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We consider a linear dynamical system with delay and uncertainty in initial data
and movement and measurement equations. We present an algorithm of estimat-
ing an interval of possible values of functionals on solutions. We construct sub-
optimal weight functions in integral observation operators to minimize a sure
estimation.
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1. Introduction and problem statement. Theory of time-delay systems with

uncertainties has a wide bibliographies. We cite only some papers which con-

tain more detailed bibliographies [1, 2, 3, 5, 6, 7, 9, 10]. Due to applied prob-

lems of observation and estimation theory in the infinite-dimensional case,

only limited (finite-dimensional) information is known about the phase state or

the trajectory, and the values of other given functionals are to be determined.

With present uncertainties, it is natural to look for intervals of possible values.

By choosing the weight functions for measurements processing, it is useful to

minimize the error estimation. This paper may be considered as the realization

of common ideas of numerical analysis for the considered problem.

Let the functional differential equations

ẋ(t)= f (t,x(t),xt,u(t),µ(t)), y(t)= g(t,x(t),xt,ν(t)) (1.1)

model the movement law and accessible information about the motion. Here,

x(t) ∈ Rn, y(t) ∈ Rm, t ≥ 0, xt = xt(·) : [−h,0] → Rn, xt(θ) = x(t + θ),
θ ∈ [−h,0], u(t) is the control, µ(t) and ν(t) are the perturbation of the

movement equation and measurements errors. Components f and g are lin-

ear bounded functionals. Detailed theory of functional differential equations

is presented, for instance, in [4]. Firstly, general ideas of the paper will be dis-

cussed. Consider the following problem: construct an algorithm which allows

to determine an interval of possible values of a functional J = J(x(s),xs,µ(·))
using any accessible measurements y(·). As for J, we can use the components

of a vector x(s), projections (Fourier coefficients) of elements xs , µ(·), and so

on. Suppose that the initial data x(0) and x0(·), and noises µ(·) and ν(·) are

unknown, but limited by a priori given ellipsoid.
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Explicit description of a set {(x(s),xs)} in a general case seems impossi-

ble. Restrictions on x(0), x0(·), µ(·), and ν(·) theoretically allow estimating

the phase state (x(s),xs) in a norm, and obtain an estimation of the possi-

ble values of the functional J. But due to possible “gluing” effect of solutions

of time-delay equations, the initial ellipsoid by the time s may “lose a dimen-

sion” and such estimation of J will be for sure rough. To store a continuum of

values of y(t) is practically impossible; thus we will assume that during the

measuring, a signal y(t) goes to integrators, and weightened integral sums Ji,
1≤ i≤ �, are accumulated. The problem appears in a general form as estimat-

ing possible values of a given functional using known values of others. Such

problems, interpolation, quadratures, and so forth are classical in numerical

analysis.

Using a technique of conjugate equations, J and Ji can be represented ex-

plicitly as functionals on the initial data x(0), x0(·), µ(·), and ν(·). This allows

finding precise estimations of possible values of J. Moreover, such representa-

tion is reasonable from the point of view of stability analysis of J and Ji with

respect to variations of the initial data and the noises. The geometrical consid-

eration of realized values of Ji = γi, 1≤ i≤ �, is in the fact that an interval of

values J is calculated as a “length of run” of a plane, corresponding to J, on

an intersection of sections of the initial ellipsoid by � planes.

For simplicity, some generalizations for the case of considering uncertainty

of both the initial data and the noises will be given at the end of the paper.

Firstly, a particular case will be considered: when a main perturbation is of

uncertainty of the initial data, the noises in the movement equations and the

measurements errors are sufficiently small and can be ignored. Here is the

model of the typical application case:

ẋ(t)=
N∑
j=0

Ajx
(
t−hj

)+∫ 0

−h
A(θ)x(t+θ)dθ+Bu(t), t ≥ 0, (1.2)

x(0)= x0, x(τ)= x0(τ), τ ∈ [−h,0), x̂0 =
(
x0,x0(·)

)∈M2, (1.3)

y(t)=Gx(t), rankG =m<n, 0= h0 <h1 < ···<hN = h. (1.4)

Here, M2 =Rn×Ln2 [−h,0], matrices Aj , B, and G of dimensions n×n, n×n1,

and m×n are constant, elements of A(·) and components of a given vector

function (control) u(·) are piecewise continuous on the considered time seg-

ment [0, t∗]. Initial data x̂0, consisting of a starting point x0 and necessary for

(1.2) history x0(·), are unknown.

The solutions of (1.2) are understood as almost everywhere on a segment

[0, t∗] (rather large compared to [0,h]), where M2 =Rn×Ln2 , x̂t = (x(t),xt)=
(x(t),x(t+·))∈M2, serves as a phase space. This is because the history influ-

ences the movements integrally. The dependence on the initial data x(t; x̂0,0)
and x̂t(x̂0,0) is noted in a standard way. Vectors x(0) and x0(0) are, in a

general case, different. A change in values of x0(τ) on a zero measure set in
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[−h,0] does not change the movement x(t), t ≥ 0. The solution x(t) is ab-

solutely continuous on [0, t∗] (moreover, it belongs to H1([0, t∗],Rn)), thus

it is convenient to identify a class xt ∈ L2([−h,0],Rn) with its continuous

representative on [−t,0]∩[−h,0]. Then xt(0)= x(t), for t > 0.

Fix a natural r ≥ 1, and consider the problem of determination of all possible

values of a given functional (projection x̂rh)

J = p0′x(rh)+
∫ 0

−h
p′(τ)x(rh+τ)dτ = 〈p̂, x̂rh〉M2

. (1.5)

Here, rh≤ t∗, p̂ = (p0,p(·))∈M2. Let the initial phase uncertainty be limited:

〈
x̂0, x̂0

〉
Q = x0′Q0x0+

∫ 0

−h
x′0(τ)Q(τ)x0(τ)dτ ≤ κ̄2. (1.6)

The matrix Q(t) is piecewise continuous. Matrices Q(t) and Q0 are symmetri-

cal and positively defined. It is not necessary that Q0 =Q(−0).
We suggest that while information y(t) arrives on a time segment [0,(r −

1)h], the following functionals are calculated:

Ji =
r−1∑
j=1

〈
k̂ij , ŷij

〉= r−1∑
j=1

(
k0′
ijy(jh)+

∫ 0

−h
k′ij(τ)y(jh+τ)dτ

)

=
r−1∑
j=1

k0′
ijy(jh)+

∫ ρ
0
K′i(τ)y(τ)dτ, ρ = (r −1)h,

(1.7)

ŷjh =
(
y(jh),y(jh+·)), k̂ij =

(
k0
ij ,kij(·)

)∈ M̃2 =Rm×Lm2 , (1.8)

Ki(jh+τ)= kij(τ), τ ∈ [−h,0], 1≤ j ≤ r −1, 1≤ i≤ �. (1.9)

We detail the problem. We need an algorithm for determining a segment of

possible values of J by known available values of observation (measure pro-

cessing) functionals Ji, 1 ≤ i ≤ �. The a priori restrictions on unknown initial

data x̂0 are taken into account. In case p(·) = 0 (zeros are all named by one

symbol) then, varying p0 ∈ Rn, one obtains the components (projections) of

the position x(s) at time s = rh. When p0 = 0, these are the phase state projec-

tions xrh in L2 (Fourier coefficients). Some vector weight coefficients k0
ij and

functions kij(·) may be zero if, for instance, no measurements on appropri-

ate time segment are made or if the measurements made are unreliable. In

particular, it is possible that only discrete measurements y(jh) are used, and

then all kij(·)= 0. Elements of k̂ij ∈ M̃2 are determined by the properties of a

certain technical device.

2. Necessary functional representations. Values of the functionals J and

Ji are determined by the unknown initial data x̂0. Thus for estimating J by
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the values of Ji, it is reasonable to obtain representations J = J(x̂0) and

Ji = Ji(x̂0). This will allow not only estimating the initial data variation im-

munity of the functionals, but also obtaining the precise estimations of the

possible values of J (in case initial limitations of the problem are considered

precise). The appropriate transforms are based on the following natural idea.

If a functional J is given, J = 〈p̂, x̂rh〉M2 = 〈p̂,�x̂0〉M2 , then it is necessary to

find an operator � and “move it to an argument p̂,” determining a conjugate

�∗. In a general case, the representations Ji = Ji(x̂rh) are impossible because

model (1.2) is not integrable when time decreases.

We define for a homogeneous (i.e., when u(·) = 0) dynamical system with

the time-delay (1.2) a shift operator and a conjugate to it:

T ,T∗ :M2 �→M2, T x̂0 = x̂h
(
x̂0,0

)
,〈

â,T ẑ
〉
Q =

〈
T∗â, ẑ

〉
Q ∀â, ẑ ∈M2.

(2.1)

A scalar product 〈·,·〉Q is defined in (1.6).

Let us find the convenient representation of the operator T∗. Fix any vector

function V(·)∈H1([−h,0],Rn), where the components of V(·) are absolutely

continuous and their derivatives (they exist almost everywhere in a classical

sense) are square integrable. Denote x(·) = x(·; ẑ,0). The aim of the follow-

ing transforms is to move the integrals in an inner product 〈â,T ẑ〉 from the

argument ẑ to â by integration by parts:

〈
â,T ẑ

〉
Q = a0′Q0x(h)+

∫ 0

−h
a′(τ)Q(τ)x(h+τ)dτ

+
∫ 0

−h
V ′(τ)

ẋ(h+τ)−
N∑
j=0

Ajx
(
h−hj+τ

)

−
∫ 0

−h
A(θ)x(h+τ+θ)dθ

dτ
= a0′Q0x(h)+

∫ h
0
a′(s−h)Q(s−h)x(s)ds+V ′(0)x(h)

−V ′(−h)x(0)−
∫ h

0
V̇ ′(s−h)x(s)ds

−
N∑
j=0

∫ h−hj
−hj

V ′
(
s−h+hj

)
Ajx(s)ds

−
∫ 0

−h
V ′(τ)

{∫ h+τ
τ

A(s−h−τ)x(s)ds
}
dτ

= V ′(0)x(h)−V ′(−h)x(0)

+
∫ h

0

(
a′(s−h)Q(s−h)− V̇ ′(s−h))x(s)ds+a0′Q0x(h)
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−
N∑
j=0

{∫ 0

−hj
V ′
(
s−h+hj

)
Ajx(s)ds

+
∫ h−hj

0
V ′
(
s−h+hj

)
Ajx(s)ds

}

−
∫ 0

−h
V ′(τ)

{∫ 0

τ
A(s−h−τ)x(s)ds

}
dτ

−
∫ 0

−h
V ′(τ)

{∫ h+τ
0

A(s−h−τ)x(s)ds
}
dτ.

(2.2)

Redefine A(·) and V(·) as zero outside of [−h,0] and choose V(·) on [−h,0]
such that in the last equality there are no values of x(t) when t ∈ (0,h]. This

demand implies the following equation:

V̇ (t)=−
N∑
j=0

A′jV
(
t+hj

)−∫ 0

−h
A′(t−τ)V(τ)dτ+Q(t)a(t),

t ∈ [−h,0], V(0)=−Q0a0, V(τ)= 0, A(τ)= 0, τ ∉ [−h,0],
(2.3)

which is integrable (at least numerically) from right to left on a time segment

[−h,0]. Due to the choice of V(·) according to (2.3), we obtain

〈
â,T ẑ

〉
Q =−V ′(−h)x(0)−

N∑
j=0

∫ 0

−h
V ′
(
s−h+hj

)
Ajx(s)ds

−
∫ 0

−h
V ′(τ)

{∫ 0

−h
A(s−h−τ)x(s)ds

}
dτ = 〈ĉ, ẑ〉Q,

c(t)=−Q−1(t)


N∑
j=0

A′jV
(
t−h+hj

)+∫ 0

−h
A′(t−h−τ)V(τ)dτ

,
(2.4)

V(τ)= 0, A(τ)= 0, τ ∉ [−h,0]. Thus, by definition,

T∗â= ĉ, ĉ = (c0,c(·)), c0 =−Q0−1V(−h). (2.5)

The value of the conjugate operator T∗ on the element â∈M2 is determined

by the solution V(·) of system (2.3), which is called conjugate to (1.2). The

representation of J = J(x̂0) in a homogeneous case (when u(·)= 0) is written

in the form

J = 〈p̂, x̂rh〉M2
= 〈Q̂−1p̂,T r x̂0

〉
Q =

〈
T∗r Q̂−1p̂, x̂0

〉
Q. (2.6)

Here the following notation is defined: Q̂−1p̂ = (Q0−1p0,Q−1(·)p(·))∈M2.
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Now, using T∗, transform the functional J on the solutions of the perturbed

movement equation (1.2) with u(·)≠ 0:

J = 〈p̂, x̂rh〉M2

= 〈Q̂−1p̂, x̂rh
〉
Q

= 〈T∗Q̂−1p̂, x̂(r−1)h
〉
Q−

∫ 0

−h
V ′r (τ)Bu(rh+τ)dτ

= 〈T∗2Q̂−1p̂, x̂(r−2)h
〉
Q−

∫ 0

−h
V ′r (τ)Bu(rh+τ)dτ

−
∫ 0

−h
V ′r−1(τ)Bu

(
(r −1)h+τ)dτ

= ··· = 〈T∗r Q̂−1p̂, x̂0
〉
Q−

r∑
j=1

∫ 0

−h
V ′j(τ)Bu(jh+τ)dτ.

(2.7)

An appearance of Vj(·) at u(·) ≠ 0 is a consequence of a transform tech-

nique 〈â,T ẑ〉Q. A vector function Vr (·) is determined as the solution of (2.3)

which is conjugate to (1.2) with initial data V(0) = −p0 and nonhomogeneity

p(t) (instead of Q(t)a(t)). The next Vr−1(·), . . . ,V1(·) are determined recur-

rently (here â= T∗r−iQ̂−1p̂):

V̇i(t)=−
N∑
j=0

A′jVi
(
t+hj

)−∫ 0

−h
A′(t−τ)Vi(τ)dτ

−
N∑
j=0

A′jVi+1
(
t−h+hj

)−∫ 0

−h
A′(t−h−τ)Vi+1(τ)dτ,

(2.8)

t ∈ [−h,0], Vi(0)= Vi+1(−h), Vi(τ)= 0, A(τ)= 0, τ ∉ [−h,0].
Define on [0,rh] a continuous vector function b(·) by “gluing” Vi(·) as fol-

lows: b(ih+τ)= Vi(τ), τ ∈ [−h,0], i= 1,r . Then the following representation

is obtained:

J = 〈T∗r Q̂−1p̂, x̂0
〉
Q−

∫ rh
0
b′(τ)Bu(τ)dτ

= 〈T∗r Q̂−1p̂, x̂0
〉
Q−〈B′b,u〉L2 .

(2.9)

The sense of such representation is that the functional J is now explicitly pre-

sented via the input data x̂0 and u(·). Moreover, calculated T∗r Q̂−1p̂ and b(·)
give information about initial data x̂0 and control u(·) variations immunity of

values J. If, for example, the structure of controlling influence (matrix B) and

the vector function b(·) are such that the values B′b(t) are negligibly small,
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then the given projection J is naturally called invariant to control u(·).
Varying p̂ ∈ M2 (b = b(p̂)) and making B′b(t) ≈ 0, we obtain a description

of the set of such functionals. In the same way, T∗r Q̂−1p̂ ≈ 0 is understood.

Transform in the similar way the functionals Ji from (1.7):

Ji =
r−1∑
j=1

〈
k̂ij , ŷjh

〉=∑〈
G′k̂ij , x̂jh

〉=∑〈
Q̂−1G′k̂ij , x̂jh

〉
Q,

〈
k̂ij , ŷjh

〉= 〈T∗jQ̂−1G′k̂ij , x̂0
〉
Q−

j∑
s=1

∫ 0

−h
V ′ijs(τ)Bu(sh+τ)dτ.

(2.10)

Here Pk̂≡ (Pk0,Pk(·)). The vector functions Vijj(·) are defined by the conju-

gate system (2.3) with initial data V(0)=−G′k0
ij and nonhomogeneityG′kij(·),

and Vijj−1(·), . . . ,Vij1(·) are obtained recurrently by (2.8) (with respect to the

third index), that is, in (2.3), â= T∗j−sQ̂−1G′k̂ij , s = j−1, . . . ,1, is assumed.

Defining

bij(t)= Vijs(t−sh), t ∈ [(s−1)h,sh
]
, 1≤ s ≤ j,

bij(t)= 0, t ∈ (jh,rh], bi(t)=
r−1∑
j=1

bij(t), q̂i =
r−1∑
j=1

T∗jQ̂−1G′k̂ij ,

(2.11)

we obtain the representation of the measurement processing operators

Ji =
〈
q̂i, x̂0

〉
Q−

∫ rh
0
b′i(τ)Bu(τ)dτ =

〈
q̂i, x̂0

〉
Q−

〈
B′bi,u

〉
L2
. (2.12)

Here bi(τ) = 0, τ ∈ [(r −1)h,rh]. By choosing weight elements k̂ij , one can

affect sensitivity of the functionals Ji to variations of u(·) and x̂0.

It must be noted that almost all calculations are of the same kind and all

call the same subprogram of numerical integration of system (2.3) with a fixed

set of initial data and nonhomogeneities.

3. Interval estimations of functional values. So, the functionals J and Ji of

the problem are represented as

J = 〈q̂, x̂0
〉
Q−ψ, Ji =

〈
q̂i, x̂0

〉
Q−ψi, ψ= 〈B′b,u〉L2

,

ψi =
〈
B′bi,u

〉
L2
, q̂ = T∗r Q̂−1p̂, q̂i =

r−1∑
j=1

T∗jQ̂−1G′k̂ij .
(3.1)

The elements q̂, q̂i ∈M2 = Rn×Ln2 [−h,0] are determined using the definition

of the conjugate operator T∗. Some technical difficulties occur while calculat-

ing the vector functions b and bi. Later, to understand an estimation algorithm,

it is enough to know thatψ andψi are constant (zeros in a homogeneous prob-

lem u(·)= 0).
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We are interested in an algorithm, which allows the estimation of possible

values of the functional J by any possible (considering (1.6)) realization Ji = γi:
∣∣J−ϕ1

(
γ1, . . . ,γ�

)∣∣≤ϕ2
(
γ1, . . . ,γ�

)
. (3.2)

As u(·) is known, the functionals

I = J+ψ= 〈q̂, x̂0
〉
Q, Ii = Ji+ψi =

〈
q̂i, x̂0

〉
Q,

〈
x̂0, x̂0

〉
Q ≤ κ̄2 (3.3)

can be considered instead of J and Ji. The problem is formulated in terms of

functional analysis: to estimate the functional I using the known values Ii.
Among classical problems of calculus, this problem is considered, for instance,

in [11].

Imagine a three-dimensional analogue of infinite-dimensional ellipsoid of

initial data x̂0. The information Ii = αi reduces uncertainty in x̂0 to the in-

tersection of an ellipsoid by � planes. A run of the plane I = const through

this intersection gives the set of all possible values of I that we want to find.

In auxiliary argumentations, an index Q in scalar products will be omitted as

well as a hat sign, I = 〈q,x0〉, Ii = 〈qi,x0〉, . . . . The elements qi ∈M2 are con-

sidered linearly independent, otherwise some of the functionals (1.7) carry no

additional information about x0 and there is no need to calculate them. If q lin-

early depends on qi, then a functional J for all x0 ∈M2 is uniquely determined

on the values of Ji. These are singular cases, so later on a system q,q1, . . . ,q�

is considered linearly independent.

Here are some ideas based on some well-known geometrical facts. Define in

M2 =Rn×Ln2 [−h,0] a new scalar product

[z,x]=

∣∣∣∣∣∣∣∣∣∣∣

〈z,x〉 〈
z,q1

〉 ··· 〈
z,q�

〉〈
q1,x

〉 〈
q1,q1

〉 ··· 〈
q1,q�

〉
...

...
...

...〈
q�,x

〉 〈
q�,q1

〉 ··· 〈
q�,q�

〉

∣∣∣∣∣∣∣∣∣∣∣
. (3.4)

Without further corrections, it is not quite an inner product: [z,z]= 0 implies

z ∈ �0, �0 =�{q1, . . . ,q�}, and z may be nonzero. Here � is a symbol of a

linear hull. To eliminate this difficulty, consider instead a coset space, where

�0 will be zero. But later, only Cauchy-Schwarz-Bunyakovskii inequality will be

needed:

[z,x]2 ≤ [z,z]·[x,x] : [z+λx,z+λx]
= λ2[x,x]+2λ[z,x]+[z,z]≥ 0 ∀λ∈R1,

(3.5)

implying that a discriminant [z,x]2−[z,z]·[x,x] is nonpositive.
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The quantity [z,z] is a determinant of the Gram matrix Γ{z,q1, . . . ,q�}. By

definition, an element Γij{d1, . . . ,ds}=〈di,dj〉. It is known that a linear depen-

dence of di is the same as detΓ{d1, . . . ,ds} = 0. Gram matrix is symmetrical

and nonnegatively defined. Moreover, it is positively defined if di are linearly

independent. Thus, for [z,z], all axioms of a scalar product hold, except only

[z,z]= 0 if and only if z = 0. The last is not important here and, as has already

been noted, can be overcome by coset terms.

Write the determinant using an orthogonal expansion:

z = z0+z⊥, z0 ∈�0, z⊥ ∈�⊥
0 ,〈

z0,z⊥
〉= 〈qi,z⊥〉= 0 �⇒ [z,z]= 〈z⊥,z⊥〉detΓ0, Γ0 = Γ

{
q1, . . . ,q�

}
.

(3.6)

To do this, represent a row

(〈z,z〉, . . . ,〈z,q�

〉)= (〈z0,z0〉+〈z⊥,z⊥〉, . . . ,〈z0,q�

〉)
(3.7)

as a sum (〈z0,z0〉, . . . ,〈z0,q�〉)+(〈z⊥,z⊥〉, . . . ,0), and expand the determinant

to the sum of two, one of which is detΓ{z0,q1, . . . ,q�} = 0. Thus, the quan-

tity [z,z]/detΓ0 = 〈z⊥,z⊥〉 is a square of the distance in metrics defined by

the scalar product 〈·,·〉 = 〈·,·〉Q, from the element z to the linear hull �0 =
�{q1, . . . ,q�}.

Return to the initial problem. Let the values Ii = αi, i = 1,�, appear to be

known as a result of measuring y(t) and calculating Ji according to (1.7).

Then, using

(〈z,x〉,〈z,q1
〉
, . . . ,

〈
z,q�

〉)= (〈z,x〉,0, . . . ,0)+(0,〈z,q1
〉
, . . . ,

〈
z,q�

〉)
(3.8)

for the first row, after transforming determinants in [q̂, x̂0]2 ≤ [q̂, q̂]·[x̂0, x̂0],

∣∣I−I∗∣∣≤ F1F2, (3.9)

I∗ = −
det

(
0 α′

σ Γ0

)
detΓ0

, F2
1 =

detΓ
detΓ0

, F2
2 =

〈
x̂0, x̂0

〉+Rα,
Γ = Γ{q̂, q̂1, . . . , q̂l

}
, Γ0 = Γ

{
q̂1, . . . , q̂l

}
, Rα =

det

(
0 α′

α Γ0

)
detΓ0

,

α= (α1, . . . ,αl
)′, σ = (〈q̂, q̂1

〉
, . . . ,

〈
q̂, q̂l

〉)′, 〈·,·〉 = 〈·,·〉Q.

(3.10)

The geometrical sense of F1 is the distance (in a metric, defined by 〈·,·〉Q)

from q̂ to the linear hull �0 = �{q̂1, . . . , q̂�} and that of F2 is a distance from
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realized x̂0 to �0. As x̂0 is unknown, then instead of (3.9), an estimation, cal-

culated using αj , is obtained:

∣∣I−I∗∣∣≤ F1F3, F2
3 = κ̄2+Rα. (3.11)

Calculating determinants for any realization of αj is not rational, so we find

a more convenient interpretation for an estimation. Let

Aα =
{
x̂0 ∈M2 |

〈
x̂0, x̂0

〉
Q ≤ κ̄2,

〈
q̂i, x̂0

〉
Q =αi, 1≤ i≤ �

}
. (3.12)

Consider, for a fixed x̂0 ∈Aα, an orthogonal expansion (note that, in auxiliary

calculations, the symbol hat and the indexQ are omitted):x0 = x∗+v ,x∗ ∈�0,

v ∈ �⊥
0 , and 〈x∗,v〉 = 0. From 〈qi,x0〉 = 〈qi,x∗〉 and 〈x0,x0〉 = 〈x∗,x∗〉 +

〈v,v〉, it follows that x∗ ∈Aα. A difference of two elements of Aα belongs to

�⊥
0 . Thus, fixingx∗, we obtain a representationx0 = x∗+v for allx0 ∈Aα. Here

a variation v ∈�⊥
0 is limited by the condition x0 ∈Aα. Expansion coefficients

x∗ = c1q1+···+ c�q� due to 〈qi,x∗〉 = αi are determined from a system of

linear equations Γ0c = α. Thus, x∗ is determined uniquely, independently of

the initially chosen x0 ∈Aα, which can also be easily proved for the contraries.

If one changes zero in the determinant, which appears in the expression for I∗,

to 〈q,x∗〉−〈q,x∗〉 and represent the determinant as a sum of two, considering

that x∗ ∈ �0, then I∗ = 〈q,x∗〉. In a similar way (0 = 〈x∗,x∗〉−〈x∗,x∗〉 and

〈qi,x∗〉 =αi), the quantity F2
2 = 〈x0,x0〉−〈x∗,x∗〉 is calculated.

Thus, if the coefficient vector c and the element x̂∗ = c1q̂1+···+c�q̂� are

determined on realized values of Ii = αi from the system Γ0c = α, then the

estimation will appear in a more compact form:∣∣I−I∗∣∣≤ F1F2 ≤ F1F3, I = 〈q̂, x̂0
〉
, I∗ =

〈
q̂, x̂∗

〉
,

F2
2 =

〈
x̂0, x̂0

〉−〈x̂∗, x̂∗〉≤ κ̄2−〈x̂∗, x̂∗〉= F2
3 .

(3.13)

This estimation is precise. It is possible to move in limits of Aα from a point

x∗ in direction v ∈ �⊥
0 up to the bound of the ellipsoid. Let x0 = x∗ +λq⊥

(q = q0+q⊥, q0 ∈�0, q⊥ ∈�⊥
0 ) with a number parameter λ from the condition

〈x0,x0〉 = κ̄2. Calculate the quantities which appear in (3.13):∣∣I−I∗∣∣= ∣∣〈q,x∗+λq⊥〉−〈q,x∗〉∣∣= |λ|〈q⊥,q⊥〉,
F2

1 = detΓ/detΓ0 = ρ2{q,�0
}= 〈q⊥,q⊥〉,

F2
2 = F2

3 =
〈
x∗+q⊥,x∗+q⊥

〉−〈x∗,x∗〉= λ2〈q⊥,q⊥〉.
(3.14)

All inequalities become equalities. We get precisely a segment of possible val-

ues of the functional I when Ii =αi, 1≤ i≤ �. An element x∗, which defines a

centre of the segment I∗ = 〈q,x∗〉, is naturally taken as an estimation of the

unknown initial state x0.



INTERVAL ESTIMATES OF FUNCTIONALS 3583

If a biorthogonal system of elements of the form dj = βj1q1+···+βj�q�

(〈di,qj〉 = δij is a Kronecker symbol) is constructed using calculated qi, then,

for all α,

〈
qi,x∗

〉=αi, x∗ ∈�
{
qj
}=�

{
dj
}
�⇒ x∗ =

�∑
j=1

αjdj,

F2
3 = κ̄2−

�∑
i,j=1

αiαjξij, ξij =
〈
di,dj

〉
,

I∗ =
�∑
j=1

αjξj, ξj =
〈
q,dj

〉
.

(3.15)

We now find a more convenient representation of F1 (a distance ρ{q,�0} from q
to the linear hull of qj ) using a Fermat theorem for minimization of a positively

defined square form with respect to coefficients γi:

F2
1 =min

γi

∥∥∥∥∥∥q−
�∑
i=1

γidi

∥∥∥∥∥∥
2

Q

�⇒
�∑
i=1

γ∗i
〈
di,dj

〉= 〈q,dj〉,
q−

�∑
i=1

γ∗i di = q⊥,
〈
di,qj

〉= δij �⇒ γ∗i = 〈q,qi〉,
F2

1 = ρ2{q,�0
}= 〈q⊥,q⊥〉= 〈q,q〉− �∑

i=1

〈
q,qi

〉〈
q,di

〉
.

(3.16)

Now we formulate step by step a preliminary algorithm (simplifying the no-

tation):

(1) calculate elements q and qi ∈M2, vector functions b(·) and bi(·) in the

representation of J(x0) and Ji(x0) in the forms (2.9) and (2.12), and

the integrals ψ and ψi (for a homogenous system b = bi =ψ =ψi = 0)

integrating (2.3) with different a;

(2) determine a system of elements {dj} which is biorthogonal to {qi} (this

demands to solve a system of linear equations with matrix Γ0);

(3) calculate values of ξi = 〈q,di〉 and ξij = 〈di,dj〉 and determine F2
1 using

the obtained above formula.

After these preliminary calculations, it is necessary to “memorize” only the

elements dj and the numbers ψ, ψi, F1, ξj , and ξij .
Actually, the algorithm which estimates J works as follows. Using the re-

alized values of the functionals Ji in (1.7), we calculate αi = Ji +ψi and a

square form F2
3 according to (3.15), and obtain J∗ = α1ξ1+···+α�ξ�−ψ. A

precise estimation of possible values of a functional J is given by the formula

|J − J∗| ≤ F1F3. Here a complete distinctness of J = J∗ when F2 = 0 is not

rejected. An optimal estimating element, if necessary, is defined by a linear

combination x∗ =α1d1+···+α�d�.



3584 YURY V. ZAIKA

4. Optimization of estimation. Estimation structure gives an idea that to

minimize F1, it is reasonable to choose one of the functionals (say J1) accord-

ing to the condition ‖q̂− q̂1‖Q → min. And other functionals J2, . . . ,J� should

be chosen such that most probable realizations of x̂0 are close to �0. If only

guaranteed estimations (|I− I∗| ≤ F1κ̄, maxF2 = maxF3 = κ̄) are considered,

then a problem ‖q̂− q̂1‖Q →min remains, but a choice of J2, . . . ,J� does not in-

fluence F1 and is not important. Thus, it is interesting to consider the following

optimization problem: ∥∥T∗r Q̂−1p̂−SK̂∥∥Q �→min . (4.1)

Subject of optimization is a set of elements K̂ = (k̂1, . . . , k̂r−1) ∈ M̃r−1
2 , and an

operator S : M̃r−1
2 →M2 is defined by the formula

SK̂ =
r−1∑
j=1

T∗jQ̂−1G′k̂j . (4.2)

Problem (4.1) means that we are interested in a quasisolution [8] of the operator

equation SK̂ = q̂ (q̂ = T∗r Q̂−1p̂) in the space M̃r−1
2 . Here we use in M2 a norm

generated by the inner product 〈·,·〉Q.

In a standard way, it is proved (for instance, with the use of a Gronwall

lemma) that linear operators T ,T∗ : M2 → M2 are totally continuous. Thus

SM̃r−1
2 is not closed. An exception is only if S is finite dimensional, but this is an

evidence of the initial model (1.2) being singular. Thus, solvability of the equa-

tion SK̂ = q̂ is not guaranteed. Moreover, a problem (4.1) can have no solution.

Here, we meet typical difficulties of solving ill-posed problems (an equation

of the first kind with totally continuous operator) [8]. But impossibility in the

general case of solving a problem does not mean that it is impossible to find a

reasonable approximate solution of (4.1). There is a vast literature about regu-

larization of ill-posed problems. There are no barriers of using them. This way

is well studied, but difficult to use. We try to benefit from a specific structure

of the operator S.

Let B̂ = Q̂−1G′ = (Q0−1G′,Q−1(·)G′) and note that

SK̂ =
r−1∑
j=1

T∗jQ̂−1G′k̂j

= T∗(B̂k̂1+···+T∗
(
B̂k̂r−3+T∗

(
B̂k̂r−2+T∗

(
B̂k̂r−1+0

)))···).
(4.3)

Consider a discrete dynamical system in M2:

X1 = 0, Xi+1 = T∗Xi+T∗B̂ûi, ûi ∈ M̃2. (4.4)

Define controls û1 = k̂r−1, . . . and ûr−1 = k̂1. Then Xr = SK̂ and the problem

is now posed in terms of a control theory, choosing the controls ûi which



INTERVAL ESTIMATES OF FUNCTIONALS 3585

transfer a phase point from zero to q̂ by r steps. In the context of a control

theory, it is clear why it is impossible in the general case to solve the problem

Xr = q̂: any system has its own attainability set and it is difficult to achieve a

complete controllability in an infinite-dimensional case.

Now note that for (4.4), it is sufficient to study controllability by r steps in

the linear variety T∗rM2 = {q̂ = T∗r Q̂−1p̂ | p̂ ∈ M2}. Unfortunately, exclud-

ing a singular case when T∗ is finite dimensional, the linear set T∗rM2 is not

a subspace of M2. While r grows, not only the attainability set (Dr+1(0) =
{Xr+1} ⊇ Dr(0) = {Xr}) extends, but also the goal set T∗rM2 itself “moves

towards” (T∗r+1M2 ⊆ T∗rM2). Thus the problem SK̂ = q̂, having no solution

when r is fixed, may become solvable when r grows, that is, when the system

(1.2) is observed for a longer time. Here appears a problem: at what conditions

on Aj , A(·), Q̂, and G is it possible, with a certain r , that an absorption by

the growing attainability set Dr(0) of the narrowing goal set T∗rM2 occurs? If

Dr(0)⊇ T∗rM2 holds, then in the obtained estimations it is possible to achieve

F1 = 0 and then the values of J = 〈p̂, x̂rh〉M2 are defined precisely for allp ∈M2.

But this means that there is a possibility to reconstruct x̂rh uniquely by the

measurements (1.4), and thus a movement of a system (1.2) for t ≥ rh. This

property is called a complete observability.

In applications, the great efforts for solving an infinite-dimensional absorp-

tion Dr(0) ⊇ T∗rM2 are rarely reasonable, for the model describes approxi-

mately a real process. Thus, we return to an estimation problem J = 〈p̂, x̂rh〉M2 .

An estimation of a sufficient number of such functionals (Fourier coefficients)

gives an approximation of the phase state x̂rh.

Let r and p̂ be fixed. Assuming that there is no precise solution to a two-point

control problemX1 = 0 andXr = q̂ (in this case it is possible to make F1 = 0 and

uniquely restore the values of J = I∗−ψ with infinite-dimensional uncertainty

(1.6) of the initial data x̂0), we consider the problem ‖Xr − q̂‖Q → min. But

this problem is also ill posed. A set of attainability (4.4) is described as the

linear hull �{T∗r−1B̂M̃2, . . . ,T∗B̂M̃2}. This “sum of rotating-by-T∗ planes” in

an infinite-dimensional case is not closed and the projections q̂ on � (in M2

with 〈·,·〉Q), which would determine an optimal K̂, may not exist. We construct

a suboptimal set K̂ of weight elements k̂j . The sense of a prefix sub will be

detailed later.

A dynamical programming method will be used. Let just before the last con-

trol step the system (4.4) be in the state X0
r−1, which will be considered as an

unknown parameter. Optimal ûr−1 must solve the problem

∥∥Xr − q̂∥∥Q �→min, Xr = T∗X0
r−1+T∗B̂ûr−1. (4.5)

Refusing the solution (quasisolution) to an ill-posed problem

T∗B̂ûr−1 = q̂−T∗X0
r−1, B̂ = Q̂−1G′, (4.6)
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with a parameter X0
r−1, consider the similar problem

∥∥Xr − q̂∥∥Q ≤ ∥∥T∗∥∥·∥∥X0
r−1+ B̂ûr−1−T∗r−1Q̂−1p̂

∥∥
Q �→min . (4.7)

Instead of the goal function, its upper bound will be minimized. A new problem

is in fact a finite-dimensional least squares problem. It has a unique solution

û0
r−1

(
X0
r−1

)= N̂(T∗r−1Q̂−1p̂−X0
r−1

)
, N̂ = (GQ̂−1G′

)−1G. (4.8)

Obtaining a formula (4.8) is easy, if one remembers a standard problem in Rm :

f(x) = ‖Ax−b‖Rn →min, where A = An×m, rankA =m ≤ n. Expand f 2(x) :

〈Ax−b,Ax−b〉Rn = 〈A′Ax,x〉−2〈Ax,b〉+ 〈b,b〉. A matrix A′A, as a Gram

matrix of linearly independent columns of A, is symmetrical and positively

defined. Thus, a positively defined square form of x is obtained. A minimum

is unique and is determined using a Fermat theorem: 2A′Ax0−2A′b = 0, x0 =
(A′A)−1A′b.

Remember that according to accepted notation, short expressions with

“hats” are understood by context: for all â= (a0,a(·))∈M2,

(
GQ̂−1G′

)−1Gâ= (GQ0−1G′,GQ−1(·)G′)−1Gâ

=
((
GQ0−1G′

)−1Ga0,
(
GQ−1(·)G′)−1Ga(·)

)
∈ M̃2.

(4.9)

Note that û0
r−1 is found as the function û0

r−1(X
0
r−1) of an a priori unknown

initial state (4.4) on the last step.

After substituting (4.8) in (4.7), we obtain an optimal value

∥∥T∗∥∥·∥∥X0
r−1+ B̂û0

r−1

(
X0
r−1

)−T∗r−1Q̂−1p̂
∥∥
Q

= ∥∥T∗∥∥·∥∥M̂X0
r−1−M̂T∗r−1Q̂−1p̂

∥∥
Q,

M̂ = Ê− B̂N̂, Ê = (En,En) (Êâ= â∈M2
)
.

(4.10)

Direct check proves that M̂2 = M̂ , (B̂N̂)2 = B̂N̂,

〈
M̂â, â

〉
Q =

〈
â,M̂â

〉
Q,

〈
B̂N̂â, â

〉
Q =

〈
â, B̂N̂â

〉
Q. (4.11)

That is, M̂, B̂N̂ : M2 → M2 are in terms of a scalar product 〈·,·〉Q the opera-

tors of orthogonal projection (orthoprojectors). The result of the influence of

B̂N̂ on the element â ∈ M is an orthogonal projection of â to B̂M̃2, and M̂
orthogonally projects on (B̂M̃2)⊥ ⊂M2. Norms of M̂ and B̂N̂ as operators are

equal to 1. Indeed, the projection is not longer than a projected element, and

on the projecting subspace, this operator is unit. A right part of (4.10) can be
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estimated now by the inequality

∥∥T∗∥∥·∥∥X0
r−1−T∗r−1Q̂−1p̂

∥∥
Q

= ∥∥T∗∥∥·∥∥T∗X0
r−2+T∗B̂û0

r−2−T∗r−1Q̂−1p̂
∥∥
Q

≤ ∥∥T∗∥∥2 ·∥∥X0
r−2+ B̂û0

r−2−T∗r−2Q̂−1p̂
∥∥
Q.

(4.12)

In the same way, as with (4.7) and (4.8), the last estimation can be optimized:

û0
r−2

(
X0
r−2

)= N̂(T∗r−2Q̂−1p̂−X0
r−2

)
. (4.13)

Continuing this process, we obtain û0
i (X

0
i )= N̂(T∗iQ̂−1p̂−X0

i ).
Now start moving backward. An initial stateX0

1 is known (X0
1 = 0). Thus, û0

1 =
N̂T∗Q̂−1p̂, and due to the dynamics of (4.4), X0

2 = T∗B̂N̂T∗Q̂−1p̂. Substituting

a value X0
2 in û0

2(X
0
2), we get a representation û0

2 = N̂T∗M̂T∗Q̂−1p̂, and so on.

Finally,

X0
1 = 0, X0

j = T∗j ŝ−T∗
(
M̂T∗

)j−1ŝ, ŝ = T∗Q̂−1p̂, 2≤ j ≤ r ,
û0

1 = k̂0
r−1 = N̂T∗ŝ, û0

j = k̂0
r−j = N̂T∗

(
M̂T∗

)j−1ŝ, 2≤ j ≤ r −1.
(4.14)

Thus, an optimization strategy on each estimation step allows getting an ex-

plicit solution. An operation T∗ on the base of integrating a conjugate system

(2.3) with different â is considered relatively simple. This strategy is approxi-

mate (suboptimal). An optimality criteria is as follows:

∆0 = ∥∥q̂−X0
r
∥∥
Q =

∥∥∥T∗(M̂T∗)r−1ŝ
∥∥∥
Q
. (4.15)

If∆0 = 0, then the values of J = 〈p̂, x̂rh〉M2 , while using J1, k̂j = k̂0
j , are precisely

determined (F1 = 0, J = I∗−ψ, and �= 1).

5. Some generalizations. (1) Assume that the movement equations are given

in more general terms of a Stieltjes integral with a matrix functionΦ(θ) (Φ(θ)=
Φ(θ−0) on (−h,0)). The elements of Φ are of bounded variation on the seg-

ment [−h,0]. Then the conjugate system (2.3) appears as

V̇ (t)=
∫ 0

−h

[
dΦ′(θ)

]
V(t−θ)+Q(t)a(t), t ∈ [−h,0],

V(0)=−Q0a0, V(s)= 0, s ∉ [−h,0],
(5.1)

where

Φ(θ)=
Φ(−h), θ ≤−h,0, θ ≥ 0.

(5.2)
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For (1.2),

Φ(θ)=−
N∑
j=0

χ(−∞,−hj]Aj−
∫ 0

θ
A(τ)dτ, A(s)= 0, s ∉ [−h,0]. (5.3)

Here, χ is a characteristic function of a set.

(2) It is possible to add to the right parts of (1.2) and (1.4) the terms Dµ(t)
and Nν(t), respectively, (D, N are the matrices n×n2, m×m1), which will

describe perturbations in movement equations as well as measurement er-

rors. Together with the initial data, noises are unknown, but restricted. So,

µ′(t)µ(t) ≤ µ̄2, ν′(t)ν(t) ≤ ν̄2, ‖µ‖L2 ≤ µ+, and ‖ν‖L2 ≤ ν+. Instead of a pro-

jection (1.5), a more general functional

J = 〈p̂, x̂rh〉M2
+〈w,µ〉L2 , L2 = L2

(
[0,rh],Rn2

)
(5.4)

will be estimated. Then, instead of the element â, it is necessary to consider a

set of three elements: z = (x̂0,µ, ν̂), and represent J = J(z) and Ji = Ji(z) as

J = 〈T∗r Q̂−1p̂, x̂0
〉
Q−

〈
B′b,u

〉
L2
−〈D′b−w,µ〉L2

,

Ji =
〈
q̂i, x̂0

〉
Q−

〈
B′bi,u

〉
L2
+〈Λi, ν̂〉, bi(τ)= 0, τ ∈ ((r −1)h,rh

]
,

Λi =
(
N′k̂i1, . . . ,N′k̂ir−1

)
, ν̂ = (ν̂h, . . . , ν̂(r−1)h

)
,

ν̂jh =
(
ν(jh),ν(jh+·))∈ M̃2,

(5.5)

where M̃2 = Rm1×L2([−h,0],Rm1). Concrete definitions of scalar products is

obtained from context. The calculation of q̂ = T∗r Q̂−1p̂, q̂i, b(·), and bi(·)
gives information about how the functionals are immune to noises. For in-

stance, if Db(t) ≈ w(t), then J is invariant to perturbations of movement.

Varying p̂ and letting w =Db, we obtain a class of invariant functionals. In a

Hilbert space H =M2×L2×(M̃2)r−1, the following representations hold:

J = 〈g,z〉H−ψ, Ji=
〈
gi,z

〉
H−ψi, g=(q̂,w−D′b,0), gi=(q̂i,−D′bi,Λi).

(5.6)

How to estimate a functional I = 〈g,z〉 by the values Ii = 〈gi,z〉 = αi is said

above (vector function u is given, thus ψ and ψi are also known).

(3) We consider a situation when a level of noises is low and is compared

to uncertainty of initial data. In this case, it is reasonable to realize an algo-

rithm not in extended phase space H, but in original M2. The calculated q̂,

b(·) and limitations of the noises allow representing a functional I in the form

I = 〈q̂, x̂0〉+σ , |σ | ≤ σ̄ , σ̄ = ‖w −D′b‖µ+, 〈·,·〉 = 〈·,·〉Q. In the same way,

Ii = 〈q̂i, x̂0〉+σi, |σi| ≤ σ̄i. Assuming then that σ̄ and σ̄i are relatively small,

consider the problem of estimating the possible values of a functional 〈q,x̂0〉
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in M2 using the values 〈qi,x̂0〉, known up to σ̄i, and considering a restric-

tion 〈x̂0, x̂0〉 ≤ κ̄2. Instead of precise values βi = 〈q̂i, x̂0〉, it is necessary to use

known numbersαi = Ji+ψi = βi+σi and an error estimation |σi| ≤ σ̄i. Instead

of

z∗ =
�∑
j=1

(
αj−σj

)
zj, J∗ =

�∑
j=1

(
αj−σj

)
ξj+σ −ψ (5.7)

(zj ∈ M2, 〈q̂i,zj〉 = δij , ξj = 〈q̂,zj〉, ξij = 〈zi,zj〉) which are not known pre-

cisely, it is reasonable to use z̃∗ = z∗ ∈M2, J̃∗ = J∗ when σ = σj = 0, j = 1,�.

Calculating realized Ji and the quantities αj = Jj+ψj , we obtain

J ≤ J̃∗+ σ̄ + max
|σj |≤σ̄j

− �∑
j=1

σjξj+F1

κ̄2−
�∑

i,j=1

(
αi−σi

)(
αj−σj

)
ξij

1/2
,

(5.8)

or (more roughly)

J ≤ J̃∗+ σ̄ +
�∑
j=1

∣∣ξj∣∣σ̄j+F1

κ̄2− min
|σj |≤σ̄j

�∑
i,j=1

(
αi−σi

)(
αj−σj

)
ξij

1/2

. (5.9)

A minimum of a square function on a parallelepiped can be found using nu-

merical methods. In the same way, a lower bound of J is obtained. It is possible

to make simplifications without calculating zj ∈M2 (like above). In a case when

only measurements errors are relatively small, one should in the given way use

the elements g = {q̂,w−D′b}, gi = {q̂i,−D′bi} ∈M2×L2.

(4) It is possible to formulate the problem in probabilistic terms. Let x0 be

a random vector, and let x0(τ), µ(t), and ν(t) be vector random processes

with square integrable realizations (on the appropriate time segments). Then

functionals J and Ji are random variables. Let some values of Ji = γi, i = 1,�,

be realized. The given technique allows obtaining a mean squares estimation

of the form E(J−f1(γ1, . . . ,γ�))2 ≤ f2(γ1, . . . ,γ�) (here E is for mean value) on

any possible sample γi. If f2 is sufficiently small, then it is possible to identify

in terms of mean squares metrics a random variable J. To obtain an estima-

tion, it is enough to have statistical information about random elements of the

model E(z,z)H ≤ ϕ̄2:

E
(
J−J∗

)2 ≤ F2
1F

2
2 , (5.10)

where

f1 = J∗ = I∗−ψ, f2 = F2
1F

2
2 . (5.11)
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