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We show that an algebraic formulation of weighted directed graphs leads to in-
troducing a k-vector space equipped with two coproducts ∆ and ∆̃ verifying the
so-called coassociativity breaking equation (∆̃⊗ id)∆ = (id⊗∆)∆̃. Such a space is
called an L-coalgebra. Explicit examples of such spaces are constructed and links
between graph theory and coassociative coalgebras are given.

2000 Mathematics Subject Classification: 05C20, 16W30.

1. Introduction. On the one hand, motivated by periodicity phenomena in

algebraic K-theory, Loday [12] introduced the notion of “noncommutative Lie

algebra,” called Leibniz algebra. Such algebras D are described by a bracket

[−,z] verifying the Leibniz identity:

[
[x,y],z

]= [[x,z],y]+[x,[y,z]]. (1.1)

When the bracket is skew-symmetric, the Leibniz identity becomes the Jacobi

identity and the Leibniz algebra turns out to be a Lie algebra. A way to construct

such a Leibniz algebra is to start with an associative dialgebra, that is, a k-

vector space D equipped with two associative products � and � such that for

all x,y,z ∈D,

(1) x � (y � z)= x � (y � z),
(2) (x �y)� z = x � (y � z),
(3) (x �y)� z = (x �y)� z.

The associative dialgebra is then a Leibniz algebra by defining [x,y] := x �
y −y � x for all x,y ∈ D. The operad of associative dialgebras is Koszul

dual to the operad of dendriform algebras, a dendriform algebra E being a

k-vector space equipped with two binary operations ≺,�: E⊗E→ E, satisfying

the following axioms:

(1) (a≺ b)≺ c = a≺ (b ≺ c)+a≺ (b � c),
(2) (a� b)≺ c = a� (b ≺ c),
(3) (a≺ b)� c+(a� b)� c = a� (b � c).
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This notion dichotomizes the notion of associativity since the product a∗b =
a≺ b+a� b, for all a,b ∈ E, is associative. By dualizing, we can easily define

the notions of coassociative codialgebras and dendriform coalgebras. Coasso-

ciative codialgebras are then k-vector spaces equipped with two coassociative

coproducts ∆dias and ∆̃dias verifying (∆̃dias⊗id)∆dias = (id⊗∆dias)∆̃dias, and two

other axioms easily obtained from the definition of a dialgebra. Similarly, a

dendriform coalgebra is a k-vector space equipped with two coproducts, not

necessarily coassociative, ∆dend and ∆̃dend, still verifying the same equation

(∆̃dend⊗ id)∆dend = (id⊗∆dend)∆̃dend.

On the other hand, motivated by classical random walks on directed graphs

and more generally by weighted directed graphs, we introduce an algebraic

framework based on a particular k-vector space equipped with two coproducts

∆ and ∆̃ verifying (∆̃⊗ id)∆ = (id⊗∆)∆̃ called in the sequel the coassociativ-

ity breaking equation. Such a space is called an L-coalgebra. In this setting,

bidirected graphs are characterized by the equation ∆ = τ∆̃, where τ is the

switch map. This leads us to introduce a special cocommutator ker(∆−τ∆̃).
By dualizing, we also obtain an algebraic framework of algebras equipped with

two products � and � and the commutator becomes [x,y] := x � y−y � x.

Requiring that [−,z] verifies the “Leibniz identity” implies studying particular

coalgebras called coassociative codialgebras. Therefore, requiring an algebraic

framework for weighted directed graph leads also to considering special alge-

bras equipped with two products.

These particular L-coalgebras, the coassociative codialgebras, and dendri-

form codialgebras, in addition to those coming from weighted graphs the-

ory, are exciting motivations to investigate further algebras (resp., coalgebras)

equipped with two or more products (resp., coproducts). Indeed, to construct

associative dialgebras and dendriform algebras, the way is to start with con-

structing their coversions and to consider the k-vector space of linear maps

defined on such spaces and taking values into an associative algebra. The con-

volution products defined from these two coproducts will yield associative

dialgebras and dendriform algebras.

This paper is the first of a series of 6 papers [7, 8, 9, 10, 11] on the construc-

tions of L-coalgebras via graph theory. We very briefly summarize the obtained

results. In [9], we focus on unital algebras viewed as L-bialgebras and show the

existence of differential associative dialgebra associated with each curvature,

in the sense of Quillen [15], of a Leibniz-Ito derivative, that is, a linear map

ρ :A→M such that for all x,y ∈A, ρ(xy)= xρ(y)+ρ(x)y+ρ(x)ρ(y), with

A an algebra with unit 1, M an A-bimodule, and ρ(1)= 0. Motivated by a work

of Joni and Rota [5] on combinatorics, the L-coalgebra formalism is also applied

in [7]. We prove that the combinatorics generated by a quantum random walk

over Z, called the Hadamard walk, can be recovered from periodic orbits of a

classical chaotic system. There exists a bijection between these periodic orbits

and periodic orbits of a particular directed graph whose associated L-coalgebra
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is such that ∆̃=∆. In [10], we show that any weighted directed graph, through

its associated (Markov) L-coalgebra, yields solutions of the Yang-Baxter equa-

tion and thus provides representations of the braid groups. In [11], we con-

struct (Markov) coassociative codialgebras and show a relationship between

these codialgebras and a class of well-known coassociative coalgebras by con-

sidering a tool from graph theory called the line extension. We also exhibit

a tiling of directed graphs called the (n2,1)-De Bruijn graphs made with n
coassociative coalgebras. These constructions were our first examples of coas-

sociative manifolds [8]. We also obtain examples of cubical trialgebra, a notion

defined in [13], and more generally examples of hypercube n-algebra, that is, a

k-vector space V equipped withn products verifying (x•iy)•j z = x•i (y•j z),
x,y,z ∈ V , i,j = 0, . . . ,n−1, as well as associative products which split into

several ones, that is, x�y = ∑i x �i y , for all x,y ∈ A, with �i associative,

for all i = 0, . . . ,n−1. In [8], we construct L-Hopf algebras, coassociative co-

dialgebras, coassociative cotrialgebras, see [13] for the definition, dendriform

coalgebras, and Poisson algebras. All these constructions led us to the notion

of coassociative manifold developed in [8].

We now introduce the first part of the work on L-coalgebras. We start this pa-

per in Section 2 with recalling the definition of a weighted directed graph and

with introducing axioms of L-coalgebras. We construct from any weighted di-

rected graphs an L-coalgebra called a Markov L-coalgebra. Then, we enlarge the

definition of a directed graph and construct for any L-coalgebra its weighted

directed graph. As a coassociative coalgebra is a trivial L-coalgebra, we study

some consequences of this association, one of them being the nonlocality of

the coassociative coproduct over such a graph. We prove also that any coasso-

ciative coalgebra (C,∆) equipped with a group-like element can be viewed as

a nontrivial L-coalgebra (C,
�→
d,
←�
d). The case of a is then investigated and the

new coproducts
�→
d and

←�
d turn out to be Leibniz-Ito derivatives. Motivated by

this construction, we construct, in Section 4, L-coalgebras from any Markov L-

coalgebras (L,∆,∆̃)whose new coproducts
�→
d and

←�
d become Leibniz-Ito deriva-

tives if coproducts ∆ and ∆̃ are unital homomorphisms. We also set a compari-

son between usual graph theory and coassociative coalgebras. This work ends

with the example of the quaternions algebra embedded into a Markov L-Hopf

algebra (of degree 2) whose associated directed graph is the directed triangle.

2. Definitions and notation. We denote by k the field R or C and consider

only unital associative algebras. The Sweedler notation ∆a=∑aa(1)⊗a(2) will

be also used. The transposition map will be denoted by τ : V1⊗V2⊗···⊗Vn→
Vn⊗V1⊗···⊗Vn−1 such that τ(x1⊗x2⊗···⊗xn)= xn⊗x1⊗···⊗xn−1, where

V1,V2, . . . ,Vn are n k-vector spaces. We recall that a unital associative algebra

is a k-vector space (A,m,η) equipped with a product m : A⊗A→ A verifying

m(m⊗ id) = m(id⊗m) (associativity) and a unit map η : k → A, λ � λ1A.

Dualizing the previous definition, we obtain a coassociative coalgebra over k
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[14, 17], that is, a k-vector space (C,∆,ε) such that the counit map ε : C → k
and the coproduct map ∆ : C → C⊗C verify

(1) the coassociativity equation (∆⊗ id)∆= (id⊗∆)∆;

(2) the counit equation (id⊗ε)∆= id= (ε⊗ id)∆.

A coalgebra is said to be cocommutative if ∆ = τ∆. Similarly, a bialgebra

(C,m,η,∆,ε,k) over k is a k-vector space such that (C,∆,ε) is a coalgebra,

and (C,m,η) is an algebra such that the coproduct and counit are algebra ho-

momorphisms. A Hopf algebra (H,m,η,∆,ε,S,k) is a bialgebra with a k-linear

map S : H → H called antipode which verifies m(S⊗ id)∆ =m(id⊗S)∆ = ηε.
An antipode is unique, unital antialgebra map, and an anticoalgebra map, that

is, for all x ∈H, (S⊗S)∆x = τ∆S(x).
Definition 2.1 (directed graph). A directed graph G is a quadruple (G0,G1,

s,t) [16], where G0 and G1 are two denumerable sets called, respectively, the

vertex set and the arrow set. The two maps s,t :G1→G0 are called, respectively,

source and terminus. A vertex v ∈ G0 is a source (resp., a sink) if t−1({v})
(resp., s−1({v})) is empty. A graph G is said to be locally finite (resp., rowfinite)

if t−1({v}) (resp., s−1({v})) is finite. Fix a vertex v ∈ G0. Define the set Fv :=
{a∈G1, s(a)= v}. A weight associated with the vertex v is a mapwv : Fv → k.

A directed graph equipped with a family of weights w := (wv)v∈G0 is called a

weighted directed graph.

Remark 2.2. The case of nondirected graphs can be dealt with in this frame-

work by imposing that for each arrow a∈G1, such that s(a)=u and t(a)= v ,

there exists a unique ā ∈ G1 with s(ā) = v and t(ā) = u. We then identify a
with ā. Should this identification be omitted, the graph is directed, the condi-

tion of existence of ā meaning that every arrow has an inverse.

This subsection ends by recalling the definition of the line extension of a

directed graph and the graph isomorphism.

Definition 2.3 (line extension). The line extension of a directed graph G :=
(G0,G1,s,t) with a denumerable vertex set G0 and a denumerable arrow set

G1 ⊆G0×G0 is the directed graph with vertex setG1 and arrow setG2 ⊆G1×G1

defined by (v,w) ∈ G1 ×G1 belongs to G2 if and only if t(v) = s(w). This

directed graph, called the line-directed graph of G, is denoted by E(G).

Definition 2.4 (graph isomorphism). A graph isomorphism f :G→H be-

tween two graphs G = (G0,G1,sG,tG) and H = (H0,H1,sH,tH) is a pair of bi-

jections f0 : G0 → H0 and f1 : G1 → H1 such that f0(sG(a)) = sH(f1(a)) and

f0(tG(a))= tH(f1(a)) for all a∈G1. All the directed graphs in this formalism

will be considered up to a graph isomorphism.

Example 2.5. The two directed graphs in Figure 2.1 are isomorphic.

3. Coassociativity breaking. We introduce L-coalgebras and show why this

notion is interesting.
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Figure 2.1

3.1. Axioms

Definition 3.1 (L-coalgebra). An L-coalgebra (L,∆,∆̃) is a k-vector space

equipped with a right coproduct ∆ : L→ L⊗2 and a left coproduct ∆̃ : L→ L⊗2,

verifying the coassociativity breaking equation (∆̃⊗ id)∆ = (id⊗∆)∆̃. An L-

coalgebra may have two counits. The right counit ε : L→ k verifying (id⊗ε)∆=
id and the left counit ε̃ : L→ k verifying (ε̃⊗ id)∆̃= id. An L-coalgebra is called

coassociative if its two coproducts are coassociative. In this case, the equation

(∆̃⊗ id)∆= (id⊗∆)∆̃ is called the entanglement equation, see [8, 11].

Proposition 3.2. Any coassociative coalgebra is an L-coalgebra.

Proof. Let C be a coassociative coalgebra and ∆ its coproduct. Set ∆̃ :=∆.

The two coproducts verify (∆̃⊗ id)∆= (id⊗∆)∆̃.

The case ∆̃ :=∆ will be called the degenerate case. To discriminate between

the different types of L-coalgebras, we give the following definition.

Definition 3.3 (finite Markov L-coalgebra). A Markov L-coalgebra is an L-

coalgebra (�,∆M,∆̃M), which is of dimension dim� as a k-vector space, with a

basis �0 := (vi)1≤i≤dim� equipped with

(1) a set �1 := {vi⊗vj ; (vi,vj)∈ �0×�0},
(2) two subsets Ivi and Jvi of �1, and maps wvi : Ivi → k and w̃vi : Jvi → k

called weights, for any 1≤ i≤ dim�, verifying that

∆M
(
vi
)= ∑

k:vi⊗vk∈Ivi
wvi

(
vi⊗vk

)
vi⊗vk,

∆̃M
(
vi
)= ∑

j:vj⊗vi∈Jvi
w̃vi

(
vj⊗vi

)
vj⊗vi.

(3.1)

A Markov L-coalgebra is said to be finite when Ivi and Jvi are finite sets for all i.
The linear maps s,t : k�1→ k�0 given by s(vi⊗vj)= vi and t(vi⊗vj)= vj , for

all vi,vj ∈ �0, are still called source and terminus, respectively. Let (�,∆M,∆̃M)
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be a finite Markov L-coalgebra and vi ∈ �0. The future of vi is defined as

t(∆M(vi)) and the past of vi as s(∆̃M(vi)).

Remark 3.4. The definition of a Markov L-coalgebra is basis-dependent.

With the viewpoint of discrete Markov processes in mind, the definitions of

future and past are constructed on linear superpositions of usual classical

future(s) (or past(s)) and are reminiscent of quantum definitions of future and

past, see [7].

Theorem 3.5. Any weighted directed graph G = (G0,G1,s,t), supposed to

be locally finite, row-finite, without sink and source, and equipped with a family

of weights (wv)v∈G0 , gives a finite Markov L-coalgebra.

Proof. Let G = (G0,G1,s,t) be a directed graph, verifying Theorem 3.5. We

consider the free k-vector space kG0. Identify any directed arrow v →w of G1

with v⊗w. The setG1 is then viewed as a subset of kG⊗2
0 . The family of weights

(wv)v∈G0 is then viewed as a family of maps wv : Fv → k, where Fv := {a∈G1,

s(a)= v}. Define the coproducts ∆M,∆̃M : kG0→ kG⊗2
0 as follows:

∆M(v) :=
∑

i:ai∈Fv
wv

(
ai
)
v⊗t(ai),

∆̃M(v) :=
∑

i:ai∈Pv
ws(ai)

(
ai
)
s
(
ai
)⊗v, (3.2)

where Pv := {a ∈ G1, t(a) = v}, for all v ∈ G0. For all v ∈ G0, the maps w̃v :

Pv → k are such that w̃v(ai)=ws(ai)(ai), for all ai ∈ Pv . With these definitions

the free k-vector space kG0, equipped with coproducts ∆M and ∆̃M , is a finite

Markov L-coalgebra.

Motivated by this theorem, we construct a weighted directed graph from

each L-coalgebra.

Definition 3.6 (geometric support). Let (L,∆,∆̃) be an L-coalgebra gener-

ated, as a k-vector space, by an independent spanning set L0. To any v,w ∈ L0

such that the coefficient λ of the element v⊗w is different from zero either

in ∆(z) or in ∆̃(z), for some z ∈ L0, a weighted directed arrow v λ
����→w is asso-

ciated. The weighted directed graph so obtained, denoted by Gr(L), is called

the geometric support of L. Its vertex set is L0 and its arrow set the set of

those tensor products v⊗w, v,w ∈ L0, which appears in the definition of the

coproducts. This construction is basis-dependent.

Definition 3.7 (L-cocommutator). If (C,∆C) is a coassociative coalgebra,

ker(∆C −τ∆C) represents the cocommutator subspace of C . Similarly, an L-

coalgebra (L,∆,∆̃) is said to be L-cocommutative if L� = L, where L� := ker(∆−
τ∆̃) is called the L-cocommutator subspace of L.

Theorem 3.8. Let (�,∆M,∆̃M) be a finite Markov L-coalgebra generated, as

a k-vector space, by an independent spanning set �0 with families of weights
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(wv)v∈�0 and (w′v)v∈�0 . Ifv ∈ �0 such that for each arrowa∈ Gr(�)1 emerging

from v , with a given weightwv(a), there exists a unique arrow b ∈ Gr(�)1, such

that s(b)= t(a), t(b)= v , and wv(a)=w′v(b), then v ∈ ��.

Proof. The proof is straightforward.

Remark 3.9. The L-cocommutativity describes algebraically the fact that

a directed graph can be bidirected. The characterization of bidirected graphs

leads naturally to constructing Leibniz bracket, see the introduction and also

[8, 12].

Theorem 3.10. Let (�,∆M,∆̃M) be a finite Markov L-coalgebra generated, as

a k-vector space, by an independent spanning set �0 equipped with two families

of weights (wv)v∈�0 and (w̃v)v∈�0 . Suppose that for all v ∈ �0,wv and w̃v take

values in R+. The family of weights (wv)v∈�0 describes a family of probability

vectors on Gr(�) if and only if the right counit v � ε(v) := 1, for all v ∈ �0,

exists.

Proof. The proof is straightforward.

Theorem 3.11. Let G = (G0,G1,s,t) be a directed graph supposed to be

locally finite, rowfinite, without sink and source, and equipped with a family of

probability vectors (Πv)v∈G0 . ThenG can be seen as the geometric support from

a finite Markov L-coalgebra equipped with right and left counits.

Proof. Let G = (G0,G1,s,t) be a directed graph verifying Theorem 3.11.

We consider the free k-vector space kG0. For all v ∈ G0, define the right co-

product ∆M : kG0 → kG⊗2
0 such that for all v ∈ G0, ∆M(v) =

∑
a∈Fv Πv(a)v⊗

t(a), the left coproduct ∆̃M : kG0 → kG⊗2
0 verifying for all v ∈ G0, ∆̃M(v) =

(1/card(Pv))
∑
a∈Pv s(a)⊗v , and the right (resp., the left) counit ε (resp., ε̃)

such that ε̃(v) = 1 = ε(v) for all v ∈ G0. This finite Markov L-coalgebra has

two counits and its geometric support is G.

Proposition 3.12. Let (�,∆M,∆̃M) be a finite Markov L-coalgebra gener-

ated, as a k-vector space, by an independent spanning set �0. The sequence

(∆M)1 ≡ ∆M , (∆M)2 = id⊗∆M , (∆M)3 = id⊗ id⊗∆M,. . . generates all possible

weighted paths in Gr(�), starting at any vertex. Similarly, the sequence (∆̃M)n≥0

generates all the possible weighted paths in Gr(�), arriving at a given vertex.

Proof. The proof is straightforward.

The algebraic framework of finite Markov L-coalgebras extends the classical

setting of weighted directed graphs. Usually, a directed graph G = (G0,G1,s,t)
is also coded through an adjacency matrix, that is, a square matrix AG, with

AG[vi,vj]= 1 if the directed arrow vi→ vj ∈G1. With the viewpoint of random

walk on directed graphs, the adjacency matrix codes the (Markovian) neigh-

bourhood of a given vertex, that is, vertices present in the sum t∆M for the

future and in the sum s∆̃M for the past, when we view the graph through its
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Figure 3.1. Directed graph associated with Slq(2).

Markov L-coalgebra. The coproducts ∆M and ∆̃M can be called the propaga-

tors on the geometric support of the Markov L-coalgebra. The locality is re-

spected. If v1, . . . ,vn denote the vertices of the graph G, then observe that

t(∆M(v)) = AG · X, where the adjacency matrix AG is written in the basis

(v1, . . . ,vn), and X is the vector tv := t(λ1, . . . ,λn) in the same basis.

Motivated by this framework, for any L-coalgebra (L,∆,∆̃) generated, as a

k-vector space, by an independent spanning set L0, a unique directed graph

Gr(L), called the geometric support of L, has been constructed. Regarding the

coproducts of L as a propagator of a walk generated by the sequences (∆n)n>0

and (∆̃n)n>0, we define the future ofv ∈ L0 by t(∆(v)) and the past by s(∆̃(v)).
We see what occurs in the case of a coassociative coalgebra.

First of all, we enlarge our graphical construction to bialgebra. Let (A :=
k{A0}\�,∆,m,η) be a bialgebra such that (A := k{A0}\�,m,η) is an associa-

tive algebra generated by a denumerable set A0 verifying a set of relations �.

Consider the subvector space of A spanned by the set A0 and denoted by kA0.

If A0 is an independent spanning set and ∆ : kA0 → kA⊗2
0 , then we construct

its geometric support as before. In other terms, the vertex set is composed by

the generators of the algebra A and the arrows still represent the tensor prod-

ucts appearing in the definition of ∆. Fix an invertible element q ∈ k. The Hopf

algebra Slq(2) is generated by a, b, c, and d such that ba = qab, ca = qac,

dc = qcd, db = qbd, bc = cb, ad−da = (q−1 −q)bc, and ad−q−1bc = 1.

The antipode map is described by the linear map S : Slq(2)→ Slq(2) such that

S(a) = d, S(d) = a, S(b) = −qb, and S(c) = −q−1c. The well-known coalge-

bra structure is described by ∆Sl(a) = a⊗a+ b⊗ c, ∆Sl(b) = a⊗ b+ b⊗d,

∆Sl(c)= d⊗c+c⊗a, and ∆Sl(d)= d⊗d+c⊗b. The directed graph associated

with Slq(2) is illustrated in Figure 3.1.

The geometric support of Slq(2), whose future and past of a given vertex

are coded by its coproduct ∆Sl, behaves in a nonlocal way. For the sake of an

example, notice that on the directed graph Gr(Slq(2)), the future of a is not a
and b as expected in usual graph theory. On the contrary, the future of a is a
and c and its past is a and b.
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Observe also that the antipode map, as an anticoalgebra map, has also an

interesting interpretation since it realizes a time reversal. (The future becomes

the past and conversely.)

Proposition 3.13. If (C,∆C) is a cocommutative coassociative coalgebra

generated, as a k-vector space, by an independent spanning set C0, then its

geometric support Gr(C) can be viewed as a nondirected graph.

Proof. Let (C,∆C) be a cocommutative coassociative coalgebra generated,

as a k-vector space, by an independent spanning set C0. Let a,b,x ∈ C0 and

suppose that the term a⊗b appears in the description of ∆x. The same must

be true for b⊗a since ∆C = τ∆C . On the geometric support Gr(C), an arrow

emerges from a to b and from b to a. We have just proved that the graph is

bidirected. By identifying the arrow emerging from a to b with that from b to

a, we obtain a nondirected graph.

To embed any directed graph into an algebraic framework, we use the for-

malism of L-coalgebra. This point of view has the advantage to manipulate

weighted directed graphs and deals with future and past in an algebraic way

and to generalize these notions to any L-coalgebra. We mention that any di-

rected graph can also be embedded into a coassociative coalgebra by consid-

ering its path space instead of its vertex space [1]. This result can also be

recovered by the following theorem.

Theorem 3.14. Let G be a nonempty set consisting of a distinguished subset

G(0) ⊂G, two maps t,s :G→G(0), and a law of composition

◦ :G(2) = {(γ1,γ2
)∈G×G; s

(
γ1
)= t(γ2

)}
�→G (3.3)

such that

(1) s(γ1 ◦γ2)= s(γ2), t(γ1 ◦γ2)= t(γ1), for all (γ1,γ2)∈G(2),
(2) for all x ∈G(0), s(x)= t(x)= x; for all γ ∈G, γ ◦s(γ)= γ, t(γ)◦γ = γ,

(3) (γ1 ◦γ2)◦γ3 = γ1 ◦(γ2 ◦γ3),
(4) the family (Gγ := {(γ1,γ2) ∈ G(2); γ = γ1 ◦γ2})γ∈G is a family of finite

sets.

Let C be a k-vector space equipped with a right action α : C ×G → C . If C̃ :=
{cγ = α(c,γ), γ ∈ G} is the k-vector space of orbits associated with α, then C̃
has a coassociative coalgebra structure.

Proof. Fix cγ ∈ C̃ and define ∆cγ :=∑γ1◦γ2=γ cγ1⊗cγ2 . From condition (2),

one gets that there exists at least an element (γ1,γ2,γ3) ∈ G×3 such that γ =
γ1 ◦ γ2 ◦ γ3. By the definition of the coproduct and the associativity of the

product ◦, we get∑
γ1◦γ2=γ

cγ1⊗∆
(
cγ2

)= ∑
γ1◦γ2=γ

∑
γ′1◦γ′2=γ2

cγ1⊗
(
cγ′1⊗cγ′2

)

=
∑

γ1◦(γ′1◦γ′2)=γ
cγ1⊗

(
cγ′1⊗cγ′2

)
,
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γ1◦γ2=γ

∆
(
cγ1

)⊗cγ2 =
∑

γ1◦γ2=γ

∑
γ′′1 ◦γ′′2 =γ1

(
cγ′′1 ⊗cγ′′2

)⊗cγ2

=
∑

(γ′′1 ◦γ′′2 )◦γ2=γ

(
cγ′′1 ⊗cγ′′2

)⊗cγ2 ,

(3.4)

proving that (id⊗∆)∆= (∆⊗id)∆ since the sums involved are over all possible

decompositions of γ in three parts. As γ = γ◦s(γ)= t(γ)◦γ, we define ε(cγ)=
0 if γ ∈G\G(0) and ε(cγ)= 1 otherwise. We have

∆
(
cγ
)= ∑

γ1◦γ2=γ; γ∈G\G(0)
cγ1⊗cγ2+ct(γ)⊗cγ+cγ⊗cs(γ), (3.5)

thus (id⊗ε)∆= (ε⊗ id)∆= id.

Remark 3.15. Observe that a directed graph, as a geometric object, can

be a geometric support for several L-coalgebras. For instance the geometric

support of the coassociative coalgebra (�,∆), spanned as a k-vector space by

a basis a, b, c, and d and whose coproduct ∆ is given by ∆(a)= a⊗a+b⊗c,

∆(b)= a⊗b+b⊗d, ∆(c)= d⊗c+c⊗a, and ∆(d)= d⊗d+c⊗b, is the same

as, or isomorphic to, the geometric support of the finite Markov L-coalgebra

spanned, as a k-vector space, by a basis a, b, c, and d and described by the

right coproduct ∆M(a) = a⊗(a+b), ∆M(b) = b⊗(c+d), ∆M(c) = c⊗(a+b),
∆M(d) = d⊗(c+d) and the left coproduct ∆̃M(a) = (a+c)⊗a, ∆̃M(b) = (a+
c)⊗b, ∆̃M(c)= (b+d)⊗c, ∆̃M(d)= (b+d)⊗d.

To turn a coassociative coalgebra into a nondegenerate L-coalgebra, we will

use a generalization of an idea applied by Hudson [4].

Proposition 3.16. Let (C,∆C) be a coassociative coalgebra with a group-

like element e. Define the coproducts δ̃f ,δf : C → C⊗2 such that for all c ∈ C ,

δ̃f (c) := e⊗c and δf (c) := c⊗e. Then (C,δ̃f ,δf ) is a finite Markov L-coalgebra

which is in addition a coassociative codialgebra.

Proof. The proof is straightforward.

Proposition 3.17. Any coassociative coalgebra (C,∆C), with a group-like

element, gives rise to a nondegenerate L-coalgebra structure on C .

Proof. Let (C,∆C) be a coassociative coalgebra. Suppose e is a group-like

element, that is, ∆C(e)= e⊗e. Define, as in Proposition 3.16, the coassociative

coproducts δf (c) := c⊗e and δ̃f (c) := e⊗c, for all c ∈ C . Define also two linear

maps
�→
d,
←�
d : C → C⊗C by

�→
d(c)=∆C(c)−δf (c) and

←�
d(c)=∆C(c)− δ̃f (c), for

all c ∈ C . These linear maps
←�
d and

�→
d turn the coassociative coalgebra C into

a nondegenerate L-coalgebra. Indeed, if c ∈ C such that ∆C(c) =
∑
c(1)⊗c(2),
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then

c
←�
d
��������������������������������������������������→

∑
c(1)⊗c(2)−e⊗c

id⊗ �→d
����������������������������������������������������������������������������������������������������������������������������→

∑
c(1)⊗∆C

(
c(2)

)−∆C(c)⊗e−e⊗∆C(c)+e⊗c⊗e,
c

�→
d
��������������������������������������������������→

∑
c(1)⊗c(2)−c⊗e

←�
d⊗id
�����������������������������������������������������������������������������������������������������������������������→

∑
∆C
(
c(1)

)⊗c(2)−∆C(c)⊗e−e⊗∆C(c)+e⊗c⊗e.

(3.6)

Moreover,
←�
d is obviously not equal to

�→
d on the whole coalgebra. Therefore,

(C,
�→
d,
←�
d) is a nondegenerate L-coalgebra.

Remark 3.18. Let (C,∆C,εC) be a coassociative coalgebra with counit εC .

Observe that c ∈ C∩kerεC and (
←�
d⊗ id)

�→
d(c)= 0 if and only if c is a primitive

element of C .

Corollary 3.19. Any bialgebra can be viewed as a nontrivial L-coalgebra.

Proof. The proof is straightforward since the identity element is group-

like.

We can construct another interesting class of L-coalgebra.

Definition 3.20 (C-bimodule). Let (C,∆C) be a bialgebra. From Proposition

3.17, (C,
←�
d,
�→
d) is an L-coalgebra. Define on C⊗2 two structures of C-bimodule

given by the following products: for x,y ∈ C , c ∈ C⊗2, x·̃c = δ̃f (x)c, c·̃y =
cδ̃f (y), x ·c = δf (x)c, and c ·y = cδf (y).

LetA be an algebra with unit 1 andM anA-bimodule. A Leibniz-Ito derivative

is a linear map ρ :A→M such that for all x,y ∈A, ρ(xy)= xρ(y)+ρ(x)y+
ρ(x)ρ(y) and ρ(1)= 0.

Theorem 3.21. Let (C,∆C) be a bialgebra. As∆C is a unital homomorphism,

the coproducts
←�
d and

�→
d turn out to be Leibniz-Ito derivatives.

Proof. Let (C,∆C) be a bialgebra and x,y ∈ C . The relation
←�
d(1) = 0 =

�→
d(1) holds. Moreover,

�→
d(x)

�→
d(y) = ∆C(xy)+xy ⊗1−∆C(x)(y ⊗1)− (x⊗

1)∆(y) implies
�→
d(xy)= �→

d(x)
�→
d(y)+ �→d(x)·y+x · �→d(y). The same equation

holds for the other coproduct.

If (C,∆C) is a bialgebra, we call (C,
←�
d,
�→
d) a Leibniz-Ito L-coalgebra. This kind

of L-coalgebra plays an important role in quantum stochastic processes, see

[3, 4].

We present here two ways to construct L-coalgebras from known ones.

3.1.1. Bicomodule over C for a coassociative coalgebra C . Let (C,∆C) be

a coassociative coalgebra. Let B be a C-bicomodule, that is, there exist linear
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maps δ and δ̃ such that the following diagram commutes:

B
δ

δ̃

B⊗C
δ̃⊗idC

C⊗B idC ⊗δ
C⊗B⊗C

(3.7)

and such that (idB⊗∆C)δ= (δ⊗ idC)δ and (∆C⊗ idB)δ̃= (idC⊗δ̃)δ̃.

Proposition 3.22. Let (C,∆C) be a coassociative coalgebra and B a bico-

module over C . Let A := C ⊗B⊗C . Keeping the previous notation, the linear

maps δ and δ̃ induce coproducts ∆ and ∆̃ on A given by

∆(u⊗b⊗v) := (u⊗δ(b))⊗(v⊗e⊗f),
∆̃(u⊗b⊗v) := (g⊗h⊗u)⊗(δ̃(b)⊗v), (3.8)

for u⊗b⊗v ∈ A and fixed elements g,f ∈ C and h,e ∈ B. That means that

there exists a natural structure of L-coalgebra on A for any couple of pairs

(g,f )∈ C×2 and (h,e)∈ B×2.

Proof. Let (C,∆C) be a coassociative coalgebra and B a bicomodule over

C . Fix g,f ∈ C and h,e ∈ B. Set A := C ⊗B⊗C . The coproducts δ, δ̃ induce

coproducts ∆, ∆̃ defined above such that the following diagram commutes:

A
∆

∆̃

A⊗A
∆̃⊗idA

A⊗A idA⊗∆
A⊗A⊗A.

(3.9)

Indeed,

u⊗b⊗v ∆

∆̃

(
u⊗δ(b))⊗(v⊗e⊗f)

∆̃⊗idA

(g⊗h⊗u)⊗(δ̃(b)⊗v) idA⊗∆
(g⊗h⊗u)⊗(δ̃⊗ idC

)
δ(b)⊗(v⊗e⊗f).

(3.10)

3.1.2. Tensor product. Let (L,∆L,∆̃L) and (M,∆M,∆̃M) be two L-coalgebras.

Define the right coproduct ∆L⊗M to be the composite

L⊗M ∆L⊗∆M�����������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (L⊗L)⊗(M⊗M) idL⊗τ⊗idM������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (L⊗M)⊗(L⊗M) (3.11)

and the left coproduct ∆̃L⊗M by

L⊗M ∆̃L⊗∆̃M�����������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (L⊗L)⊗(M⊗M) idL⊗τ⊗idM������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������→ (L⊗M)⊗(L⊗M). (3.12)
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With this setting, (L⊗M,∆L⊗M,∆̃L⊗M) becomes an L-coalgebra over k. If both L-

coalgebras have counits, we define the right counit εL⊗M as L⊗M εL⊗εM�������������������������������������������������������������������������������������������������������������������→ k⊗k�
k and the left counit ε̃L⊗M as L⊗M ε̃L⊗ε̃M�������������������������������������������������������������������������������������������������������������������→ k⊗k� k.

3.2. L-Bialgebras and L-Hopf algebras. The construction of vector spaces

equipped with two coproducts entails the generalization of definitions such as

bialgebras and Hopf algebras.

Definition 3.23 (L-bialgebra). An L-bialgebra with counits ε and ε̃ is an L-

coalgebra with counits (L,∆,∆̃,ε, ε̃) equipped with an extra structure of unital

algebra over k such that the coproducts and counits are algebra homomor-

phisms.

Definition 3.24 (L-Hopf algebra). An L-Hopf algebra is an L-bialgebra with

counits (H,∆,∆̃,ε, ε̃) equipped with two linear maps S, S̃ :H →H, called right

and left antipodes, which verify the equalities m(id⊗S)∆ = ηε and m(S̃ ⊗
id)∆̃= ηε̃.

Remark 3.25. In the sequel, all our L-Hopf algebras will verify the previ-

ous equalities. However, it is worth noticing [8] that we can also construct

another type of L-Hopf algebras verifying the equalities m(S⊗ id)∆ = ηε and

m(id⊗S̃)∆̃= ηε̃.
We give two examples of L-bialgebras.

Example 3.26 (the Cuntz-Krieger algebra). In [2, 6], a C∗-algebra, called a

Cuntz-Krieger algebra, is associated with each directed graphG = (G0,G1,s,t).
If G is a row-finite (i.e., for all v ∈ G0, s−1({v}) is finite) directed graph, a

Cuntz-Krieger G-family consists of a set {Pv : v ∈G0} of mutually orthogonal

projections and a set {Se : e∈G1} of partial isometries satisfying

S∗e Se = Pt(e), Pv =
∑

e:s(e)=v
SeS∗e , ∀(e,v)∈G1×G0, (3.13)

where, for all e∈G1, S∗e denotes the adjoint of Se.

Proposition 3.27. A Cuntz-Krieger algebra CK associated with a graph

without sinks and loops and whose vertex set is finite is a finite Markov L-

bialgebra.

Proof. As usual, by defining

∆M
(
Pv
)= ∑

v1∈t(s−1({v}))
Pv⊗Pv1 ,

∆̃M
(
Pv
)= ∑

v0∈s(t−1({v}))
Pv0⊗Pv,

(3.14)
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a b

c d

I

I

Figure 3.2. Example of geometric support associated with an alge-
bra k{a,b,c,d}⊕kI.

we turn CK into a Markov L-coalgebra. Thanks to the mutual orthogonality

property of the projectors, we get, for instance,

∆M
(
Pv
)
∆M

(
Pv′

)= ∑
v1∈t(s−1(v))

∑
v′1∈t(s−1(v′))

PvPv′ ⊗Pv1Pv′1

= δ(v,v′)∆M
(
Pv
)=∆M(PvPv′),

(3.15)

where δ is the Kronecker symbol. Since the vertex set is finite, CK has an iden-

tity element
∑
v∈G0

Pv := I. In general, we do not have ∆M(I) = I⊗ I = ∆̃M(I).

Example 3.28 (unital algebra). Let A be a unital algebra with unit I. From

the equality (I ·a)·I = I ·(a·I),A carries a nontrivial finite Markov L-bialgebra,

with coproducts δf (a)= a⊗I and δ̃f (a)= I⊗a, for all a∈A. If A := k{A0}\�

is an associative algebra generated by a denumerable set A0 verifying a set

of relations �, then its geometric support can be constructed. We call it the

flower graph (see Figure 3.2).

Observe that for all a ∈ A different from I, a� δf (a)+ δ̃f (a) and I � I⊗ I
is a coassociative cocommutative coproduct.

4. Finite Markov L-coalgebra and periodic orbits. Propositions 3.16 and

3.17 assert that a coassociative coalgebra (C,∆C) with a group-like element e
yields two coproducts

←�
d and

�→
d , constructed from the coproduct ∆C , which

turn out to be Leibniz-Ito derivatives if∆C is a unital homomorphism and if e=
I. In this framework, if we replace a coassociative coalgebra by a finite Markov

L-coalgebra, how can we produce two new coproducts such that if the old ones

are unital homomorphisms, the new ones become Leibniz-Ito derivatives?

The answer to this question can be found, in the proof of Proposition 3.17, by

analysing the term e⊗x⊗e. Graphically, this term describes the path e→ x→ e,
that is, we have made one complete turn around the orbit (e,x,e) of the flower

graph. In a general finite Markov L-coalgebra � generated by an independent

spanning set �0, there does not exist such a possibility. Therefore we have
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to create it. To do so, we need to consider the arrow set �1 of the geometric

support of a finite Markov L-coalgebra � and fix an arrow, say a→ b, which is

associated with a⊗b in �⊗2. By this way, we can construct two virtual periodic

orbits of period 2, either a→ b→ a or b→ a→ b. Before going on, we introduce

a notion inspired from the line extension of graph: the L-coalgebras of degreen

Definition 4.1. Let n ∈ N \ {0}. The k-vector space (Z,∆n,∆̃n) is an L-

coalgebra of degree n over k if the diagram

Z⊗n
∆n

∆̃n

Z⊗n+1

∆̃n⊗id

Z⊗n+1
id⊗∆n

Z⊗n+2

(4.1)

commutes, that is, (∆̃n⊗ id)∆n = (id⊗∆n)∆̃n. Such a space may have a right

counit εn : Z⊗n→ Z⊗n−1 such that (id⊗εn)∆n = id and a left counit ε̃n : Z⊗n→
Z⊗n−1 such that (ε̃n⊗ id)∆̃n = id. By convention, Z⊗0 := k.

Proposition 4.2. A finite Markov L-coalgebra (�,∆M,∆̃M) is a finite Markov

L-coalgebra of degree n for any n> 0.

Proof. Let ∆M , ∆̃M , ε, and ε̃ be the coproducts and the possible counits of

a finite Markov L-coalgebra � and define the following operators:

(
∆M

)
n = id⊗···⊗ id︸ ︷︷ ︸

n−1

⊗∆M,
(
∆̃M

)
n = ∆̃M⊗ id⊗···⊗ id︸ ︷︷ ︸

n−1

,

εn = id⊗···⊗ id︸ ︷︷ ︸
n−1

⊗ε, ε̃n = ε̃⊗ id⊗···⊗ id︸ ︷︷ ︸
n−1

.
(4.2)

Equipped with these maps, � is a finite Markov L-coalgebra of degree n.

From now on, we consider the special case n = 2. The Markov L-coalgebra

� can be embedded into a Markov L-coalgebra of degree 2. We see now the

link with the line extension in graph theory. Let (�,∆M,∆̃M) be a Markov L-

coalgebra generated by an independent spanning set �0, whose geometric sup-

port is denoted by Gr(�). Fixu→ v ∈ Gr(�)1. Then (∆M)2(u⊗v) :=u⊗∆M(v).
Therefore, the line extension of Gr(�), denoted by E(Gr(�)), is a Markov L-

coalgebra with coproduct ∆E(u⊗v) := (u⊗v)⊗∆M(v). Recall that s is the

source map. Therefore, (id⊗s⊗ id)∆E := (∆M)2 since (id⊗s⊗ id)∆E(u⊗v) :=
u⊗s(v⊗v)⊗t(∆M(v)) :=u⊗∆M(v) := (∆M)2(u⊗v).

Definition 4.3. Let � be a k-vector space generated by an independent

spanning set �0. Define the coproducts δR,δL : �⊗2 → �⊗3, such that δR(a⊗
b)= a⊗b⊗a and δL(a⊗b)= b⊗a⊗b, for all a,b ∈ �0.

Proposition 4.4. Let � be a k-vector space generated by an independent

spanning set �0. The coproducts δL and δR verify the coassociativity breaking
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equation (δL ⊗ id)δR = (id⊗δR)δL. Moreover, δL and δR are both homomor-

phisms if � has also an extra structure of algebra over k.

Proof. Let � be a k-vector space generated by an independent spanning set

�0. Fix a,b ∈ �0. We get a⊗b δL�����������������������������→ b⊗a⊗b id⊗δR�����������������������������������������������������������������������������������������������������������→ b⊗(a⊗b⊗a) and a⊗b δR���������������������������������→
a⊗ b⊗a δL⊗id

���������������������������������������������������������������������������������������������������→ (b⊗ a⊗ b)⊗ a. If � is also an algebra generated by �0, fix

(a,b,c,d) ∈ �0, then δL(a⊗b)δL(c⊗d) = (b⊗a⊗b)(d⊗c⊗d) = (bd⊗ac⊗
bd) = δL(ac ⊗bd) = δL((a⊗b)(c ⊗d)). The same computation is used for

proving that δR is a homomorphism.

Theorem 4.5. Let � be a finite Markov L-coalgebra generated, as a k-vector

space, by an independent spanning set �0, equipped with coproducts ∆M and

∆̃M . Set (∆M)2 := id⊗∆M and (∆̃M)2 := ∆̃M ⊗ id. Define the two coproducts
←�
d��→

d� as
←�
d� = (∆̃M)2−δL and

�→
d� = (∆M)2−δR . These two coproducts verify the

coassociativity breaking equation (
←�
d�⊗ id)

�→
d� = (id⊗

�→
d�)
←�
d�. Moreover,

�→
d� =

0=←�d� on (trivial weighted) isolated periodic orbits of period 2.

Proof. The proof is straightforward by noticing that (δL⊗id)(∆M)2 = (id⊗
(∆M)2)δL and that ((∆̃M)2⊗ id)δR = (id⊗δR)(∆̃M)2. Let x,y ∈ �0 representing

a (trivial weighted) isolated periodic orbit of period 2 on Gr(�). Such an orbit

verifies that (∆M)2(x⊗y) = x⊗y ⊗x and (∆̃M)2(x⊗y) = y ⊗x⊗y , which

implies that
←�
d� and

�→
d� vanish on such an element.

Remark 4.6. With the Markov processes in mind, directed graphs equipped

with probability vectors have always their isolated periodic orbits trivial

weighted, that is, all the weights are equal to 1 on each arrow of the orbit.

From now on, such orbits will always be supposed to be trivial weighted.

Theorem 4.7. Let � be a Markov L-bialgebra generated by a set �0, equipped

with unital coproducts ∆M and ∆̃M . Then
�→
d� and

←�
d� behave as Leibniz-Ito

derivatives, that is, verify
�→
d�(x)

�→
d�(y)=

�→
d�(xy)−

�→
d�(x)δR(y)−δR(x)

�→
d�(y)

and
�→
d�(I⊗I)= 0. Similarly, these two equalities hold for

←�
d�.

Proof. Let � be a Markov L-bialgebra generated by a set �0. Fix a,b,c,d∈
�0. Define x := a⊗b and y := c⊗d. We get

←�
d�(x)

←�
d�(y)=

((
∆̃M

)
2(x)−δL(x)

)((
∆̃M

)
2(y)−δL(y)

)
= (∆̃M)2(xy)−

(
∆̃M

)
2(x)δL(y)−δL(x)

(
∆̃M

)
2(y)

+δL(x)δL(y)+
(
δL(x)δL(y)−δL(x)δL(y)

)
=←�d�(xy)−

←�
d�(x)δL(y)−δL(x)

←�
d�(y).

(4.3)

Similarly, for the coproduct
�→
d , we can show that

�→
d�(x)

�→
d�(y) =

�→
d�(xy)−

�→
d�(x)δR(y)−δR(x)

�→
d�(y). Moreover,

�→
d�(I⊗ I) = 0 = ←�d�(I⊗ I). These equa-

tions are reminiscent of those of Theorem 3.21 when δR is played by δf and

δL by δ̃f .
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Let � be a finite Markov L-coalgebra generated, as a k-vector space, by an in-

dependent spanning set �0, equipped with coproducts∆M and ∆̃M . The present

setting can be easily generalized. Fix n > 1 and generalize the definition of

δR and δL as follows: δR,n,δL,n : �⊗n → �⊗(n+1) defined by δR,n(a1, . . . ,an) =
(a1, . . . ,an)⊗a1 and δL,n(a1, . . . ,an)= an⊗(a1, . . . ,an), where a1, . . . ,an ∈ �0.

Theorem 4.8. Let � be a finite Markov L-coalgebra generated, as a k-vector

space, by an independent spanning set �0 and equipped with coproducts ∆M
and ∆̃M . It is obtained that

(1) (δL,n⊗ id)δR,n = (id⊗δR,n)δL,n and δR,n and δL,n are homomorphisms;

(2) if
�→
d�,n = (∆M)n−δR,n and

←�
d�,n = (∆̃M)n−δL,n, then (

←�
d�,n⊗ id)

�→
d�,n =

(id⊗ �→d�,n)
←�
d�,n;

(3) the equality
←�
d�,n[w] = 0 = �→

d�,n[w] holds if the tensor product [w] =
(a1⊗···⊗an), a1, . . . ,an ∈ �0, represents an isolated periodic orbit of

period n on the geometric support of the finite Markov L-coalgebra;

(4) if � is also a Markov L-bialgebra, the coproducts (δR,n,δL,n) are homo-

morphisms. If the coproducts of � are unital, then
←�
d�,n and

�→
d�,n behave

as Leibniz-Ito derivatives, that is, verify
�→
d�,n(x)

�→
d�,n(y) =

�→
d�,n(xy)−

�→
d�,n(x)δR(y)−δR(x)

�→
d�,n(y); the same equality holds for

←�
d�,n.

Proof. The proof is straightforward.

If C is a coassociative coalgebra with a group-like element e, then two im-

portant coproducts
�→
d,
←�
d : C → C⊗2 can be constructed. If (�,∆M,∆̃M) is a fi-

nite Markov L-coalgebra generated, as a k-vector space, by an independent

spanning set �0, then two other important coproducts
�→
d�,2,

←�
d�,2 : �⊗2 → �⊗3

can be also constructed. This remark suggests the fact that some geometric

supports of coassociative coalgebras can be obtained by the line extension of

some geometric supports of finite Markov L-coalgebras. Indeed, in [11], we

have constructed Markov coassociative codialgebras from the line extension

of geometric supports associated with a class of coassociative coalgebras.

It is interesting to notice that the role played by the coproducts δf and δ̃f
of the flower graph in the case of a coassociative coalgebra is played by the

coproducts δR,n and δL,n, creating virtual periodic orbits of period n in the

case of a finite Markov L-coalgebra of degree n. Observe also that

(←�
d�,n⊗ id

) �→
d�,n[w]= 0 (4.4)

implies that the path of length n, represented algebraically by the tensor [w],
has to be a trivial-weighted isolated periodic orbit of period n. We sum up

briefly some results in Table 4.1.

4.1. Examples. In the following examples, from a known algebra, we con-

struct a finite Markov L-coalgebra so as to the algebra turns it into a finite
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Table 4.1

Coassociative coalgebra C Markov L-coalgebra �

Coproducts ∆C ∆�,n, ∆̃�,n

Markovian coproducts
e group-like, δf (x) := x⊗e,
δ̃f (x) := e⊗x δR,n, δL,n

(
←�
d⊗ id)

�→
d = 0 over primitive elements

over-isolated orbits
of period n

←�
d ,

�→
d Leibniz-Ito derivative

behave as Leibniz-Ito
derivative

i

k j

1

Figure 4.1

Markov L-Hopf algebra of degree 2. Set

idn := id⊗ id⊗···⊗ id︸ ︷︷ ︸
n

, n > 0. (4.5)

An L-Hopf algebra of degree n, (H,∆H,∆̃H), is by definition an L-bialgebra of

degree n, equipped with right and left counits ε̃H and εH of degree n such

that its antipodes S, S̃ :H →H verify (idn−1⊗m)(idn⊗S)∆H = ηnεH and (m⊗
id)(S̃⊗ idn)∆̃H = η̃nε̃H , with ηn,η̃n :H⊗(n−1) →H⊗n such that ηn(h) := h⊗1H
and η̃n(h) := 1H⊗h, h∈H⊗(n−1).

Example 4.9 (the triangle graph and quaternions). Here k = R. Recall that

quaternions are defined by the associative algebra H := R{1, i,j,k}\�, where

the set of relations � is defined by

ij = k, jk= i, ki= j, ii= jj = kk=−1. (4.6)

The quaternions fit the present formalism by considering the directed triangle

graph in Figure 4.1.

Defining x0≡i, x1≡j, and x2≡k and adding subscriptsα,β∈{0,1,2}mod3,

that is, xα+β ≡ xα+βmod3, we define the Markovian coproducts associated with

this directed triangle as ∆M(xα) = xα ⊗ xα+1, ∆M(1) = ∆̃M(1) = 1⊗ 1, and
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∆̃M(xα)= xα−1⊗xα. Therefore,

(
∆M

)
2

(
xα⊗xβ

)= xα⊗xβ⊗xβ+1, ε2
(
xα⊗xβ

)= xα,(
∆̃M

)
2

(
xα⊗xβ

)= xα−1⊗xα⊗xβ, ε̃2
(
xα⊗xβ

)= xβ (4.7)

embed the directed triangle graph into a finite Markov L-coalgebra of degree 2.

Theorem 4.10. (1) The algebra of quaternions embeds the triangle graph

into an L-bialgebra of degree 2.

(2) Defining linear maps S, S̃ : H → H by S(xi) = −xi−1 and S̃(xi−1) = −xi
for every i ∈ {0,1,2}, the L-bialgebra H becomes an L-Hopf algebra of degree

2 with S and S̃ playing the role of the right and left antipodes, respectively.

(3) The linear maps S and S̃ are unital antialgebra maps and satisfy SS̃ =
id= S̃S. They are the unique right and left antipodes of H, viewed as an L-Hopf

algebra of degree 2.

Proof. Let i,i′,j,j′ ∈ {0,1,2}. In what follows we make computations with

the right coproduct. We show that (∆M)2 is a unital algebra map. We get

(
∆M

)
2

(
xi⊗xj

)(
∆M

)
2

(
xi′ ⊗xj′

)= (xi⊗xj⊗xj+1
)(
xi′ ⊗xj′ ⊗xj′+1

)
= xixi′ ⊗xjxj′ ⊗xj+1xj′+1,(

∆M
)

2

(
xi⊗xj

)(
xi′ ⊗xj′

)= (∆M)2

(
xixi′ ⊗xjxj′

)
= xixi′ ⊗xjxj′ ⊗t

(
∆M

(
xjxj′

))
.

(4.8)

Therefore, we have to prove that t(∆M(xjxj′))= xj+1xj′+1, which is straight-

forward by the following geometric proof. Suppose that j �= j′ and (xj,xj′)
defines an edge of the triangle. This entails that (xj+1,xj′+1) defines the sole

edge following it when we turn in a trigonometrical way. Now we observe that

up to a sign the concatenation of an edge, that is, the product of its source

and its terminus, gives the third vertex of the triangle. Hence, by rotation, the

concatenation of (xj+1,xj′+1) will give the vertex just after. Therefore, up to

a sign t(∆M(xjxj′))= xj+1xj′+1, the sign is easily obtained by noticing that if

(xj,xj′) is an arrow of the triangle, so is (xj+1,xj′+1) and the sign is plus in

both cases when the concatenation is realized. If the direction of (xj,xj′) is

in the opposite sense of an existing arrow, so is (xj+1,xj′+1) and the concate-

nation will give a minus sign in both cases. In the case when xj′ or xj is the

identity element, the proof is obvious since there is a loop on the identity. The

case xj′ = xj is also trivial.

The coproducts (∆M)2 and (∆̃M)2 are thus unital homomorphisms. The

counits ε2 and ε̃2 are also unital algebra maps. To prove the L-Hopf algebra

part, we must check that

(id⊗m)(id⊗ id⊗S)(∆M)2 = η2ε2,

(m⊗ id)(S̃⊗ id⊗ id)
(
∆̃M

)
2 = η̃2ε̃2,

(4.9)
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which is straightforward with the choice we made for the right and left an-

tipodes. The map S is an antiunital map since, by definition, −xi = S(xi+1) =
S(xi−1xi) and S(xi)S(xi−1) = (−xi−1)(−xi−2) = (xi−1)(xi−2) = −(xi−2)(xi−1)
=−(xi), so S(xixj)= S(xj)S(xi). Moreover, S(xixj)= S(xj)S(xi)= xj−1xi−1

and S(xixj)=−S(xjxi)=−S(xi)S(xj)=−xi−1xj−1 = xj−1xi−1, proving that

S is well defined. The map S is unital since S(1)= S(xi(−xi))= S(−xi)S(xi)=
−(−xi+1)(−xi+1) = 1. The map S is unique since if S1 and S2 are two such

right antipodes, we must get xiS1(xi+1) = xiS2(xi+1) = 1, but xixi = −1, so

S1(xi) = S2(xi). As S1 and S2 are equal on the generators of the quaternions,

S1 = S2. Moreover, SS̃(xi)= S(−xi+1)=−(−xi)= xi and S̃S(xi)= S̃(−xi−1)=
−(−xi)= xi.

Remark 4.11. The right and left antipodes S and S̃ are not unital anticoal-

gebra maps.

Remark 4.12. As a coproduct, ∆M is well defined on the directed triangle

graph, but is not a homomorphism for the quaternion product. If it were the

case, we would get, for example, −∆M(k) = −∆M(ij) = ∆M(i)∆M(j) = −ij⊗
jk = −k⊗ i which is true and ∆M(−k) = ∆M(ji) = ∆M(j)∆M(i) = ji⊗ kj =
(−k)⊗(−i) which is still true. Yet, the k-linearity is lost.

Example 4.13 (the Pauli matrices). Here k= C. The Pauli matrices

12 =
(

1 0

0 1

)
, γ0 =

(
0 1

1 0

)
, γ1 =

(
0 −i
i 0

)
, γ2 =

(
1 0

0 −1

)
(4.10)

verify the relations γkγk+1 = iγk+2, γkγk = 12, and γkγk+1 = −γk+1γk. Recall

that M2(k) is the algebra generated by the Pauli matrices. This algebra fits the

present formalism by considering the directed triangle graph with a loop on

12 not represented here,

γ0

γ2 γ1,

iγ0

iγ2 iγ1.

(4.11)

The first graph is to recall that γkγk+1 = iγk+2, but it is the second one which

we are interested in because it represents the relation (iγk+1)(iγk) = (iγk+2).
Defining x0 ≡ iγ0, x1 ≡ iγ1, and x2 ≡ iγ2 and adding subscripts α,β ∈
{0,1,2}mod3, that is, xα+β≡xα+βmod3, we define ∆M(xα)=xα⊗xα+1, ∆M(1)=
∆̃M(1)= 1⊗1, and ∆̃M(xα)= xα−1⊗xα. The coproducts in (4.7) embed the tri-

angle graph into a Markov L-coalgebra of degree 2.
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Theorem 4.14. (1) The algebra generated by the Pauli matrices, that is,

M2(k), embeds the triangle graph into an L-bialgebra of degree 2.

(2) Defining linear maps S, S̃ :M2(k)→M2(k) by S(xi) = −xi−1 and S̃(xi−1)
=−xi for every i∈ {0,1,2}, the L-bialgebra M2(k) becomes an L-Hopf algebra

of degree 2 with S and S̃ playing the role of right and left antipodes, respectively.

(3) The maps S and S̃ are unital antialgebra maps and satisfy SS̃ = id = S̃S.

They are the unique right and left antipodes of H viewed as an L-Hopf algebra

of degree 2.

Proof. The proof is a corollary from the quaternion example. We only

stress for instance on that S(xk) = −xk−1 implies the equality xkS(xk+1) =
−xkxk = −(iγk)(iγk) = (γk)(γk) = 12, which is useful for computing the an-

tipodes equalities.
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