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We introduce new families of Hermite polynomials and of Bessel functions from
a point of view involving the use of nonexponential generating functions. We
study their relevant recurrence relations and show that they satisfy differential-
difference equations which are isospectral to those of the ordinary case. We also
indicate the usefulness of some of these new families.
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1. Introduction. We consider a continuous and infinitely differentiable func-

tion f(x) and associate with it the following generating function:

f
(
xt+yt2)= ∞∑

n=0

tn

n!
φn(x,y), (1.1)

where φn(x,y) are the two-variable polynomials which will be shown to be

a suitable generalization of the Hermite-Kampé de Fériet (HKdF) family [1] or

a particular case of the Boas-Buck polynomials [2]. As it is well known, the

HKdF polynomials are generated by (1.1) when f(x) reduces to an exponential

function, while in the case of Boas-Buck polynomials, the argument of f should

be replaced by xg(t) with

g(t)=
∞∑
n=0

gntn+1. (1.2)

Here, in this paper, we will consider the first aspect only, namely φn(x,y),
as generalized forms of the HKdF polynomials. Within the same framework,

we will also introduce some generalized forms of the Bessel functions.

Unlike the exponential, f(x) does not, in general, possess any semigroup

property for which

f(x+y)= f(x)f(y). (1.3)

Yet we can make use of the procedure developed by Dattoli et al. [7], which

allows the use of a formal semigroup property of umbral nature.
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By assuming that f(x) can be expanded in series as follows:

f(x)=
∞∑
s=0

fs
s!
xs, (1.4)

we introduce the operator f̂ defined in such a way that

(
f̂
)s = fs, (

f̂
)r fs = fs+r . (1.5)

Thus, we can write

f(x)= exp
[(
f̂x

)]= ∞∑
s=0

(
f̂x

)s
s!

=
∞∑
s=0

fs
s!
xs. (1.6)

Within the context of such a formalism, the semigroup property of the ex-

ponential function can be replaced by

f(x+y)= exp
[
f̂ (x+y)]

= exp
[(
f̂x

)+(f̂y)]
= exp

[(
f̂x

)]
exp

[(
f̂y

)]
.

(1.7)

The usefulness of (1.7) will be observed in treating directly the generating

function (1.1) in order to derive the explicit form of the polynomialsφn(x,y).
Making use of (1.5), (1.6), and (1.7), we can conclude that

f
(
xt+yt2)= exp

[(
f̂xt

)]
exp

[(
f̂yt2)]

=
∞∑
r=0

(
f̂x

)r tr
r !

∞∑
s=0

(
f̂y

)st2s

s!
.

(1.8)

Upon setting r+2s =n in (1.8), if we apply the second equation in (1.5) and

then equate the coefficients of tn from both sides of the resulting equation,

we obtain

φn(x,y)=n!
[n/2]∑
s=0

fn−sxn−2sys

(n−2s)!s!
, (1.9)

which reduces to the standard HKdF form for fn = 1 (see [1]).

Various properties and possible generalizations of the above polynomials

will be discussed in the following sections, where we will also consider the

possibility of developing an approach to the theory of a new form of Bessel-like

functions, which can be developed from nonexponential generating functions.

2. The neo-Hermite polynomials φn(x,y). In this section, we aim at de-

veloping the relevant theory of what we call the neo-Hermite polynomials by
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means of that in the ordinary case. By applying the properties of the f̂ oper-

ator, it is quite straightforward to prove that φn(x,y) satisfies the following

recurrences relations:

f̂−1 ∂
∂x
φn(x,y)=nφn−1(x,y), (2.1)[(

f̂x
)+2y

∂
∂x

]
φn(x,y)=φn+1(x,y). (2.2)

Thus, accordingly, it is easily seen that they satisfy the differential equation

[
2yf̂−1 ∂2

∂x2
+x ∂

∂x

]
φn(x,y)=nφn(x,y). (2.3)

From the recurrence relation (2.2), it also follows that

φn(x,y)=
[(
f̂x

)+2y
∂
∂x

]n
f0. (2.4)

More generally, we can state the following Burchnall-type operational relation

(see, e.g., [5]):

[(
f̂x

)+2y
∂
∂x

]n
=

n∑
s=0

(2y)s
(
n
s

)
φn−s(x,y)

∂s

∂xs
. (2.5)

In order to prove (2.5), we begin by observing that

∞∑
n=0

tn

n!

[(
f̂x

)+2y
∂
∂x

]n
= exp

[(
f̂xt

)+2yt
∂
∂x

]
. (2.6)

Now, by applying the Weyl operational rule (see [6]) for the noncommutative

operators

Â= (f̂xt), B̂ = 2yt
∂
∂x
, (2.7)

we find that

[
Â, B̂

]=−2
(
f̂yt2), (2.8)

so that we have

exp
[(
f̂xt

)+2yt
∂
∂x

]
= exp

[(
f̂xt

)+(f̂yt2)]·exp
[

2yt
∂
∂x

]
, (2.9)

which can easily be manipulated to get the Burchnall-type operational relation

(2.5).

It is also important to emphasize that, by analogy with the ordinary HKdF

polynomials, the polynomialsφn(x,y) satisfy the following partial differential
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equation:

∂
∂y
φn(x,y)= f̂−1 ∂2

∂x2
φn(x,y) (2.10)

with

φn(x,0)= fnxn. (2.11)

Thus, the polynomialsφn(x,y) can be constructed according to the following

operational rule:

φn(x,y)= exp
[(
f̂−1y

∂2

∂x2

)]
fnxn, (2.12)

whose validity can immediately be checked by using the rule stated in the

introductory remarks.

The following observations are prompted by the results which we have pre-

sented in this paper so far.

(a) We can construct, from a given analytic function f , a family of polynomi-

als which we will define as the umbral image of the ordinary HKdF polynomials.

(b) Most of the properties of the aforementioned family of polynomials are

just a natural extension of those of the ordinary case.

A natural further extension is obtained by considering the following case of

neo-Hermite polynomials of order m:

f
(
xt+ytm)= ∞∑

n=0

tn

n!
φ(m)n (x,y), (2.13)

where

φ(m)n (x,y) :=n!
[n/m]∑
s=0

fn−(m−1)sxn−msys

(n−ms)!s! . (2.14)

When f in the definition (2.13) is replaced by the exponential function, these

neo-Hermite polynomials of order m precisely coincide with the Gould-Hoper

polynomials gmn (x,y), defined by (see, e.g., [9, Section 1.11, equation (27)]; see

also [8])

exp
(
xt+ytm)= ∞∑

n=0

tn

n!
gmn (x,y), (2.15)

so that, explicitly, we have [9, Section 1.9, equation (6)]

gmn (x,y)=
[n/m]∑
k=0

n!
k!(n−mk)!x

n−mkyk

= xnmF0

[
− n
m
,−n−1

m
,.. . ,−n−m+1

m
; ;

(
−m
x

)m
y
] (2.16)

in terms of a generalized hypergeometric function.
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It is fairly simple to prove the following recurrences relations:

f̂−1 ∂
∂x
φ(m)n (x,y)=nφ(m)n−1(x,y),[(

f̂x
)+myf̂−(m−1) ∂m−1

∂xm−1

]
φmn (x,y)=φmn+1(x,y),

(2.17)

as well as the associated differential equation

[
x
∂
∂x

+myf̂−(m−1) ∂m

∂xm

]
φmn (x,y)=nφmn (x,y). (2.18)

These last results, (2.17) and (2.18), complete the goals of the present section.

Further comments on possible generalizations and deeper insight into their

theory will be presented in the following section.

3. Further extensions and Bessel-type equations. In Section 2, we have

seen the possibility of using a formalism close to that of the ordinary HKdF

polynomials to treat the polynomials associated with the Taylor expansion of

a composite function. To take a step forward, we consider the following three-

variable case:

f
(
xt+yt2+zt3)= ∞∑

n=0

tn

n!
φ(3)n (x,y,z), (3.1)

which readily yields

φ(3)n (x,y,z)=n!
[n/3]∑
r=0

(
f̂ z
)rφn−3r (x,y)
(n−3r)!r !

. (3.2)

It is clear that it can be appropriately extended to a larger number of variables.

It is easily observed from the generating function (1.1) that

(
d
dt

)l
f
(
xt+yt2)= ∞∑

n=0

tn

n!
φn+l(x,y). (3.3)

The so-called Rainville-type generating function occurring on the right-hand

side of (3.3) can be easily found as follows (see the appendix):

∞∑
n=0

tn

n!
φn+l(x,y)= exp

[(
f̂xt

)+(f̂yt2)]φl(x+2ty,y). (3.4)

The result (3.4) can be extended to them-variable case, but this aspect of the

problem and its connection with the Faà di Bruno formula for the derivative

of composite functions will be discussed in a forthcoming publication.
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Before concluding this section, we will discuss the extension of the present

results to the generalizations of Bessel-type functions. We consider the gener-

ating function:

f(ix sinϑ)=
∞∑

n=−∞
exp(inϑ)�n(x), (3.5)

where

�n(x)=
∞∑
r=0

(−1)r fn+2r

r !(n+r)!
(
x
2

)n+2r
. (3.6)

In general, the function �n(x) is given by the integral representation

�n(x)= 1
2π

∫ 2π

0
f(ix sinϑ)exp(−inϑ)dϑ. (3.7)

The use of the formalism, which we have developed so far, allows us to

transform the integral (3.7) into a more compact form. Indeed, by defining

�
(
f̂x

)
:= f(ix)+f(−ix)

2
,

�
(
f̂x

)
:= f(ix)−f(−ix)

2i
,

(3.8)

we note that, from a formal point of view, we have

�
[(
f̂x

)+(f̂y)]=�
[(
f̂x

)]
�
[(
f̂y

)]−�
[(
f̂x

)]
�
[(
f̂y

)]
(3.9)

and analogously for the sine-like part. Furthermore, since

f(ix)exp(iy)= exp
[
i
((
f̂x

)+y)], (3.10)

we can conclude that

�n(x)= 1
π

∫ π
0

�
[(
f̂x sin(ϑ)

)−nϑ]dϑ. (3.11)

It is important to emphasize here that the functions �n(x) satisfy recur-

rence relations of the following types:

f̂−1 d
dx

�n(x)= 1
2

[
�n−1(x)−�n+1(x)

]
,

nf̂−1

x
�n(x)= 1

2

[
�n−1(x)+�n+1(x)

]
,

(3.12)

which can be combined to obtain the following differential equation:[
x2 d2

dx2
+x d

dx
−(n2− f̂ 2x2)]�n(x)= 0. (3.13)
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Equation (3.13) immediately reduces to the ordinary Bessel equation when f̂ =
1.

For a further form of Bessel-like functions, we consider the following gen-

erating function:

f
(
ix sinϑ−y(sinϑ)2

)= ∞∑
n=−∞

exp(inϑ)φ�n(x,y), (3.14)

where

φ�n(x,y)=
∞∑
r=0

(−1)rφn+2r (x,y)
2n+2r r !(n+r)! . (3.15)

The functions φ�n(x,y) play the same role as the Hermite-Bessel functions

discussed in [4] and will be more thoroughly discussed in a forthcoming in-

vestigation.

4. Remarks and observations. In the previous sections, we have considered

polynomials which can be viewed as generalized forms of the HKdF polyno-

mials. Just to give an example of analogous work involving other polynomials,

we consider here the following extension of the simple Laguerre family:

(1−yt)−1f
(
− xt

1−yt
)
=

∞∑
n=0

tnln(x,y)
(|yt|< 1

)
. (4.1)

According to the already developed formalism, we can see that

ln(x,y)=n!
n∑
r=0

(−1)r frxryn−r

(n−r)!(r !)2
. (4.2)

We can derive, from the explicit representation (4.2), the relevant recurrence

relations as follows:

(
y− f̂ D̂−1

x
)
ln(x,y)= ln+1(x,y),

−f̂−1 ∂
∂x
x
∂
∂x
ln(x,y)=nln−1(x,y),

(4.3)

where D̂−1
x denotes the inverse of the derivative operator. A combination of

(4.3) provides the differential equation

[
yf̂−1x

∂2

∂x2
+(yf̂−1−x) ∂

∂x
+n

]
ln(x,y)= 0. (4.4)
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Finally, we note that for this family of polynomials too, we have identities

of the type (2.10), which lead us to

∂
∂y
ln(x,y)=−f̂−1 ∂

∂x
x
∂
∂x
ln(x,y) (4.5)

with

ln(x,0)= (−x)
n

n!
fn. (4.6)

Before concluding this paper, we discuss a few applications of the above re-

sults.

For the evaluation of the following integral:

In(x,y ;α)= 1
2π

∫ 2π

0

(
1+ix sinϑ−y(sinϑ)2

)α
exp(−inϑ)dϑ, (4.7)

it is evident that, according to (3.14), we have

In(x,y ;α)= φ�n(x,y) (4.8)

for

fn = Γ(α+1)
Γ(α−n+1)

. (4.9)

Similarly, we find that

1
2π

∫ 2π

0

e−inϑ

1+ix sinϑ
dϑ =�n(x) (4.10)

for

fn =n!. (4.11)

We now consider the evaluation of the lth derivative of the function

(
1+ sin

(√
x
)

√
x

)α
. (4.12)

By using the known approximation [3]:

sinx
x

= 1+ax2+bx4+ε(x),(∣∣ε(x)∣∣< 2·10−4; a=−0.16605; b = 0.00761; 0<x <
π
2

)
,

(4.13)
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we find that

(
1+ sin

(√
x
)

√
x

)α
� 2α

∞∑
n=0

xn

n!
φn

(
a
2
,
b
2

)
(4.14)

for fn given by (4.9).

The lth derivative can now be evaluated by means of (3.3). Better precision

can be achieved by considering more terms in (4.13) and by using higher-order

polynomials of the type (3.2). This aspect of the problem will be discussed in a

forthcoming investigation where we will enter more deeply into the theory of

the multivariable polynomialsφn(x,y,z, . . .) and the theory of the Bessel func-

tions, and will also discuss their connections with several previously obtained

results.

Appendix. The proof of the Rainville-type generating function (3.4) follows

form the fact that

[(
f̂x

)+2y
∂
∂x

]n
φl(x,y)=φn+l(x,y). (A.1)

Multiplying both sides of (A.1) by tn/n! and then summing over n, we find

that

∞∑
n=0

tn

n!
φn+l(x,y)= exp

[(
f̂xt

)+2yt
∂
∂x

]
φl(x,y). (A.2)

According to (2.9), we have

∞∑
n=0

tn

n!
φn+l(x,y)= exp

[(
f̂xt

)+(f̂yt2)]·exp
[

2yt
∂
∂x

]
φl(x,y), (A.3)

which immediately yields (3.4).
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