∈ R−, and f (2)k (x) = 0, x < t. Using the Parseval equality for the Laplace

transformation and taking into account that the Blaschke product Θ is an iso-

metrical operator, we obtain

∑
k∈Z

∥∥(MΘ−I)fk
∥∥2

≤ 2
∑
k∈Z

(∥∥(MΘ−I
)
f (1)k

∥∥2+∥∥(MΘ−I
)
f (2)k

∥∥2
)

= 1
π

∑
k∈Z

(∥∥(Θ−I)f̃ (1)k
∥∥2+∥∥(Θ−I)f̃ (2)k

∥∥2
)

= 2
π

∑
k∈Z

{(∥∥f̃ (1)k
∥∥2−Re

(
Θf̃ (1)k , f̃ (1)k

))

+
(∥∥f̃ (2)k ‖2−Re

(
Θf̃ (2)k , f̃ (2)k

))}
,

(4.5)

where f̃ (1)k (λ) = 1/λµk and f (2)k = eµkt(e−tλ/(λ−µk)) are the Laplace trans-

formations of the functions f (1)k and f (2)k . Applying the analytical functions

techniques, we get

(
Θf̃ (i)k , f̃ (i)k

)
=Θ(−µk)∥∥f (i)k

∥∥2, i= 1,2. (4.6)
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Notice that

lnΘ(λ)=
N∑
k=1

(
ln
(

1+ λk
λ

)
− ln

(
1− λk

λ

))
=
∑N
k=1 Reλk
λ

+o
(

1
λ

)
. (4.7)

Hence,

Θ(λ)= 1+
∑+∞
k=1 Reλk
λ

+o
(

1
λ

)
. (4.8)

Substituting in (4.5) the formulas (4.6) and (4.8), we obtain

∑
k∈Z

∥∥(MΘ−I
)
fk
∥∥2 ≤ C1

∑
k∈Z

(
1−ReΘ

(−µk))

≤ C2

∑
k∈Z

1/2|k|
1/4k2+4π2k2/t2

≤ C3
1
|k|3 <+∞,

(4.9)

where C1, C2, and C3 are some positive constants.

5. Processes with independent increments in classical and quantum prob-

ability: Kolmogorov flows. Denote by �s(H) andσ1(H) the sets of linear Her-

mitian and positive unit-trace operators in a Hilbert space H. In the quantum

probability theory, the elements x ∈�s(H) and ρ ∈ σ1(H) are called random

variables or observables and states of the system, respectively. Consider the

spectral decomposition x = ∫ λdEλ of the random variable x ∈ �s(H), where

Eλ is a resolution of the identity in H. Then a probability distribution of x
in the state ρ ∈ σ1(H) is defined by the formula P(x < λ) = TrρEλ. Thus,

the expectation of x in the state ρ can be calculated as E(x) = Trρx (see

[21, 24]). Notice that the classical random variables from L∞(Ω) can be consid-

ered as linear operators of multiplication by the function in the Hilbert space

H = L2(Ω), where Ω is some probability space. A quantum stochastic process

(in the narrow sense of the word) is a strongly continuous family of operators

(unbounded in general) xt ∈ �s(H), t ∈ R—“quantum observables.” In appli-

cations (see [8, 9, 33]), one needs to require that the operators xt be closed and

have the invariant common domain which is dense in H. We will call the quan-

tum stochastic process a process with stationary increments if there exists

an ultraweak continuous one-parameter group of ∗-automorphisms αt , t ∈R,

of the algebra of all bounded operators in H such that xt+s = xt +αt(xs),
s,t ∈ R. We do not suppose that the operators xt are bounded and assume

that the action of α = (αt)t∈R is correctly defined on x = (xt)t∈R. The quan-

tum stochastic process with stationary increments xt is called a stationary

process if there exists x ∈ �s(H) such that xt = αt(x)−x, t ∈ R. As in the

case of classical stochastic processes, the quantum stochastic process which

is continuous in the square mean determines a continuous curve in the Hilbert

space with the inner product defined by the expectation. This curve will be

denoted by [x] = ([xt])t∈R. As we have identified continuous curves in a
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Hilbert space with classical stochastic processes, we obtain that a quantum

stochastic process x can be associated with the classical stochastic process

ξ = [x]. If x is a process with stationary increments or a stationary process

and the state ρ ∈ σ1(H) is invariant with respect to the action of the group α,

that is, Tr(ραt(a))= Tr(ρa), t ∈R, where a is an arbitrary linear combination

of the random variables xt , t ∈R, then the classical stochastic process ξ = [x]
is also stationary. The group of unitaries U shifting the increments ξ in time

is defined by the formula (Utξs,ξr ) = Tr(ραt(xs)xr ), s,t,r ∈ R. Because the

notion of expectation in the quantum probability theory plays a major role,

we will use it to define an independence in the classical probability theory and

also, for convenience, to pass to quantum probability in the following. The clas-

sical stochastic process x = (xt)t∈R is said to be a process with independent

increments or a Lévy process if the identity

E
(
φ1
(
xt1−xs1

)
φ2
(
xt2−xs2

)···φn(xtn−xsn))=
n∏
i=1

E
(
φi
(
xti−xsi

))
(5.1)

holds for arbitrary choice of functions φi ∈ L∞ and disjoint intervals (si,ti).
There are different approaches to a definition of the Lévy processes in quantum

probability (see [21, 24]). Anyway, besides that the condition (5.1) must be

satisfied, they involve certain additional conditions concerning the algebraic

structure of the process x. One of them is commutativity for increments, that

is,

[
xt1−xs1 ,xt2−xs2

]= 0 (5.2)

for disjoint intervals (si,ti). Condition (5.2) is associated with the bosonic in-

dependency and it is not a unique possibility (for the fermionic case, see [9]).

Notice that, for the quantum processes with independent increments, it is pos-

sible to define the representation of the Lévy-Hinchin type (see [22, 23]). For

convenience, we recall Definition 1.1. In formula (1.6), we mean that the inter-

section of σ -algebras contains only two events which are the empty set and

the whole space Ω. Let �t] be generated by the events associated with the sta-

tionary stochastic process ξs , s < t. The investigation of the conditions which

lead to the Kolmogorov flow generated by ξ is given in [25]. In particular, the

flow of the Wiener process is a Kolmogorov flow (see [20]). Notice that to ob-

tain the Kolmogorov flow from the stochastic process, it is not necessary to

require the independence of the increments. Consider the quantum stochastic

process with stationary increments x = (xt)t∈R. In the quantum probability

theory, a role of the σ -algebras of events is played by the von Neumann alge-

bras generated by the quantum random variables. In this way, the conditional

expectation is a completely positive projection on the von Neumann algebra

(see [21, 24]). Let �t] = {xs , s < t}′′ and �[t = {xs , s > t} be the von Neumann

algebras generated by the past before the moment t and the future after the
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moment t of the quantum stochastic process with stationary increments x.

Here A′ denotes the set of all bounded operators in H which are commuting

with the operators (not bounded in general) from the set A. Notice that the op-

erators xs , s ≤ t, and xs , s > t, are affiliated to the von Neumann algebras �t]

and �[t , respectively. It follows from the stationarity of the increments of the

process x that �t] = αt(�0]), t ∈ R, for the group α shifting the increments.

It is natural to call the group of automorphisms α a Kolmogorov flow on the

von Neumann algebra � if the conditions (1.4), (1.5), and (1.6) are satisfied,

where, in condition (1.6), the trivial σ -algebra {∅,Ω} is replaced by the trivial

von Neumann algebra {C1} containing only operators which are multiple of

the identity. Thus we obtain the condition of the algebraic Kolmogorov flow α
(see [15]).

For classical random variables ξ with Eξ = 0, the condition Dξ = Eξ2 = 0

means that ξ = 0 almost surely. The situation is different in the quantum

case. For a quantum random variable x with Ex = 0, the equality Dx = Ex2 =
Trρx2 = 0 does not imply that x = 0. The property of this type characterizes

the expectation E= Eρ . If the situation appears, that is, Trρx = 0 implies x = 0

for all positive operators x belonging to a certain algebra �, then ρ is said to

determine a faithful state E(·)= Trρ· on �.

Proposition 5.1. Let the expectation E(·)= Trρ· determine a faithful state

on the von Neumann algebra � generated by the stationary increments of the

quantum stochastic process satisfying the condition (5.1). Then the group of

automorphisms α shifting the increments in time is a Kolmogorov flow.

Proof. Let x ∈ ∩t�t], then given y ∈ ∪t�[t = �, condition (5.1) implies

that E((x−E(x))y) = E(x−E(x)1)E(y) = 0 = Trρ(x−E(x))y . Put y = x−
E(x). Because the state ρ is faithful, it follows that the identity Trρ(x−E(x))2
= 0 implies x = E(x)∈ {C1}.

In the following section, we will give an important example of the algebraic

Kolmogorov flow, which complements the example of Proposition 5.1 in some

sense.

6. Cohomology of groups as a language describing the perturbations of

the space of all functionals from stochastic process. We recall some notion

of the cohomology of groups (see, e.g., [12, 18]). Define a certain actionα of the

real line R as an additive group on the algebra �. The element I ∈Hom(Rk,�)
is said to be (additive) (k−α)-cocycle if the following identity is satisfied:

αt1I
(
t2, t3, . . . , tk+1

)−I(t1+t2, t3, . . . , tk+1
)+···

+(−1)iI
(
t1, . . . , ti−1, ti+ti+1, ti+2, . . . , tk+1

)+···
+(−1)k+1I

(
t1, . . . , tk

)= 0,

(6.1)



ON MARKOVIAN COCYCLE PERTURBATIONS . . . 3459

ti ∈ R, 1 ≤ i ≤ k+1. The (k−α)-cocycle I is said to be a coboundary if there

exists an element J ∈Hom(Rk−1,�) such that

I
(
t1, . . . , tk

)=αt1(J(t2, . . . , tk))−J(t1+t2, . . . , tk)+···
+(−1)iJ

(
t1, . . . , ti−1, ti+ti+1, ti+2, . . . , tk

)+···
+(−1)k+1J

(
t1, . . . , tk−1

)
,

(6.2)

ti ∈ R, 1 ≤ i ≤ k. Denote by Ck and Bk the sets of all additive (k−α)-cocycles

and (k−α)-coboundaries, correspondingly. ThenHk =Hk(α)= Ck/Bk is called

a kth group of cohomologies of α with values in �. Define a cohomological

multiplication ∪ :Hk×Hl→Hk+l by the formula

(
Ik∪Il

)(
t1, . . . , tk+l

)= Ik(t1, . . . , tk)αt1+···+tk
(
Il
(
tk+1, . . . , tk+l

))
, (6.3)

Ik ∈ Ck, Il ∈ Cl, ti ∈R, 1≤ i≤ k+l. The group H =H(α)=⊕+∞i=1Hi is a graded

ring with respect to the multiplication∪. Notice that a group of 0-cohomologies

was omitted because we do not need it in the following. Now let α and α′ be

two actions on the algebra �. We will say that the rings H(α) and H(α′) are

isomorphic if there is a one-to-one correspondencew :H(α)→H(α′)mapping

each Hk(α) to Hk(α′) and the action of α to the action of α′.
The one-parameter family of automorphisms w = (wt)t∈R of the algebra

� is said to be a (multiplicative) α-cocycle if the following condition holds:

wt+s = wt ◦αt ◦ws ◦α−t , s,t ∈ R, w0 = Id. We will call a multiplicative α-

cocycle Markovian with respect to a certain set � of additive (1−α)-cocycles

I(t)∈ � if the condition wt(I(t+s)−I(t))= I(t+s)−I(t), t,s ≥ 0, is satisfied.

The following proposition can be considered as some “abstract generalization”

of the properties of the Markovian perturbations we have described in the

previous sections.

Proposition 6.1. Let the ring A ⊂ H(α) be generated by a set of additive

(1−α)-cocycles I(t) ∈ � and the multiplication ∪. Then, a multiplicative α-

cocycle w which is Markovian with respect to � determines the homomorphism

of A into H(α′), where the group α′ is defined by the formula α′t = wt ◦αt ,
t ∈ R. The image A′ of this homomorphism is a ring generated by the set of

additive (1−α′)-cocycles I′(t)=wt(I(t)), t ≤ 0, I′(t)= I(t), t > 0, I(t)∈ �.

Proof. Check that I′(t) = wt(I(t)) satisfies the condition for a (1−α′)-
cocycle. Fix s,t > 0 and notice that

w−s
(
I(−s))=w−s−t+t

(
I(−s))

=w−s−t ◦α−s−t ◦wt ◦αs+t
(
I(−s))

=w−s−t ◦α−s−t ◦wt
(
I(t)−I(s+t))

=w−s−t ◦α−s−t
(
I(t)−I(s+t))

=w−s−t
(
I(−s))

(6.4)
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by means of the cocycle condition and the Markovian property for w. There-

fore,

w−t−s
(
I(−t−s))=w−t−s

(
I(−t)+α−t

(
I(−s)))

=w−t−s
(
I(−t))+w−t−s ◦α−t

(
I(−s))

=w−t
(
I(−t))+w−t ◦α−t ◦w−s

(
I(−s))

= I′(−t)+α′−t
(
I′(−s)).

(6.5)

Using the Markovian property of w, we obtain I′(t) = I(t) = −αt(I(−t)) =
−wt ◦αt ◦w−t(I(−t))=−α′t(I′(−t)), t > 0, because wt ◦αt ◦w−t ◦α−t = Id due

to the cocycle condition for w.

We give examples showing how the language of the theory of cohomology of

groups can describe the set of all functionals from the classical and quantum

stochastic processes with the stationary independent increments.

6.1. The Wiener process. Consider the Wiener process {B(t), t ∈R} imple-

mented on the probability space (Ω,µ). Let S = (St)t∈R be the group of trans-

formations shifting the increments of the process in time. Then the Wiener

process satisfies the condition of the additive (1−S)-cocycle, that is, B(t+s)=
B(t)+St(B(s)), s,t ∈R. Consider the ring of cohomologies H(S) for the group

S with values in L∞(Ω). Then the Wiener process B(t) generates the subring

A⊂H(S). Denote by � the Hilbert space of all L2-functionals from the Wiener

process. As it is known, one can define for � the Wiener-Itô decomposition

� = ⊕+∞i=0�i in the orthogonal sum of spaces formed by polynomials of in-

creasing degrees (see, e.g., [20]). Notice that the representation of the graded

ring A as the sum of cohomologies of all degrees A=⊕+∞i=1Ai is a cohomolog-

ical analog of the Wiener-Itô decomposition. Take a function a(x) ∈ L2
loc(R)

and determine a one-parameter family of linear maps w = (wt)t∈R acting on

A by

wt
(
B(t+s)−B(t))= B(t+s)−B(t), s ≥ 0,

wt
(
B(s)

)= exp
{
− 1

2

∫ s
0
a(x)dB(x)− 1

4

∫ t
0

∣∣a(x)∣∣2dx
}

·
(
B(s)+

∫ t
0
a(x)dB(x)

)
, s ≤ t.

(6.6)

Every wt defines a unitary transformation in the space of L2-functionals of

the white noise (see [20]) and satisfies the property for the Markovian cocycle

by the definition. Thus the following proposition holds.

Proposition 6.2. The family w is a Markovian cocycle.

6.2. Quantum noises. Let G be a certain Lie algebra with the involution.

Then (see [36]) there exists a one-parameter family of ∗-homomorphisms
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j : x → jt(x) ∈ �(H) mapping each element x ∈ G to a strongly continu-

ous one-parameter family of operators jt(x), t ∈ R, in the symmetric Fock

space � =�(L2(R,�)) over the one-particle Hilbert space L2(R,�) consisting

of functions on the real line with values in the Hilbert space �. Every homo-

morphism jt preserves the commutator such that [jt(x),jt(y)] = jt([x,y]),
x,y ∈ G, and satisfies the condition of additive (1−α)-cocycle with respect

to the group of automorphisms α generated by the group of shifts in the

space L2(R,�). Then j can be extended to a ∗-homomorphism of the univer-

sal enveloping algebra �(G) determining the quantum Lévy process. Notice

that the classification of possible Lévy processes over Lie algebras is given

in [30, 37]. The extension to a universal enveloping algebra is constructed in

[19]. In the case if jt(x)∈�s(�), t ∈R, under fixed x ∈G, the one-parameter

family xt = jt(x), t ∈ R, is the quantum stochastic process in the sense of

the definition given in Section 5. Moreover, xt = jt(x) is the process with in-

dependent increments, where the independence means that the conditions

(5.1) and (5.2) of Section 5 are satisfied. Nevertheless, we will consider the

curves xt = jt(x), t ∈ R, consisting of non-Hermitian operators as well. The

scope of all curves xt = jt(x), x ∈ G, will be named a quantum noise be-

cause the increments of all curves xt are independent. Notice that the quan-

tum stochastic processes jt(x) can play the roles of the Wiener and Pois-

son processes in the quantum case (see [21, 24, 33] for references and com-

ments). Consider the ring of cohomologies A generated by additive (1−α)-

cocycles jt(x), x ∈ G. Notice that the Fock space can be factorized such that

�(L2(R,�))=�(L2(R+,�))⊗�(L2(R−,�)). In the following, we construct the

example of a multiplicative α-cocycle generating the homomorphism of A
which uses this factorization. Put w−t(·) = Wt ⊗ I ·W∗

t ⊗ I, t ≥ 0, where the

family of unitary operators Wt , t ≥ 0, in the Fock space �(L2(R+,�)) satis-

fies the quantum stochastic differential equation constructed in [33, Example

25.17, page 198], that is,

dW =W(dA+m+dΛU−1−dAU−1m−
1
2
〈〈m,m〉〉), (6.7)

where A+m and Am are the basic processes of creation and annihilation, re-

spectively, generated by a functionm∈�, and ΛU−1 is the number of particles

process generated by a unitary operator U (see [33]).

Let �t] and �[t be the von Neumann algebras generated by the increments

of the quantum noise jt(x), x ∈ G, before the moment of time t and after

the moment of time t, respectively. Then, for the von Neumann algebra �

generated by all operators jt(x), x ∈ G, t ∈ R, we obtain � = ∨t�t] = ∨t�[t ,

where �t] =αt(�0]), t ∈R.

Proposition 6.3. Let the von Neumann algebra � generated by increments

of the quantum noise jt(x), x ∈ G, be a factor. Then the group of automor-

phisms α is a Kolmogorov flow on �.
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Proof. Take x ∈ ∩t�t] ⊂ �. The increments of the quantum noise are

independent quantum random variables by the condition of the proposition.

Hence, the algebra �[t belongs to the commutant of the algebra �t]. There-

fore, the operator x is commuting with all operators y ∈ ∪t�[t = �. As the

von Neumann algebra � is a factor, that is, �∩�′ = {C1}, we get x = const1.

Notice that in the applications the algebra � is often the algebra of all

bounded operators, that is, the factor of type I. In this case, the condition

of Proposition 6.3 is satisfied. Take into account that the expectation in the

quantum case is often determined by a pure state ρ such that E(x)= (Ω,xΩ).
Here Ω is some vector in the Hilbert space �, where the operators x act. The

pure state on the algebra of all bounded operators in � cannot be faithful (see

[11]). Hence, Proposition 6.3 complements Proposition 5.1.

7. Markovian perturbations of stationary quantum stochastic processes.

At first, we will generalize the definition of the quantum stochastic process

given in Section 5. Following [2], a quantum stochastic process will refer to the

one-parameter family of ∗-homomorphisms j = (jt)t∈R from certain algebra

with the involution 	 to the algebra of linear (unbounded in general) operators

�(H) in some Hilbert space �. We will suppose that j0(x) = 0, x ∈	. For 	,

one can, in particular, take a certain Lie algebra. Consider the minimal von Neu-

mann algebra � generated by all operators jt(x), x ∈	, such that �={jt(x),
x ∈	}′′, where ′ denotes the commutant in the algebra 
(H) consisting of all

bounded operators in �. For fixed s,t ∈ R, we denote by �t], �[t , and �[s,t]

the von Neumann algebras generated by the operators {jt(x)−jr (x), r ≤ t},
{jr (x)− jt(x), r ≥ t}, and {jr (x)− jt(x), s ≤ r ≤ t}, respectively. Further,

we will assume that the state ρ > 0, Trρ = 1, determining the expectation

E(y) = Trρy for quantum random variables y ∈ � is fixed. Moreover, let �

be in “the standard form” with respect to the state ρ, that is, the Hilbert space

�, where � acts, is defined by the map x → [x] from � to the dense set in

� such that the inner product is given by the formula ([x],[y]) = E(xy∗),
x,y ∈ �. The quantum stochastic process j is said to be stationary if there

exists a group of automorphisms αt ∈ Aut(�), t ∈ R, whose actions are cor-

rectly defined on the operators js(x), 	 such that αt(js(x))= js+t(x), x ∈	,

and the expectation E(·) is invariant with respect to the group α = (αt)t∈R,

that is, E(αt(y))= E(y), y ∈�. The stationary quantum stochastic process is

a particular case of the quantum stochastic process with the stationary incre-

ments generated by ∗-homomorphisms jt which determine the curves jt(x)
being additive (1−α)-cocycles for every fixed x ∈ 	. For the example of the

quantum stochastic process with stationary increments, the quantum noise

can be chosen. We will suppose that α has ultraweak continuous orbits; that

is, all functions η(αt(y)) are continuous in t for arbitrary η∈�∗, y ∈�. The

one-parameter family of ∗-automorphisms wt , t ∈R, of the algebra � is said
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to be a (multiplicative) Markovian α-cocycle if the following two conditions are

satisfied:

(i) ws+t =ws ◦αs ◦wt ◦α−s , s,t ∈R,

(ii) wt(x)= x, x ∈�[t , t ≥ 0.

Notice that if the von Neumann algebra �[t is generated by the increments

of the quantum noise {jt(x), x ∈	} the Markovian cocycle w in the sense of

the definition given here is a cocycle, being Markovian with respect to the set

{jt(x), x ∈	} in the sense of the definition of Section 6.

Proposition 7.1. Let jt(x), x ∈ 	, and w be the quantum noise and the

Markovian cocycle, respectively. Suppose that w does not change values of

the expectation E determining the probability distribution of j. Then the one-

parameter family of homomorphisms j̃t(x) = wt ◦ jt(x), t ≤ 0, and j̃t(x) =
jt(x), t > 0, x ∈ 	, is the quantum noise isomorphic to the initial one. In par-

ticular, the processes j̃t(x), x ∈	, have independent increments.

Proof. The quantum noise j is a quantum stochastic process with inde-

pendent increments. Denote by α the corresponding group of automorphisms

shifting the increments in time. Then, due to Proposition 6.1, j̃t(x) is an ad-

ditive (1− α̃)-cocycle for each fixed x ∈ 	, where the group α̃ consists of au-

tomorphisms α̃t =wt ◦αt , t ∈R. By means of property (5.2) guaranteeing the

independence of increments of the quantum noise j, we obtain the commuta-

tor

[
jt1
(
x1
)−js1(x1

)
,jt2

(
x2
)−js2(x2

)]= 0 (7.1)

for all x1,x2 ∈	 and disjoint intervals (s1, t1) and (s2, t2). We will prove that

this property holds for the process j̃ also. For s1, t1, s2, and t2, (7.1) takes place

because j̃r (x) = jr (x), x ∈ 	, r ≥ 0. The identity for the case where at least

one of s1, t1, s2, and t2 is less than zero can be obtained by applying the auto-

morphisms α̃−r =w−r ◦α−r , r > 0, to formula (7.1). In fact, the automorphism

α̃−r shifts the increments for r units backward, and formula (7.1), which is true

for the process j̃ with positive values s1, t1, s2, and t2, automatically appears to

be true for negative values. Moreover, arguing in the way given above, it is easy

to obtain that all algebraic properties satisfied for the operators jt(x), x ∈	,

t ∈ R, are also satisfied for the operators j̃t(x), x ∈ 	, t ∈ R. It remains to

check the condition of independence (5.1) for increments of the process j̃. But

it holds because it is true for the process j and the expectation is invariant with

respect to the action of the cocycle w by the condition. Thus, the processes j
and j̃ are isomorphic.

Consider the restriction βt = α−t , t ∈ R+, to the subalgebra �0] which is

invariant with respect to the action of α−t , t ∈ R+. The unital semigroup

β = (βt)t∈R+ consists of the endomorphisms of �0] possessing the property

β(�0]) ≠ �0] and has the orbits continuous in the sense that η(βt(x)) is a
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continuous function for all η∈�0]∗, x ∈�0]. Hence, β is an E0-semigroup by

the definition introduced in [34]. If α is a Kolmogorov flow, the E0-semigroup

β is a semiflow of Powers shifts, that is, each βt , t > 0, is a Powers shift [34]

such that ∩n∈Nβtn(�0]) = {C1}, t > 0 (see [14]). Notice that the Markovian

cocycle w generates a new group of automorphisms α̃t = wt ◦αt, t ∈ R, on

the von Neumann algebra � and a new E0-semigroup β̃t =w−t ◦βt , t ∈R+, on

the von Neumann algebra �0]. Recall that the conditional expectation of the

unital algebra � onto the unital algebra � ⊂ � is a completely positive pro-

jection of � onto � (see, e.g., [21, 24]). Using the techniques in [13], one can

exclude the maximum subalgebra of the algebra �0] such that the restriction

of the semigroup β̃ to it is a semigroup of automorphisms and there exists

a conditional expectation onto this algebra. The quantum random variables

j̃t(x)=wt ◦jt(x), x ∈	, generate the von Neumann subalgebras �̃ = {j̃t(x),
x ∈ 	, t ∈ R}′′ and �̃+ = {j̃−t(x), x ∈ 	, t ∈ R+}′′ of the algebras � and

�0], respectively. Suppose that � is a factor. Then, due to Proposition 6.3, α
is a Kolmogorov flow on �, and by means of Proposition 7.1, the restriction

α̃|�̃ is also a Kolmogorov flow. Thus, β̃|�̃+ is a semiflow of Powers shifts. The

Wold decomposition (3.1) allows to uniquely determine the stochastic process

with noncorrelated increments associated with the stationary process. In the

following theorem we establish the possibility to exclude a restriction of the

group of automorphisms obtained by a perturbation of the Kolmogorov flow

generated by the quantum noise, which is isomorphic to the initial Kolmogorov

flow. In this way, our conjecture can be considered as some analogue of the

Wold decomposition for the quantum case.

Theorem 7.2. Let the group of automorphisms α̃ on the von Neumann

factor � be obtained through a Markovian cocycle perturbation of the Kol-

mogorov flow generated by the quantum noise j with the expectation defining

the probability distribution, which is invariant with respect to the Markovian

cocycle w. Then there exists a subfactor �̃ ⊂ � such that the restriction α̃|�̃
is the Kolmogorov flow generated by the quantum noise j̃ which is isomorphic

to the initial one. The limit limt→+∞w−t = w−∞ correctly defines a normal ∗-

endomorphism w−∞ with the property �̃ =w−∞(�), j̃t =w−∞◦jt , t ∈R.

Proof. The first part of the theorem follows from Proposition 7.1. We will

prove that there exists the limit limt→+∞w−t = w−∞ defining the normal ∗-

endomorphism on � with the properties we claimed. Notice that w−t−s(y) =
w−t(y), y ∈�t]. It follows that the limit exists on the dense set of elements.

In the following, we will prove that it exists. The formulas (Ut[x],[y]) =
E(αt(x)y∗) and (Wt[x],[y])= E(wt(x)y∗), x,y ∈�, define a strongly con-

tinuous group U = (Ut)t∈R of unitary operators in � and a unitary U -cocycle

W = (Wt)t∈R, respectively. Let �[t be a subspace of � generated by the el-

ements [x], x ∈ �[t . Then Wtξ = ξ, ξ ∈ �[t , t ≥ 0, by means of the Mar-

kovian property for w. Therefore, W is a Markovian U -cocycle in the sense
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of the definition of Section 2, and the limit s− limt→+∞W−t =W−∞ exists due

to Proposition 2.2. Notice that wt(x) = WtxW∗
t , where x ∈ � and t ∈ R. It

implies that w−t−s(x)ξ = W−t−sxW−t−sξ = W−t−sxW−tξ → W−∞xW−tξ, where

x ∈ �, ξ ∈ �[−t , and s → +∞. Hence, the limit limt→+∞w−t(x)ξ exists for a

dense set of the elements ξ ∈ �. Because w−t is an automorphism, we get

‖w−t(x)‖ = ‖x‖. Therefore, the strong limit s− limt→+∞w−t(x) is defined by

the Banach-Steinhaus theorem for all x ∈�. Moreover, the limiting map w−∞
preserves the identity because all w−t satisfy this property and ‖w−∞‖ = 1. In

this way, the map w−∞ is positive (see [11]). On the other hand, w−∞ is a nor-

mal∗-endomorphism for it is a limit of the series of normal ∗-automorphisms

w−t . Thus, w−∞ is completely positive. Notice that w−∞(�0])= �̃0]. The Mar-

kovian property givesw−t−s(y)=w−t(y), where y ∈�[−t and s,t ≥ 0. Due to

Proposition 7.1, j̃−t = w−t ◦ j−t , t ≥ 0. Hence, j̃−t = w−t−s ◦ j−t = w−∞ ◦ j−t ,
t ≥ 0. For positive values of time, j̃t = jt = w−∞ ◦ jt , t ≥ 0, by means of

w−t(y)=w−∞(y)=y , where t ≥ 0 and y ∈�[0.
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