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LetA be a determined or overdetermined elliptic differential operator on a smooth
compact manifold X. Write �A(�) for the space of solutions of the system Au= 0
in a domain � � X. Using reproducing kernels related to various Hilbert struc-
tures on subspaces of �A(�), we show explicit identifications of the dual spaces.
To prove the regularity of reproducing kernels up to the boundary of �, we spec-
ify them as resolution operators of abstract Neumann problems. The matter thus
reduces to a regularity theorem for the Neumann problem, a well-known exam-
ple being the ∂̄-Neumann problem. The duality itself takes place only for those
domains � which possess certain convexity properties with respect to A.
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1. Introduction. The present work continues our paper [12] and grows out

of a desire to highlight the link of duality theorems for solutions of elliptic

equations and basic problems of partial differential equations such as the ex-

istence and regularity of solutions.

Let

V 0 T
������������������������������������→ V 1, V 0 S←������������������������������� V 1 (1.1)

be two continuous mappings of Fréchet spaces such that ST = I on a closed

subspace U0 of V 0. In other words, the identity mapping of U0 factors through

T , hence the restriction of T to U0 is one-to-one and the image of U0 under T
is a closed subspace of V 1.

Obviously, S maps TU0 to U0. If � is a continuous linear functional on U0,

then

〈�,u〉 = 〈S′�,Tu〉 (1.2)

for any u ∈ U0, where S′ is the transpose of S : TU0 → U0. Moreover, S′� = 0

implies � = 0. We thus obtain a one-to-one mapping (U0)′ → (TU0)′ given by

�� S′�. The problem of identifying the dual of U0 reduces to the description

of the range of S′.
We restrict our attention to the case where both V 0 and V 1 are function

spaces andU0 is a space of solutions of some elliptic equationAu= 0. Even for

explicitly given S, the range of S′ cannot be described by mere tools of partial
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differential equations. The crucial fact is that by the uniqueness theorem, C∞-

functions with compact support are not dense in U0, and so the functionals

of (U0)′ cannot be specified within distributions. To handle S′, we therefore

need much more refined analysis. For a deeper discussion, we refer the reader

to [6] and [23, Chapter 3].

It is usually the case for hypoelliptic equations that U0 is in fact a nuclear

space. By the Schwartz kernel theorem, the mapping S : TU0→U0 has a kernel

KS ∈U0⊗̂π(TU0)′ (cf. [22, Section 1.4.1]). We call KS a reproducing kernel for

u(x)= 〈KS(x,·),Tu〉 (1.3)

for all x in the domain of u∈U0.

The advantage of using reproducing kernels lies in the fact that it enables

us to write S′�= 〈�,KS(·,y)〉. The right-hand side here is called the indicatrix

of the functional �.

This concept was first studied in the particular cases of holomorphic and

harmonic functions on certain explicitly given domains (cf. [2, 8, 25]). How-

ever, representing analytic functionals as analytic functions on domains in Cn

requires specific tools of the general theory of partial differential equations

(cf. [3, 4, 19, 26] and [20, Theorem 3.4]).

Our main result consists of the following. The correspondence � � S′�
maps the dual space of U0 to the space of the solutions of Av = 0 in the same

domain, which grow near the boundary in a sense dual to the growth of the

solutions inU0. This mapping is always one-to-one but not necessarily onto. Its

surjectivity is equivalent to the regularity of certain projection onto the space

of solutions.

We evaluate the projection through the resolution operator of a generalised

Neumann problem related to A. The desired regularity of the projection just

amounts to that of the solution of the Neumann problem. We thus bring to-

gether two different areas of analysis in which the problem of regularity turns

out to be of key importance.

2. A general scheme

2.1. Spaces of the solutions of elliptic systems. Let X be a C∞-manifold of

dimension n with a smooth boundary ∂X. The case ∂X = ∅ is also included.

We tacitly assume that X is embedded into a smooth closed manifold X̃ of the

same dimension.

For any smooth C-vector bundles E and F over X, we write Diffm(X;E,F)
for the space of all linear partial differential operators of order ≤m between

sections of E and F .

Denote by E∗ the conjugate bundle of E. Any Hermitean metric (·,·)x on E
gives rise to a sesquilinear bundle isomorphism ∗E : E → E∗ by the equality

〈∗Ev,u〉x = (u,v)x for all sections u and v of E.
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We pick a volume form dx on X, thus identifying the dual and conjugate

bundles. ForA∈Diffm(X;E,F), denote byA′ ∈Diffm(X;F∗,E∗) the transposed

operator and by A∗ ∈Diffm(X;F,E) the formal adjoint operator. We obviously

have

A∗ = ∗−1
E A′∗F (2.1)

(cf. [21, Section 4.1.4] and elsewhere).

Write σm(A) for the principal homogeneous symbol of order m of the op-

erator A, σm(A) living on the cotangent bundle T∗X of X. From now on, we

assume that σm(A) is injective away from the zero section of T∗X. Hence, it

follows that the Laplacian ∆=A∗A is an elliptic differential operator of order

2m on X.

Given any open set U in
◦
X, the interior of X, let �A(U) stand for the space

of the solutions of the equation Au = 0 in U with the topology of uniform

convergence on compact subsets of U . It is known that �A(U) is a Fréchet-

Schwartz space.

Denote by �A(U)′ the dual space of �A(U), that is, the space of all continu-

ous linear functionals on �A(U). As usual, we give �A(U)′ the strong topology,

that is, the topology of uniform convergence of functionals on bounded sub-

sets of �A(U).
Throughout this paper, we assume that the Laplacian ∆ possesses the fol-

lowing unique continuation property:

(U)s given any domain � ⊂
◦
X, if u ∈ �∆(�) vanishes on a nonempty open

subset of �, then u≡ 0 in �.

This property implies in particular the existence of a two-sided fundamental

solution for ∆ in the interior of X.

Natural domains for the solutions of Au = 0 are certainly open subsets of

the interior of X. However, some problems require to consider solutions on

sets σ in X which are not open. Here, we are interested not simply in the

restrictions of the solutions of the given set, but also in the local solutions of

the system Au= 0 on σ . By these, we mean solutions of the system on various

neighbourhoods of σ depending on the solution.

If σ is a closed subset of X, then �A(σ) stands for the space of (equivalence

classes of) local solutions of Au = 0 on σ . Two such solutions are equivalent

if there is a neighbourhood of σ where they are equal. In �A(σ), a sequence

{uν} is said to converge if there exists a neighbourhood � of σ such that all

the solutions are defined at least in � and converge uniformly on compact

subsets of �.

Alternatively, the space �A(σ) can be described as the inductive limit of

spaces �A(Uν), where {Uν} is any decreasing sequence of open sets containing

σ , such that each neighbourhood of σ contains some Uν and such that each

connected component of eachUν intersectsσ . This latter condition guarantees
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that the mappings �A(Uν)→�A(σ) are one-to-one. Then, �A(σ) is necessarily

a Hausdorff space.

For an open set U ⊂X, we denote by L2(U,E) the Hilbert space of all square

integrable sections of E over U with scalar product

(u,v)L2(U,E) =
∫
U
(u,v)x dx. (2.2)

More generally, write Hs(U,E), s ∈ Z+, for the Sobolev space of the sections of

E over U , whose weak derivatives up to order s belong to L2(U,E). We define

Hs(U,E) with s =−1,−2, . . . to be the dual space for H−s(U,E) with respect to

the L2(U,E)-pairing.

We also denote by �(s)A (U), with any integer s, the closed subspace of

Hs(U,E) consisting of all weak solutions of Au = 0 in U . It is well known

that �(s)A (U) is a separable Hilbert space with reproducing kernel (cf. [22] and

elsewhere).

The union of the spaces �(s)A (U) over all s ∈ Z is perhaps of particular in-

terest. For regular U , it consists of all the solutions of Au= 0 in U , which are

of finite order of growth near the boundary of U . This means that u fulfills an

estimate

∣∣u(x)∣∣≤ C
dist(x,∂U)N

(2.3)

for all x ∈U , with N and C constants depending on u.

Write �
(f )
A (U) for the space of the solutions of Au = 0 in U which have a

finite order of growth near ∂U . We give �
(f )
A (U) the inductive limit topology of

the sequence �(−s)A (U), s ∈N.

Since the Dirichlet problem for the Laplacian ∆=A∗A in U is uniquely solv-

able, the topology of �
(f )
∆ (U) can be equivalently described in the following

way. Pick a Dirichlet system u � t(u) of order m−1 on the boundary of U
provided the latter is smooth. By [18], for each u∈�

(f )
∆ (U), the Dirichlet data

t(u) are well defined in

m−1⊕
j=0

�′
(
∂U,Fj

)
, (2.4)

Fj being some vector bundles in a neighbourhood of ∂U .

Lemma 2.1. A sequence {uν} converges to u in the space �
(f )
∆ (U) if and only

if t(uν)→ t(u) in
⊕m−1

j=0 �′(∂U,Fj).

Proof. See Theorem 2.32.

2.2. Duality. Let Σ1 be a vector subspace of �A(U) endowed with topology

τ1 which is not weaker than the Fréchet-Schwartz topology of �A(U). Denote

by Σ′1 the dual space of Σ1.
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Suppose that V is a separable Hilbert space of functions in a domain U with

a scalar product h(·,·). Moreover, let there be a topological vector space Σ2,

continuous linear mappings

Σ2
i2

V
i1 Σ1, (2.5)

and a sesquilinear pairing

h̃(·,·) : Σ1×Σ2 �→ C, (2.6)

such that

(1) h̃(·,·) is separately continuous;

(2) h̃(i1u,v)= h(u,i2v) for all u∈ V and v ∈ Σ2.

Under these assumptions, the pairing h̃(·,·) induces a continuous mapping

� : Σ2→ Σ′1 by

(�v)(·) :=�v(·) := h̃(·,v) (2.7)

for any v ∈ Σ2.

Lemma 2.2. If i2 : Σ2→ V is one-to-one, then the mapping � given by (2.7) is

one-to-one.

Proof. If �v(·) is identically zero then

�v
(
i1i2v

)= h(i2v,i2v)= 0. (2.8)

As h(·,·) is a scalar product on V , we conclude that i2v = 0. Hence v = 0 if i2
is one-to-one.

By a priori estimates for the solutions of elliptic systems, it is easy to see

that the inclusion

i= i1 : V �→�A(U)=: Σ1 (2.9)

is continuous if and only if all the evaluation functionals x�u(x), x ∈U , are

continuous on V . This latter just amounts to saying that the Hilbert space V has

a reproducing kernel K(x,y) ∈ V ′ ⊗V , that is, any u ∈ V can be represented

by the formula

u(x)= h(u,K(x,·)) (2.10)

for all x ∈U (cf. [1]).

Define ∗V : V → V ′ by 〈∗Vv,u〉 = h(u,v) for all u ∈ V . By the theorem of

Riesz, ∗V is a sesquilinear isomorphism of V onto V ′.
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Theorem 2.3. Let V be a Hilbert space with reproducing kernel K(·,·). Sup-

pose that i2 is one-to-one. Then, the mapping � given by (2.7) is onto if and only

if

(1) i1i2(Σ2) is dense in Σ1;

(2) for every �∈ Σ′1, the section x�∗−1
V 〈�, i1K(x,·)〉 belongs to i2(Σ2).

Note that

h
(
u(y),∗Vw(x)⊗v(y)

)= h(u,v)w(x) (2.11)

for each x ∈U and u,v,w ∈ V , as is easy to check.

Proof

Necessity. Let � be a continuous linear functional on Σ1 vanishing on

i1i2(Σ2). By the Hahn-Banach theorem, we prove that i1i2(Σ2) is dense in Σ1

once we show that �≡ 0.

By assumption, there is an element v ∈ Σ2 such that �v =�. It follows that

�v
(
i1i2v

)= h(i2v,i2v)= 0, (2.12)

and so v = 0. Hence �≡ 0 as desired.

Further, an easy calculation shows that

〈
�, i1K(x,·)

〉= h̃(i1K(x,·),v)
= h(K(x,·),i2v)
=∗Vh

(
i2v,K(x,·)

)
=∗V

(
i2v

)
(x)

∈∗V i2
(
Σ2
)
,

(2.13)

the fourth equality being due to the fact that K(·,·) is a reproducing kernel

of V . This proves the necessity.

Sufficiency. Let conditions (1) and (2) of the theorem hold. The task is

now to show that the mapping � : Σ2→ Σ′1 is onto.

Lemma 2.4. Let u∈ Σ1. Then, the formula

u(x)= h̃(u,i−1
2 i1K(x,·)

)
(2.14)

is valid for all x ∈U .

Proof. Indeed, by a priori estimates for elliptic systems all evaluation func-

tionals δx(u) = u(x), x ∈ U , are continuous on Σ1. The condition (2) then

implies that

∗−1
V
〈
δx,i1K(y,·)

〉= i1∗−1
V K(y,x)= i1K(x,y)∈ E∗x ⊗i2

(
Σ2
)

(2.15)

for every fixed x ∈ U . It follows that the pairing h̃(u,i−1
2 i1K(x,·)) is well

defined.
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Pick a sequence {uν} in Σ2 such that {i1i2uν} approximates u in Σ1. Since

K(·,·) is a reproducing kernel, we see that

(
i2uν

)
(x)= h(i2uν,K(x,·)) (2.16)

whence

(
i1i2uν

)
(x)= h(i2uν,i2i−1

2 i1,xK(x,·)
)= h̃(i1i2uν,i−1

2 i1,xK(x,·)
)

(2.17)

for all x ∈U and ν = 1,2, . . . . Since the pairing h̃(·,·) is separately continuous,

the passage to the limit in (2.17), when ν → ∞, yields (2.14). The lemma is

proved.

We are now in a position to complete the proof of Theorem 2.3. Suppose

that �∈ Σ′1. Then by Lemma 2.4, we see that

�(u)=�
(
h̃
(
u,i−1

2 i1K(x,·)
))= h̃(u,v), (2.18)

where

v = i−1
2

〈
�, i1K(·,y)

〉= i−1
2 ∗−1

V
〈
�, i1K(y,·)

〉∈ Σ2. (2.19)

The last reasoning is an immediate consequence of condition (2), thus show-

ing the theorem.

Corollary 2.5. If Σ1 is a closed subspace of �A(U), then condition (2) of

Theorem 2.3 is equivalent to the following one:

(2′) for each fixed y ∈U , the section i1,y∗−1
V K(·,y) belongs to i2(Σ2)⊗Ey .

Proof. That (2) implies (2′) we have already established in the proof of

Lemma 2.4. It remains to show the implication (2′)⇒(2).

Pick a continuous linear functional � on Σ1. Since Σ1 is a closed subspace

of Cloc(U,E), the space of continuous sections of E over U , this functional ex-

tends, by the Hahn-Banach theorem, to an E∗-valued measure m with a com-

pact support in U . For any x ∈U ,

∗−1
V
〈
�, i1K(x,·)

〉=
∫

suppm

〈
i1,y∗−1

V K(x,y),dm(y)
〉
y ∈ i2

(
Σ2
)

(2.20)

since i1 is continuous and suppm is a compact subset of U . This completes

the proof.

Corollary 2.6. Let i2 be one-to-one. Suppose that the closed graph theo-

rem is valid for mappings between Σ2 and Σ′1. Then, the mapping � : Σ2 → Σ′1
defined by (2.7) is a topological isomorphism between these spaces if and only

if conditions (1) and (2) of Theorem 2.3 hold.

Proof. This follows from the continuity of the mapping � and the closed

graph theorem.
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Let S1, S2, and V be closed subspaces of the spaces Σ1, Σ2, and V , respectively.

We thus get a commutative diagram

Σ2
i2

V
i1 Σ1

∪ ∪ ∪
S2

i2
V

i1
S1.

(2.21)

Once again, the pairing h̃(·,·) induces the mapping J : S2 → S′1 which is to a

certain extent the restriction of � to S2. We tacitly assume that the continuous

mappings under study are characterised in terms of convergent sequences and

that the closed graph theorem is valid for mappings between Σ2 and Σ′1.

Write π : V → V for the corresponding orthogonal projection.

Corollary 2.7. Let i2 be one-to-one. Suppose that � is a topological isomor-

phism of Σ2 onto Σ′1. Then, the mapping J is a topological isomorphism of S2

onto S′1 if and only if

(1) i1i2S2 is dense in S1;

(2) the projection π maps i2(Σ2) continuously into i2(S2).

Proof. Since i2 is one-to-one, so is the restriction of i2 to S2, too. Hence, the

mapping J is one-to-one by Lemma 2.2. It remains to prove that conditions (1)

and (2) of Theorem 2.3, if applied to S1, S2, and V, are equivalent to conditions

(1) and (2) of the present corollary. Of course, the conditions labelled with (1)

coincide. Thus, we restrict our attention to the conditions labelled with (2).

Necessity. Pick a sequence {vν} converging in Σ2 to a limit v . Then, the

corresponding sequence of functionals �vν converges to �v in Σ′1. Clearly, the

restrictions of �vν to S1 converge in turn to the restriction of �v to S1 in the

dual space S′1. If the mapping J is a topological isomorphism of S2 onto S′1,

then there exists a sequence vν ∈ S2 converging to a limit v in this space such

that

�vν (u)= h̃
(
u,vν

)
, �v(u)= h̃(u,v) (2.22)

for all u ∈ S1. In particular, for all u ∈ V, we get

h
(
u,πi2vν

)= h(πu, i2vν
)

= h(u, i2vν)
= h̃(i1u,vν

)
=�vν

(
i1u

)
= h̃(i1u,vν

)
= h(u, i2vν

)
,

(2.23)

that is,πi2vν = i2vν and the projectionπ maps i2(Σ2) continuously into i2(S2)
as desired.
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Sufficiency. Conversely, let conditions (1) and (2) of Corollary 2.7 hold.

Pick an orthonormal basis {bν} in V. It is well known that the reproducing

kernel of V is given in the form

K(x,y)=
∑
ν
∗Vbν(x)⊗bν(y). (2.24)

As every orthonormal basis in V can be extended to an orthonormal basis in V ,

we see that

K(x,y)=πyK(x,y) (2.25)

for all x and y . By Theorem 2.3, the section x � ∗−1
V 〈�, i1K(x,·)〉 belongs

to i2(Σ2) for all � ∈ Σ′1. By the Hahn-Banach theorem, every functional F ∈ S′1
actually extends continuously to a functional �∈ Σ′1. Hence condition (2) yields

∗−1
V
〈
F, i1K(x,·)〉=∗−1

V
〈
�, i1K(x,·)〉=πx∗−1

V
〈
�, i1K(x,·)

〉∈ i2(S2
)
, (2.26)

the latter inclusion being due to the commutative diagram (2.21). We thus con-

clude that condition (2) of Theorem 2.3 is fulfilled for J and that this mapping

is onto. The topological arguments now follow from the closed graph theorem.

Note that if dimΣ1 < ∞, then conditions (1) and (2) of Theorem 2.3 imply

that i1i2(Σ2) = Σ1 and dimΣ1 = dimΣ2. Conversely, suppose that these latter

conditions i1i2(Σ2)= Σ1 and dimΣ1 = dimΣ2 are fulfilled. Hence, it follows that

i2(Σ2) is a closed subspace of V . Replacing V by i2(Σ2) and i1 by its restriction

to i2(Σ2), we still have the same mapping �. The reproducing kernel K(·,·) is

given by

K(x,y)=
dimΣ1∑
ν=1

(
i2bν

)∗(x)⊗(i2bν)(y), (2.27)

where {bν} is a basis in Σ2 with the property that {i2bν} is an orthonormal

basis in i2(Σ2). Given any �∈ Σ′1, we get

∗−1
V
〈
�, i1K(x,·)

〉= dimΣ1∑
ν=1

�
(
i1i2bν

)(
i2bν

)
(x)∈ i2

(
Σ2
)
. (2.28)

Similar considerations apply to the commutative diagram (2.21). In this set-

ting, the projection π always maps V continuously into i2(S2).
How can we derive the necessary information on the projectionπ under gen-

eral assumptions? In many cases, it can be obtained from a Neumann problem.
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2.3. Neumann problem. In our applications, V is usually a Hilbert space of

the solutions of the equation Au= 0 in a domain U ⊂X.

Let the operator A be included into an elliptic compatibility complex of dif-

ferential operators Ai ∈Diffmi(X;Ei,Ei+1), i= 0,1, . . . ,N, over X, with A0 =A.

Suppose that Vi↩�′(
◦
X,Ei), i= 0,1, . . . ,N, are Hilbert spaces of the sections

of Ei over X, such that

(1) Vi∩C∞(X,Ei) is dense in Vi for all i= 0,1, . . . ,N;

(2) Ai maps Vi∩C∞(X,Ei) to Vi+1∩C∞(X,Ei+1).
Let �i

T be the set of all sections u ∈ Vi for which there is a sequence {uν}
with the following properties:

(1) uν ∈ Vi∩C∞(X,Ei);
(2) {uν} converges to u in Vi;
(3) {Auν} is a Cauchy sequence in Vi+1.

The mapping T : �i
T → Vi+1 defined by Tu = limAuν , where {uν} is a se-

quence with properties (1), (2), and, (3), is called the maximal operator gener-

ated by A.

Note that T is well defined. Indeed, if {u′ν} is another sequence satisfying

(1), (2), and (3), and f = limAu′ν , then, for all g ∈ C∞(X,Ei+1∗) with a compact

support in the interior of X, we get

〈Tu−f ,g〉 = lim
〈
Auν−Au′ν ,g

〉= lim
〈
uν−u′ν ,A′g

〉= 0, (2.29)

whence Tu= f .

We think of T as an unbounded operator from Vi to Vi+1 whose domain is

�i
T . Since �i

T contains Vi∩C∞(X,Ei), the operator T is densely defined and

closed.

From the lemma of Du Bois-Reymond and the uniqueness of a weak limit,

it follows that if u ∈ �i
T then Tu = Au in the sense of distributions in the

interior of X.

Lemma 2.8. As defined above, T satisfies T�i
T ⊂�i+1

T and T 2 = 0.

Proof. Let u ∈ �i
T and {uν} be a sequence with properties (1), (2), and

(3). We set fν = Auν . Then, Tu = limfν , and, since Afν = 0, we obtain that

Tu∈�i+1
T and T(Tu)= 0.

Thus, we have the following complex of Hilbert spaces and their closed linear

mappings:

V · : 0 �→ V 0 T
������������������������������������→ V 1 T

������������������������������������→ ··· T
������������������������������������→ VN �→ 0. (2.30)

The cohomology of the complex {Ei,Ai} evaluated by the spaces {Vi} is just

the cohomology of complex (2.30), that is,

Hi(V ·)= ker
{
T : �i

T �→ Vi+1
}

T�i−1
T

. (2.31)
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We now define T∗, the adjoint of T , as usual for unbounded operators.

Namely, let �i
T∗ be the set of all g ∈ Vi with the property that there is v ∈ Vi−1

satisfying (Tu,g)Vi = (u,v)Vi−1 for all u∈�i−1
T . We define T∗ : �i

T∗ → Vi−1 by

T∗g = v .

The operator T∗ is well defined because the domain �i−1
T is dense in Vi−1. It

is clear that T∗g is in general different from A∗g in the sense of distributions

in the interior of X, for A∗ is formally adjoint for A in the sense of L2-spaces

on X.

Lemma 2.9. The operator T∗ satisfies T∗�i
T∗ ⊂�i−1

T∗ and T∗2 = 0.

Proof. Indeed, if g ∈�i
T∗ and u∈�i−2

T , then by definition and Lemma 2.8

we get

(
Tu,T∗g

)
Vi−1 = (T(Tu),g)Vi = 0. (2.32)

Therefore, T∗g ∈�i−1
T∗ and T∗(T∗g)= 0, which completes the proof.

Thus, we obtain the following (chain) complex of Hilbert spaces and their

closed linear mappings:

V ·∗ : 0←� V 0 T∗←������������������������������������������������������������������ V 1 T∗←������������������������������������������������������������������ ··· T∗←������������������������������������������������������������������ VN ←� 0. (2.33)

The complex (2.33) is called the adjoint complex for (2.30), and its homology

is denoted by

Hi
(
V ·∗

)= ker
{
T∗ : �i

T∗ �→ Vi−1
}

T∗�i+1
T∗

. (2.34)

Introduce an operator L on Vi with a domain �i
L, which better suits the

Hilbert structure of Vi than the formal Laplacian ∆ = A∗A+AA∗ of the com-

plex {Ei,Ai}. Namely, write �i
L for the set of all u∈�i

T∩�i
T∗ with the property

that Tu∈�i+1
T∗ and T∗u∈�i−1

T . Then, the operator L : �i
L→ Vi is defined by

Lu= T∗Tu+TT∗u (2.35)

(cf. [22, Section 4.2]).

The Neumann problem for the complex {Ei,Ai} in the spaces Vi consists in

the following:

(NP) given a section f ∈ Vi, when is there u ∈ �i
L such that Lu = f ? And

how does u depend on f ?

The weak orthogonal decomposition is actually the first step in solving the

Neumann problem. Set

�i = {u∈�i
T ∩�i

T∗ : Tu= T∗u= 0
}

(2.36)
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for i= 0,1, . . . . Since the operators T and T∗ are closed, �i is a closed subspace

of Vi. Denote by H : Vi→�i the orthogonal projection of Vi onto �i.

Lemma 2.10. Let u∈ Vi. Then u∈�i if and only if u∈�i
L and Lu= 0.

Proof. If u ∈ �i, then obviously u ∈ �i
L and Lu = 0. If Lu = 0, then

(Lu,u)Vi = 0, and since

(Lu,u)Vi = ‖Tu‖2
Vi+1+

∥∥T∗u∥∥2
Vi−1 , (2.37)

we have u∈�i.

Lemma 2.11. The operator L is selfadjoint, and (L+1)−1 exists, is bounded,

and is defined in Vi everywhere.

Proof. Since T is a closed operator and the domain of T is dense, the same

is also true for T∗, and (T∗)∗ = T .

It follows that the operators (TT∗+1)−1 and (T∗T+1)−1 exist, are bounded,

selfadjoint, and defined everywhere in Vi (cf. [24, page 200]).

We now easily verify that (L+1)−1 exists, is bounded, is defined everywhere,

and is given by the formula

(L+1)−1 = (TT∗+1
)−1+(T∗T +1

)−1−1 (2.38)

(cf. [22, Section 4.2.4] and elsewhere).

Corollary 2.12 (weak orthogonal decomposition). The range of L is or-

thogonal to �i, and

Vi =�i⊕L�i
L, (2.39)

where L�i
L denotes the closure of L�i

L in Vi.

Proof. This follows immediately from the selfadjointness of L and Lemma

2.10.

In particular, if L�i
L is closed, then we get the strong orthogonal decompo-

sition

Vi =�i⊕T∗T�i
L⊕TT∗�i

L. (2.40)

Definition 2.13. Let L�i
L be closed and f ∈ Vi, then f = Hf +Lu where

u∈�i
L. The Neumann operator N : Vi→�i

L is defined by Nf =u−Hu.

Note that N is well defined. Indeed, if also f =Hf+Lu′ where u′ ∈�i
L, then

L(u−u′)= 0, whence

(u−Hu)−(u′ −Hu′)= (u−u′)−H(u−u′)= 0. (2.41)
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We summarize the properties of the Neumann operator. They generalise

those of the Green operator from Hodge theory, for the Neumann problem

itself stems from the desire to extend the Hodge theory to the case of manifolds

with boundary.

Lemma 2.14. Suppose that L�i
L is closed. Then, the Neumann operatorN has

the following properties:

(1) N is bounded, selfadjoint, HN = NH = 0, and we have the orthogonal

decomposition

f =Hf +T∗TNf +TT∗Nf (2.42)

for all f ∈ Vi;
(2) if f ∈�i

T and Tf = 0, then TNf = 0. If, moreover, L�i+1
L is closed, then

TNf =NTf ;

(3) if f ∈ �i
T∗ and T∗f = 0, then T∗Nf = 0. If, moreover, L�i−1

L is closed,

then T∗Nf =NT∗f .

Proof. (1) The equalities HN =NH = 0 and formula (2.42) follow immedi-

ately from the definition of N.

Further, by the closed graph theorem, there exists a constant c > 0 such that

if u∈�i
L is orthogonal to �i then we have ‖Lu‖ ≥ c‖u‖. Applying this to Nf ,

we obtain

‖Nf‖ ≤ 1
c
‖LNf‖ = 1

c
‖f −Hf‖ ≤ 1

c
‖f‖. (2.43)

Hence N is bounded.

Finally, the selfadjointness of N follows immediately from Lemma 2.11 be-

cause

(Nf ,g)Vi = (Nf ,Hg+LNg)Vi = (Nf ,LNg)Vi
= (LNf ,Ng)Vi = (f ,Ng)Vi .

(2.44)

(2) Let f ∈ �i
L. Then from (2.42) and Lemma 2.8, we get T∗TNf ∈ �i

T and

Tf = 0 implies TT∗TNf = 0. Hence, it easily follows that TNf = 0.

If also L�i+1
L is closed, then for any f ∈ �i

T we have Tf = TT∗TNf on

the one hand, and Tf = TT∗NTf on the other hand. Hence, it follows that

L(TNf −NTf) = 0, and, since TNf −NTf is orthogonal to �i+1, we deduce

that TNf −NTf = 0, as required.

(3) The proof is analogous to that of part (2).

If Li is a hypoelliptic pseudodifferential operator in the interior of X, then

the harmonic space �i consists of C∞ sections in the interior of X and the

Neumann operator N preserves the interior regularity. Such is the case, in

particular, if Vi are Sobolev spaces.



340 A. SHLAPUNOV AND N. TARKHANOV

Beginning with its classical forms, the Dirichlet norm has been an important

technical tool in studying the Neumann problem.

Given any u,v ∈�i
T ∩�i

T∗ , the Dirichlet inner product of u and v is defined

by

D(u,v)= (Tu,Tv)Vi+1+(T∗u,T∗v)Vi−1+(u,v)Vi , (2.45)

and the Dirichlet norm is D(u)= √D(u,u).
The space �i

T ∩�i
T∗ with the Dirichlet norm is a complete (Hilbert) space. It

is denoted by �i.

Since D(u)≥ ‖u‖Vi for all u∈�i, there exists only one selfadjoint operator

S with a domain �i
S ⊂�i, such that if u∈�i

S and v ∈�i then

D(u,v)= (Su,v)Vi . (2.46)

The following lemma gives a useful description of the operator L because

our estimates will be in the norm D(u).

Lemma 2.15. The equalities hold �i
L =�i

S and L= S−1, where the operator

S is defined by (2.46).

Proof. If u ∈ �i
L and v ∈ �i, then D(u,v) = ((L+ 1)u,v)Vi is fulfilled.

Hence by the uniqueness of S, we have S = L+1.

Let ‖·‖1 and ‖·‖2 be two norms on a vector space V . We say that the norm

‖·‖1 is completely continuous with respect to the norm ‖·‖2 if every sequence

which is bounded in the norm ‖·‖1 has a convergent subsequence in the norm

‖·‖2.

Lemma 2.16. If the norm D on �i is completely continuous with respect to

‖·‖Vi , then �i is finite dimensional.

Proof. Observe that if u,v ∈ �i then D(u,v) = (u,v)Vi . Suppose that

the dimension of �i is infinite. Then there exists an infinite sequence {uν}
of orthonormal elements in �i. Since D(uν)= ‖uν‖Vi = 1, the sequence {uν}
contains a convergent subsequence. But this is at variance with the fact that if

ν ≠ µ then ‖uν−uµ‖Vi =
√

2.

Lemma 2.17. If the norm D on �i is completely continuous with respect to

‖·‖Vi , then there exists a constant c > 0 such that, for all u∈Di orthogonal to

�i,

‖Tu‖2
Vi+1+

∥∥T∗u∥∥2
Vi−1 ≥ c‖u‖2

Vi . (2.47)

Proof. Consider the Hilbert space Vi+1×Vi−1 which is equipped with the

norm

∥∥{f ,v}∥∥= (‖f‖2
Vi+1+‖v‖2

Vi−1

)1/2
. (2.48)
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Let M : �i→ Vi+1×Vi−1 be the mapping defined by Mu= {Tu,T∗u}. We note

that M is a closed operator.

We prove that the range of M is closed. Suppose that M�i is not closed. Then

there exists a sequence {uν} in �i such that limMuν = {f ,v} and {f ,v} �∈
M�i.

Set u′ν = uν −Huν , then u′ν are orthogonal to �i and limMu′ν = {f ,v}. If

‖u′ν‖Vi are bounded, then D(u′ν) = (‖Mu′ν‖2+‖u′ν‖2
Vi)

1/2 are bounded, too.

Then, by hypothesis, {u′ν} has a convergent subsequence with a limit u, and

since M is closed then Mu = {f ,v}, which contradicts the assumption that

{f ,v} �∈M�i. Thus by choosing a subsequence, if necessary, we may assume

that lim‖u′ν‖Vi =∞.

Now set Uν = u′ν/‖u′ν‖Vi . Then lim‖MUν‖ = 0 and D(Uν) are bounded.

Therefore, {Uν} has a convergent subsequence {Uνk} such that

limUνk =U, limMUνk = {0,0}. (2.49)

Hence MU = 0 so that U ∈ �i. Since Uν is orthogonal to �i, we have U = 0,

but ‖Uν‖Vi = 1. This contradiction proves that the range M�i is closed in

Vi+1×Vi−1.

Let R be the restriction of M to the orthogonal complement of �i in �i.

Then R is one-to-one and has a closed range. By the closed graph theorem, the

inverse R−1 is bounded. Hence there is c > 0 such that ‖Ru‖2 ≥ c‖u‖2
Vi . This

proves the lemma.

Theorem 2.18. If the norm D on �i is completely continuous with respect

to the norm ‖·‖Vi , then L�i is closed.

Proof. By Lemma 2.17, there exists c > 0 with the property that, for all

u∈�i
L which are orthogonal to �i, we have

(Lu,u)Vi ≥ c‖u‖2
Vi , (2.50)

so that ‖Lu‖Vi ≥ c‖u‖Vi .
Set f = limLuν . We may assume that uν are orthogonal to �i, and then

‖uν‖Vi are uniformly bounded. Therefore, {uν} has a subsequence whose

arithmetic means converge. (This actually puts some restrictions on the

spaces Vi under study.) Denoting this limit by u, we get f = Lu, which com-

pletes the proof.

The question of when the norm D on �i is completely continuous with re-

spect to the norm ‖ · ‖Vi is very difficult in the general case, and it requires

special consideration. We present some consequences here.

Corollary 2.19. Suppose that the norm D on �i is completely continuous

with respect to the norm ‖·‖Vi . Then, for the complex {Ei,Ai}, the Neumann

problem is solvable at step i in the sense that there exist operators H and N in

Vi with properties (1), (2), and (3) of Lemma 2.14.
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Proof. This follows immediately from Lemma 2.14 and Theorem 2.18.

For compact manifolds with boundary X, the subspace �0 is usually infinite

dimensional so, by Lemma 2.16, the Dirichlet norm D may not be completely

continuous with respect to the norm ‖ · ‖V0 on �0. But the following result

holds.

Theorem 2.20. If the norm D on �1 is completely continuous with respect

to the norm ‖·‖V1 , then L�0
L is closed.

Proof. It suffices to prove that there exists a constant c > 0 such that

‖Lf‖V0 ≥ c‖f‖V0 for all f ∈�0
L which are orthogonal to �0.

First, if u∈�0
L, then Tu∈�1 and Tu⊥�1. Thus by Lemma 2.17, we obtain

∥∥T∗Tu∥∥2
V0 = ‖Lu‖2

V0 ≥ c‖Tu‖2
V1 . (2.51)

Further, since f ⊥ �0, then, by the weak orthogonal decomposition (2.39),

f ∈ L�0
L. Hence, for each ε > 0, there exists u ∈ �0

L such that ‖f −Lu‖V0 < ε.
Thus,

‖f‖2
V0 ≤ (Lu,f )V0+ε‖f‖V0

≤ ‖Tu‖V1‖Tf‖V1+ε‖f‖V0

≤ 1
c
‖Lu‖V0‖Lf‖V0+ε‖f‖V0

≤ 1
c
‖f‖V0‖Lf‖V0+ε

(
1
c
‖Lf‖V0+‖f‖V0

)
.

(2.52)

Since ε can be made arbitrarily small by choosing Lu close enough to f , we

obtain ‖Lf‖V0 ≥ c‖f‖V0 , which concludes the proof.

The next result follows from Lemma 2.14 and Theorem 2.18. Recall that

�0 = kerT 0.

Corollary 2.21. Suppose that the norm D on �1 is completely continuous

with respect to the norm ‖·‖V1 . Then, f =Hf+T∗NTf for any section f ∈�0
T ,

where H : V 0→�0 is the orthogonal projection.

By assumption, the differential operator A0 =A has injective symbol. It fol-

lows that A0 is hypoelliptic in the interior of X whence

�0 =
{
u∈ V 0∩C∞loc

( ◦
X,E0

)
:Au= 0

}
, (2.53)

that is, the operator H0 is a generalisation of the Bergman projector from

complex analysis. Corollary 2.21 gives

π :=H0 = I−T∗NT. (2.54)
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As mentioned, a priori estimates for solutions of elliptic equations imply

that, for each interior point x of X, the evaluation functional δx(u)=u(x) is

bounded on �0. Therefore, �0 is a Hilbert space with reproducing kernel (cf.

[1]).

Let {eν}ν=1,2,... be some complete orthonormal system in �0. If u∈�0, then

this section decomposes into the Fourier series u = ∑cνeν which converges

in the norm of the space V 0 and hence uniformly along with all derivatives on

compact subsets of the interior of X. In the interior of X×X, we consider the

series

K(x,y)=KH(x,y)=
∞∑
ν=0

∗Eeν(x)⊗eν(y). (2.55)

Theorem 2.22. Series (2.55) converges uniformly along with all derivatives

on compact subsets of the interior of X×X, so that

KH ∈ C∞loc

( ◦
X×

◦
X,E∗�E

)
. (2.56)

If x ∈
◦
X is fixed, then this series actually converges in the norm of the space

E∗x ⊗V 0.

Proof. To shorten notation, we will restrict the discussion to the case

where X is a closed domain in Rn.

Let

eν(x)=



eν,1(x)

...

eν,k(x)


 (2.57)

be representations of the sections eν , where k is the rank of E. Pick compact

sets K1 and K2 in the interior of X. If x ∈ K1 is a fixed point, then, in view of

the orthonormality of the system {eν}, we obtain for j = 1, . . . ,k


 N∑
ν=0

∣∣eν,j(x)∣∣2




2

≤
∣∣∣∣∣∣
N∑
ν=0

eν,j(x)eν(x)

∣∣∣∣∣∣
2

≤ c1

∥∥∥∥∥∥
N∑
ν=0

eν,j(x)eν(y)

∥∥∥∥∥∥
2

V0

= c1

N∑
ν=0

∣∣eν,j(x)∣∣2,

(2.58)
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the constant c1 > 0 depending on A and K only. Hence

N∑
ν=0

∣∣eν,j(x)∣∣2 ≤ c1 (2.59)

for all x ∈K1.

Therefore, denoting by c2 the constant obtained by analogy for the set K2,

we get for (x,y)∈K1×K2

N∑
ν=0

∣∣∗E eν(x)⊗eν(y)∣∣=
N∑
ν=0

∣∣eν(x)∣∣∣∣eν(y)∣∣≤ k√c1c2. (2.60)

This proves the absolute and uniform convergence of series (2.55) on com-

pact subsets of the interior of X×X.

Finally, (2.59) implies that, for fixed x ∈
◦
X, equality (2.55) gives the expan-

sion of K(x,y) in the complete orthonormal system {eν}. To finish the proof,

it is sufficient to observe that x and y enter into K(x,y) in a symmetric way.

Theorem 2.23 (Bergman formula). If u∈�0, then

u(x)= (u,K(x,·))V0 (2.61)

for all x ∈
◦
X.

Proof. Let u =∑cµeµ . Then, by the previous theorem, we get for fixed x
in the interior of X

(
u,K(x,·))V0 =

∑
µ,ν
cµ
(
eµ,eν

)
V0eν(x)=

∑
ν
cν
(
eν,eν

)
V0eν(x)=u(x), (2.62)

and the proof is complete.

Thus, in order to discover the properties of π = H, we might study the

Neumann operator N1. However, “good” properties of N1 is not what we can

generally expect. It is rather an instrument to produce examples for the general

scheme.

2.4. Hodge theory on manifolds with boundary. Given a vector space V
with norm ‖ ·‖, we write C(V,‖ ·‖) for the completion of V under the norm

‖·‖.
In this section, we describe the Hodge theory of the Dirichlet problem for

the Laplacian ∆=A∗A in the class of generalised sections of E on X. In order

to define what is meant by the solution of the boundary value problem, we

employ negative norms. This idea is certainly not new and goes back at least

as far as [13, 14].
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Pick a Dirichlet system Bj , j = 0,1, . . . ,m−1, of orderm−1 on the boundary

of X. More precisely, Bj is a differential operator of type E → Fj and order

mj ≤m−1 in a neighbourhood U of ∂X. Moreover, the ordersmj are pairwise

different and the symbols σ(Bj), if restricted to the conormal bundle of ∂X,

have ranks equal to the dimensions of Fj .
We actually assume that the dimensions of Fj are the same and equal to that

of E.

Let Cj , j = 0,1, . . . ,m− 1, be the adjoint system for {Bj} with respect to

Green’s formula (cf. [21]). Thus, Cj is a differential operator of type F∗ → F∗j
and order m−mj−1 in a smaller neighbourhood U of ∂X. We now set

t(u)=
m−1⊕
j=0

Bju, n(f)=
m−1⊕
j=0

∗−1
Fj Cj∗F (2.63)

for u∈ Cm−1
loc (U,E) and f ∈ Cm−1

loc (U,F).

Lemma 2.24 (Green’s formula). For each u,v ∈ H2m(X,E), the following

formula holds:

∫
∂X

((
t(u),n(Av)

)
x−

(
n(Au),t(v)

)
x

)
ds =

∫
X

(
(∆u,v)x−(u,∆v)x

)
dx.

(2.64)

Proof. See [21, Corollary 9.2.12].

Given F , we consider the boundary value problem

∆u= F in X, t(u)= 0 on ∂X, (2.65)

which is an obvious generalisation of the classical Dirichlet problem (cf.

[21, Section 9.2.4]).

Suppose that s > 0. For sections u∈ C∞(X,E) we define two types of nega-

tive norms

‖u‖−s = sup
v∈C∞(X,E)

∣∣(u,v)∣∣
‖v‖s , |u|−s = sup

v∈C∞(X,E)
t(v)=0

∣∣(u,v)∣∣
‖v‖s , (2.66)

where (·,·) is the scalar product in L2(X,E). We denote the completions of

C∞(X,E) with respect to these norms by H−s(X,E) and C(C∞(X,E),| · |−s),
respectively. They are obviously Banach spaces and satisfy

H−s(X,E) C
(
C∞(X,E),|·|−s

)
, (2.67)

for ‖u‖−s ≥ |u|−s .
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We can define (u,v) for u ∈ H−s(X,E) and v ∈ C∞(X,E) as follows. By

definition, there is a sequence {uν} in C∞(X,E) such that ‖uν −u‖−s → 0 as

ν →∞. Then

∣∣(uν−uµ,v)∣∣≤ ∥∥uν−uµ∥∥−s‖v‖s �→ 0 (2.68)

as µ,ν → ∞. Set (u,v) = lim(uν,v). Clearly, this limit does not depend on

the particular sequence {uν}, for if ‖uν‖−s → 0, then |(uν,v)| ≤ ‖uν‖−s‖v‖s
tends to zero, too. From the definition, it follows that for all u∈H−s(X,E) and

v ∈ C∞(X,E), we get

∣∣(u,v)∣∣≤ ‖u‖−s‖v‖s . (2.69)

In a similar way, we can define the pairing (u,v) for u∈ C(C∞(X,E),|·|−s)
and v ∈ C∞(X,E) with t(v) = 0. Corresponding to (2.69), we obviously have

|(u,v)| ≤ |u|−s‖v‖s .
Let F be in C(C∞(X,E),|·|−s−2m), where s ≥ 0. We say that u∈H−s(X,E) is

a strong solution of (2.65) if there is a sequence of sections uν ∈ C∞(X,E) with

t(uν)= 0, such that

∥∥uν−u∥∥−s �→ 0,
∣∣∆uν−F∣∣−s−2m �→ 0 (2.70)

as ν →∞.

Denote by �(X) the set of allu∈ C∞(X,E) that satisfy ∆u= 0 in the interior

of X and t(u) = 0 on ∂X. Since (2.65) is an elliptic boundary value problem,

�(X) is finite dimensional. Moreover, for any u∈�(X), we actually obtain

0= (∆u,u)= (Au,Au) (2.71)

whence Au = 0 in X. Therefore, the space �(X) consists of all u ∈ �A(
◦
X)

which are C∞ up to the boundary of X and which vanish up to the infinite

order on ∂X.

Lemma 2.25. Let s ≥ 0. If F ∈ C(C∞(X,E),| · |−s−2m) and F ⊥ �(X), then

there is a strong solution u∈H−s(X,E) of (2.65) satisfying u⊥�(X) and

‖u‖−s ≤ c|F|−s−2m, (2.72)

where the constant c does not depend on F and u.

Proof. See [14].

Definition (2.70) of a strong solution of (2.65) obviously corresponds to an

appropriate closure L : �L → C(C∞(X,E),| · |−s−2m) of the Laplacian ∆ = A∗A
(cf. [5, Chapter 2]). Namely, we denote by �L the set of all sectionsu∈H−s(X,E),
for which there is a sequence {uν} with the following properties:

(1) uν ∈ C∞(X,E) satisfies t(uν)= 0;
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(2) {uν} converges to u in H−s(X,E);
(3) {∆uν} is a Cauchy sequence in C(C∞(X,E),|·|−s−2m).
The closed densely defined operator L : �L → C(C∞(X,E),| · |−s−2m) given

by Lu = lim∆uν , where {uν} is any sequence with properties (1), (2), and (3),

is called the strong extension of ∆ under the boundary conditions t(u)= 0. It

is clear that u∈H−s(X,E) is a strong solution to problem (2.65) if and only if

Lu= F .

It is worth pointing out that the case ∂X = ∅ is formally permitted in the

following theorem.

Theorem 2.26. Suppose that s ≥ 0. There are bounded linear operators

H : C
(
C∞(X,E),|·|−s−2m

)
�→�(X), G : C

(
C∞(X,E),|·|−s−2m

)
�→�L

(2.73)

such that

(1) H has the kernel KH(x,y) =
∑
ν hν(x)⊗∗Ehν(y), where {hν} is an or-

thonormal basis of �(X);
(2) AH = 0 and GH =HG = 0;

(3)

GLu=u−Hu for all u∈�L,

LGF = F−HF for all F ∈ C(C∞(X,E),|·|−s−2m
)
.

(2.74)

Proof. This follows by the same method as in [15, Theorem 3.3], with

Lemma 3.2 therefrom replaced by Lemma 2.25.

The operators H and G are actually independent of s since they are unique

extensions by continuity of these operators on the dense subspace C∞(X,E)
of C(C∞(X,E),|·|−s−2m).

When restricted to L2(X,E), the operator G is selfadjoint. Indeed, given any

F,v ∈ L2(X,E), we may invoke the elliptic regularity of the Dirichlet prob-

lem (2.65) to conclude that both GF and Gv belong to H2m(X,E) and satisfy

the boundary condition t(·) = 0. It follows that LGF = ∆GF and LGv = ∆Gv
whence

(GF,v)= (GF,Hv+LGv)= (GF,A∗AGv)= (A∗AGF,Gv)= (F,Gv), (2.75)

which is due to Theorem 2.26. Hence the Schwartz kernel of G is Hermitean,

that is, KG(x,y)∗ =KG(y,x) for all (x,y) away from the diagonal of X×X.

Corollary 2.27. If, in addition, F ∈H−s−2m(X,E), then there is a sequence

of sections uν ∈ C∞(X,E) with t(uν)= 0, such that

∥∥uν−u∥∥−s �→ 0,
∥∥∆uν−F∥∥−s−2m �→ 0 (2.76)

as ν →∞.
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From Lemma 2.24, we deduce that when u is smooth enough, it fulfills

t(u) = 0 if and only if (∆u,v) = (u,∆v) for all v satisfying t(v) = 0. This

gives rise to the concept of a weak extension of ∆ under the boundary condi-

tions t(u)= 0 (cf. [5, Chapter 2]). Given an F ∈ C(C∞(X,E),|·|−s−2m), a section

u is said to be a weak solution of (2.65) if it is in H−s′(X,E) for some s′ ≥ 0

and

(u,∆v)= (F,v) (2.77)

for all v ∈ C∞(X,E) satisfying t(v)= 0.

Lemma 2.28. Suppose that F ∈ C(C∞(X,E),| · |−s−2m) where s ≥ 0. If u ∈
H−s′(X,E) is a weak solution of (2.65), then actually u ∈ H−s(X,E) and it is a

strong solution of (2.65). Moreover, there is a constant c not depending on F or

u, such that

‖u‖−s ≤ c
(|F|−s−2m+‖u‖−s′

)
. (2.78)

Proof. See [14].

To study the Dirichlet problem with nonzero boundary data t(u) = u0, we

need a result of [13]. Denote by H−s,B(X,E) the completion of C∞(X,E) with

respect to the norm

‖u‖−s,B := ‖u‖−s+
∥∥t(u)∥∥⊕H−s−mj−1/2(∂X,Fj)

+∥∥n(Au)∥∥⊕H−s−2m+mj+1/2(∂X,Fj)
.

(2.79)

The advantage of using these spaces is that for each u ∈ H−s,B(X,E),
there is a sequence {uν} in C∞(X,E), such that uν → u in H−s(X,E),
and {t(uν)}, {n(Auν)} are Cauchy sequences in ⊕H−s−mj−1/2(∂X,Fj) and

⊕H−s−2m+mj+1/2(∂X,Fj), respectively. Moreover, {∆uν} is a Cauchy sequence

in H−s−2m(X,E), which follows by manipulations of Green’s formula. Hence to

any element u∈H−s,B(X,E), we can assign both t(u), n(Au) and ∆u defined

in the above strong sense.

Lemma 2.29. For each pair

u0 ∈
m−1⊕
j=0

H−s−mj−1/2(∂X,Fj), u1 ∈
m−1⊕
j=0

H−s−2m+mj+1/2(∂X,Fj), (2.80)

there is a sectionu∈H−s,B(X,E)with the property that t(u)=u0 andn(Au)=
u1. Moreover, the mapping (u0,u1)�U is continuous in the relevant norms.

Proof. See [13, Lemma 6.1.2].

Given any

F ∈ C(C∞(X,E),|·|−s−2m
)
, u0 ∈⊕H−s−mj−1/2(∂X,Fj), (2.81)
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we now consider the inhomogeneous Dirichlet problem

∆u= F in X, t(u)=u0 on ∂X. (2.82)

A section u is said to be a weak solution of (2.82) if it is in H−s′(X,E) for

some s′ ≥ 0 and

(u,∆v)= (F,v)−
∫
∂X

(
u0,n(Av)

)
x ds (2.83)

for all v ∈ C∞(X,E) satisfying t(v)= 0.

Theorem 2.30. Suppose that s ≥ 0. If F ⊥�(X), then there is a weak solu-

tion u ∈ H−s′(X,E) to (2.82) with u ⊥�(X). Moreover, u ∈ H−s(X,E) satisfies

(2.82) in a strong sense, and there is a constant c independent of F , u0, and u,

such that

‖u‖−s ≤ c
(
|F|−s−2m+

∥∥u0

∥∥
⊕H−s−mj−1/2(∂X,Fj)

)
. (2.84)

Proof. Using Lemma 2.29, we reduce (2.83) to (2.77) with a suitable right

side F . To this end, we chooseU ∈H−s,B(X,E) such that t(U)=u0 andn(AU)=
u1,u1 being arbitrary. By the definition ofH−s,B(X,E), there is a sequence {uν}
in C∞(X,E) such that

uν �→U in H−s(X,E),

t
(
uν
)
�→u0 in ⊕H−s−mj−1/2(∂X,Fj),

n
(
Auν

)
�→u1 in ⊕H−s−2m+mj+1/2(∂X,Fj),

(2.85)

and ∆uν → F ′ in H−s−2m(X,E).
By Green’s formula, we get

(
uν,∆v

)= (∆uν,v)−
∫
∂X

(
t
(
uν
)
,n(Av)

)
x ds (2.86)

for all v ∈ C∞(X,E) satisfying t(v)= 0. Letting ν →∞ in this equality yields

(U,∆v)= (F ′,v)−
∫
∂X

(
u0,n(Av)

)
x ds. (2.87)

Subtracting (2.87) from (2.83), we obtain

(u−U,∆v)= (F−F ′,v) (2.88)

for all v ∈ C∞(X,E) satisfying t(v)= 0, that is, u−U is a weak solution of the

Dirichlet problem (2.65) with F replaced by F −F ′. Moreover, it follows from

(2.87) that

(F ′,v)= 0 (2.89)
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for all v ∈�(X). Combining Lemmas 2.28 and 2.25 thus results in the desired

assertion.

We now derive a Poisson formula for solutions of the inhomogeneous Dirich-

let problem.

To this end, we choose a Green operator GA(·,·) for A on X (cf. [21, Section

9.2.1]). Given an oriented hypersurface S ⊂X, we denote by [S]A the kernel on

X×X defined by

〈
[S]A,g⊗u〉X×X =

∫
S
GA(g,u) (2.90)

for all g ∈ C∞(X,F∗) and u ∈ C∞(X,E) whose supports meet each other in a

compact set.

In particular, the kernel [∂X]A is obviously supported on the diagonal of

∂X×∂X.

For a section u∈ C∞(X,E), we set

(Mu)(x)=−GA∗([∂X]Au)=−
∫
∂X
GA
(
KGA∗(x,·),u

)
(2.91)

when x ∈
◦
X, KGA∗ being the Schwartz kernel of GA∗. The integral on the right-

hand side is well defined, forKGA∗ is aC∞-section of E�F∗ outside the diagonal

of X×X.

Corollary 2.31. As defined above, M induces a continuous mapping P of

⊕H−s−mj−1/2(∂X,Fj) to H−s(X,E) such that Pt(u) = Mu. Moreover, for each

weak solution u of (2.82) it follows that

u=Hu+G∆u+Pt(u). (2.92)

Proof. Letu∈H−s′(X,E) be a weak solution of (2.82). From Theorem 2.30,

we deduce that u∈H−s(X,E) satisfies (2.82) in a strong sense. More precisely,

there exists a sequence uν ∈ C∞(X,E) which approximates u in H−s(X,E),
such that t(uν)→ t(u) and ∆uν →∆u in the relevant norms. We now set

Pu0 := lim
ν→∞

(
uν−Huν−G

(
∆uν

))=u−Hu−G(∆u), (2.93)

the limit existing in H−s(X,E) by Theorem 2.26. Moreover, it is independent

of the particular choice of u with a well-defined ∆u and t(u) = u0, which is

again due to Theorem 2.26.

Obviously, u0 � Pu0 is a continuous mapping of ⊕H−s−mj−1/2(∂X,Fj) to

H−s(X,E), and it remains to prove that it agrees with −GA∗([∂X]Au) in the

interior of X.
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If v ∈ C∞(X,E) has a compact support in the interior of X, then by Theorem

2.26 we get

(
Pu0,v

)= (u,v)−(u,Hv)−(∆u,Gv)
= (u,v−Hv−∆(Gv))−

∫
∂X

(
t(u),n(AGv)

)
x ds

=−
∫
∂X

(
t(u),n(AGv)

)
x ds,

(2.94)

for t(Gv)= 0. The right-hand side here just amounts to (−GA∗([∂X]Au),v),
provided that u is smooth enough.

From (2.93), it follows that Pu0 is the unique solution of the Dirichlet prob-

lem

∆u= 0 in X, t(u)=u0 on ∂X, (2.95)

which is orthogonal to �(X). We call Pu0 the Poisson integral of u0. By

Theorem 2.30,

∥∥Pu0

∥∥−s ≤ c∥∥u0

∥∥
⊕H−s−mj−1/2(∂X,Fj)

(2.96)

with c a constant independent of u0.

Theorem 2.32. The quotient space �
(f )
∆ (

◦
X)/�(X) is topologically isomor-

phic to
⊕m−1

j=0 �′(∂X,Fj).

Proof. Given any u ∈ �
(f )
∆ (

◦
X), the Cauchy data t(u) and n(Au), being

first defined near ∂X, have weak limit values u0 and u1 on ∂X belonging to⊕m−1
j=0 �′(∂X,Fj) (cf. [21, Section 9.4]). Pick a regularisation of u on ∂X, that is,

any section U ∈H−s′(X,E) which coincides with u in the interior of X (cf. [21,

Section 9.3.6]).

Using the parametrix G of ∆ given by Theorem 2.26, we get by Green’s for-

mula

u(x)−HU(x)=−
∫
∂X

((
u0,n

(
AKG(·,x)

))
y−

(
u1, t

(
KG(·,x)

))
y

)
ds (2.97)

for x ∈
◦
X. Since t(KG(·,x))= 0 for all x ∈

◦
X, it follows that u=HU+Pu0, the

section HU ∈�(X) being independent of the particular choice of the regular-

isation U .

We have thus proved that any solution u∈�
(f )
∆ (

◦
X) is representable through

the weak limit values t(u) on ∂X by the Poisson formula (2.92). Furthermore,⊕m−1
j=0 �′(∂X,Fj) is the inductive limit of the sequence

⊕m−1
j=0 H

−s−mj−1/2 ×
(∂X,Fj), s ∈N, for the boundary of X is a compact closed C∞-manifold. Com-

bining this with (2.96), we deduce that the mapping u� t(u) gives the desired

isomorphism.
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Since �
(f )
A (

◦
X) is obviously a closed subspace of �

(f )
∆ (

◦
X), the mapping

�
(f )
A

( ◦
X
)

�(X)
�→

m−1⊕
j=0

�′
(
∂X,Fj

)
(2.98)

given by u � t(u) identifies the quotient space with a closed subspace of⊕m−1
j=0 �′(∂X,Fj).

2.5. Hardy spaces. Suppose thatU �
◦
X is a domain with C∞ boundary. Fix a

Dirichlet system B = {Bj}m−1
j=0 of orderm−1 on ∂U , each Bj being a differential

operator of ordermj and type E→ Fj in a neighbourhood � of ∂U . For a section

u of E near ∂U , we set

t(u)=
m−1⊕
j=0

Bju
∣∣
∂U (2.99)

if defined.

Since ∆=A∗A satisfies the condition (U)s in the interior of X, the sesquilin-

ear form

h(u,v)=
∫
∂U

(
t(u),t(v)

)
x ds (2.100)

defines a scalar product on �∆(U)∩C∞(U,E). Denote by H(B)
∆ (U) the comple-

tion of �∆(U)∩C∞(U,E) in the norm u �
√
h(u,u). These spaces are called

the Hardy spaces, by analogy to the classical Hardy spaces of harmonic func-

tions. Alternatively, H(B)
∆ (U) can be described as the space of all u∈�∆(U) of

finite order of growth, for which the weak boundary values of t(u) belong to⊕m−1
j=0 L2(∂U,Fj).

Lemma 2.33. The space H(B)
∆ (U) is a separable Hilbert space with a repro-

ducing kernel.

Proof. By the very definition, H(B)
∆ (U) can be identified as a closed sub-

space in⊕L2(∂U,Fj). In particular,H(B)
∆ (U) is a separable Hilbert space because

⊕L2(∂U,Fj) is.

Theorem 2.32 implies that each element u0 ∈ H(B)
∆ (U) can be actually

thought of as a solution from �
(f )
∆ (U). To make this more precise, we in-

voke Theorem 2.30, with U in place of X. Since �(U) is trivial in this case

and L2(∂U,Fj)↩H−mj(∂U,Fj) for j = 0,1, . . . ,m−1, there is a unique section

u ∈ H1/2(U,E) satisfying ∆u = 0 and t(u) = u0 in a strong sense. Moreover,

we have

‖u‖H1/2(U,E) ≤ c
∥∥u0

∥∥
⊕H−mj (∂U,Fj) (2.101)

with c a constant independent of u0.
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By (2.92), we get u = PUu0 where PU is the Poisson integral related to the

domain U . This gives us the desired identification of H(B)
∆ (U) within �

(f )
∆ (U),

for PU is a topological isomorphism of
⊕m−1

j=0 �′(∂U,Fj) onto �
(f )
∆ (U) (see

Theorem 2.32).

Using this fact, we easily conclude that for any x ∈ U all the evaluation

functionals u� δ(j)x u := uj(x), j = 1, . . . ,k, are continuous on H(B)
∆ (U). More-

over, a stronger property than the continuity holds. Namely, for each compact

set K ⊂ U , there is a constant CK such that ‖δ(j)x ‖ < CK for all x ∈ K. Hence,

H(B)
∆ (U) is a Hilbert space with a reproducing kernel (cf. [1]).

Obviously, �A(U) ⊂ �∆(U) holds. Denote by H(B)
A (U) the Hardy space for

A in U , that is, the subspace of H(B)
∆ (U) consisting of all solutions of Au = 0

in U .

Lemma 2.34. The space H(B)
A (U) is a separable Hilbert space with a repro-

ducing kernel.

Proof. The statement follows from Lemma 2.33 once we prove that

H(B)
A (U) is a closed subspace inH(B)

∆ (U). This latter assertion is a consequence

of the Poisson formula (2.92), which shows that the original topology of

H(B)
∆ (U) is finer than that induced from C∞loc(U,E).

As mentioned, the Dirichlet problem for ∆ in U is uniquely solvable, and its

Hodge parametrix GU is, in fact, a Green function of U , that is, HU = 0.

Lemma 2.35. Let K(·,·) be the reproducing kernel of H(B)
∆ (U). Then, for all

(x,y)∈U×U ,

K(x,y)=
∫
∂U

(
n
(
AKGU (·,x)

)
,n
(
AKGU (·,y)

))
z ds. (2.102)

Moreover, for every fixed x ∈ U , the columns of the matrix K(x,·) belong to

�∆(U)∩C∞loc(U,E).

Proof. Note that the integral on the right-hand side of (2.102) is well de-

fined for all (x,y)∈ U×U , and it belongs to E∗x ⊗�∆(U) in y , for every fixed

x ∈U . By the elliptic regularity, it is actually in E∗x ⊗C∞loc(U,E) as claimed.

Let u ∈ H(B)
∆ (U). Combining the Poisson formula (2.92) and the Bergman

formula of Theorem 2.23, we get

0=
∫
∂U

((
t(u),n

(
AKGU (·,x)

))
z+

(
t(u),t

(
K(x,·)))z

)
ds (2.103)

for all x ∈ U . Hence it follows that t(K(x,·)) = −n(AKGU (·,x)) on ∂U , for

each x ∈U . We thus have

∆K(x,·)= 0 in U, t
(
K(x,·))=−n(AKGU (·,x)) on ∂U (2.104)
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for every fixed x ∈ U . Once again, using the Poisson formula, we arrive at

(2.102) as desired.

It is obvious that

(∫
∂U

(
n
(
AKGU (·,x)

)
,n
(
AKGU (·,y)

))
z ds

)∗

=
∫
∂U

(
n
(
AKGU (·,y)

)
,n
(
AKGU (·,x)

))
z ds,

(2.105)

which recovers the equality K(x,y)∗ =K(y,x).

3. Duality for solutions of finite order of growth. In this section, we de-

scribe the dual space of �
(f )
A (U) using various pairings in Hilbert spaces of the

solutions of the system Au= 0 in U .

3.1. Pairing in Hardy spaces. According to the general scheme, we study

in this section and the next one the case

Σ1 =�
(f )
∆ (U), Σ2 =�∆(U)∩C∞(U,E). (3.1)

Let V =H(B)
∆ (U). The Poisson formula implies that each element of H(B)

∆ (U)
belongs to �

(f )
∆ (U). Write

i1 :H(B)
∆ (U) �→�

(f )
∆ (U), i2 : �∆(U)∩C∞(U,E) �→H(B)

∆ (U) (3.2)

for the canonical embeddings.

The mappings i1 and i2 are always injective. As mentioned, the Poisson for-

mula (2.92) implies the continuity of i1. The mapping i2 is continuous because

the topology of ⊕C∞(∂U,Fj) is stronger than that of ⊕L2(∂U,Fj). Moreover, it

follows from Theorem 2.32 that �∆(U)∩C∞(U,E) is dense in �
(f )
∆ (U).

The task is now to extend the sesquilinear pairing h(·,·) (see (2.100)) from

H(B)
∆ (U)×H(B)

∆ (U) to Σ1×Σ2.

Choose a smooth real-valued function �(x) on X with the property that

U = {x ∈X : �(x) < 0} and ∇�(x)≠ 0 on ∂U . Set

Uε =
{
x ∈X : �(x) < ε

}
, (3.3)

then U−ε �U �Uε for all sufficiently small ε > 0, and ∂U±ε is as smooth as ∂U .

Lemma 3.1. Given any solutions u∈�
(f )
∆ (U) and v ∈�∆(U)∩C∞(U,E), the

limit

h̃(u,v)= lim
ε→0+

∫
∂U−ε

(
t(u),t(v)

)
x ds−ε (3.4)
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exists. The corresponding pairing h̃ : Σ1×Σ2 → C is separately continuous, and

its restriction to H(B)
∆ (U)×H(B)

∆ (U) coincides with h.

Proof. We first note that limit (3.4) is none other than the definition of

weak boundary values t(u). Therefore, its existence and the separate continu-

ity of the corresponding pairing h̃ is a direct consequence of this definition.

The second part of the lemma follows immediately from the definition of Hardy

space H(B)
∆ (U).

Theorem 3.2. The mapping � : �∆(U)∩C∞(U,E) → �
(f )
∆ (U)′ induced by

(3.4) is a topological isomorphism of these spaces.

Proof. Since the natural inclusion i2 is one-to-one, the mapping � is one-

to-one, too (see Lemma 2.2).

In this concrete situation, we can easily prove the surjectivity of the mapping

� directly, that is, without using Theorem 2.3.

Indeed, Theorem 2.32 states that the mapping t : �
(f )
∆ (U)→⊕�′(∂U,Fj) is a

topological isomorphism, with t−1 given by the Poisson integral PU (see (2.92)).

Let � be a continuous linear functional on �
(f )
∆ (U). Then the composition �◦PU

is a continuous linear functional on⊕�′(∂U,Fj). Since⊕�(∂U,F∗j ) is a reflexive

space, there is an element v0 ∈⊕�(∂U,F∗j ), such that

〈
�◦PU ,u0

〉= 〈u0,v0
〉

(3.5)

for all u0 ∈⊕�′(∂U,Fj).
Set

v = PU ∗−1
⊕Fj v0, (3.6)

then v ∈�∆(U)∩C∞(U,E), which is due to the properties of the Poisson inte-

gral. If u∈�
(f )
∆ (U) then

�(u)= 〈�,PUt(u)
〉

= 〈�◦PU ,t(u)
〉

= 〈t(u),v0
〉

=
∫
∂U

(
t(u),t(v)

)
x ds

= h̃(u,v),

(3.7)

that is, �v =�. This proves that � is surjective.

We have thus proved that the mapping � is an isomorphism of the vector

spaces �∆(U)∩C∞(U,E) and �
(f )
∆ (U)′. Moreover, both � and �−1 are contin-

uous, which is clear from the explicit construction of �. This completes the

proof.
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Corollary 3.3. The mapping �′ : �
(f )
∆ (U)→ (�∆(U)∩C∞(U,E))′, induced

by (3.4), is a topological isomorphism of these spaces.

Proof. According to Theorem 2.32, the space �
(f )
∆ (U) is reflexive, that is,

under the natural pairing, we have

(
�
(f )
∆ (U)′

)′ top.� �
(f )
∆ (U), (3.8)

where both �
(f )
∆ (U)′ and (�(f )∆ (U)′)′ are endowed with the strong topology of

the dual space. Thus, the desired statement follows immediately from Theorem

3.2.

Since we have a commutative diagram

�∆(U)∩C∞(U,E)
i2

H(B)
∆ (U)

i1
�
(f )
∆ (U)

∪ ∪ ∪
�A(U)∩C∞(U,E)

i2
H(B)
A (U)

i1
�
(f )
A (U),

(3.9)

the pairing h̃(·,·) induces a continuous mapping

J : �A(U)∩C∞(U,E) �→�
(f )
A (U)′, (3.10)

which is the restriction of �.

Write π for the Szegö projection

π :H(B)
∆ (U) �→H(B)

A (U). (3.11)

Corollary 3.4. The mapping J is a topological isomorphism of the space

�A(U)∩C∞(U,E) onto �
(f )
A (U)′ if and only if

(1) �A(U)∩C∞(U,E) is dense in �
(f )
A (U);

(2) π maps �∆(U)∩C∞(U,E) continuously into �A(U)∩C∞(U,E).
Proof. Set

S1 =�
(f )
A (U), S2 =�A(U)∩C∞(U,E), V=H(B)

A (U) (3.12)

and apply Corollary 2.7.

Example 3.5. Let X =Rn, n≥ 3, and let U be a ball. Consider a Dirac oper-

ator A in Rn, that is, a homogeneous first-order differential operator with con-

stant coefficients, such that −A∗A is a diagonal matrix with the usual Laplace

operator on the diagonal.
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It is proved in [16] that there are systems {bν} and {cµ} of (Ck-valued) ho-

mogeneous harmonic polynomials, such that

(a) {bν} is an orthogonal basis in all the spaces �(s)A (U), s ∈ Z+, simulta-

neously and an orthonormal basis in H(B)
A (U);

(b) {bν} ∪ {cµ} is an orthogonal basis in all the spaces �(s)∆ (U), s ∈ Z+,

simultaneously and an orthonormal basis in H(B)
∆ (U).

Property (a) implies, in particular, that condition (1) of Corollary 3.4 is ful-

filled. Moreover, the projection π , if restricted to �(s)∆ (U), coincides with the

Hs(U,E)-orthogonal projection �(s)∆ (U) → �(s)A (U). It follows that π maps

�∆(U)∩C∞(U,E) continuously into �A(U)∩C∞(U,E). The isomorphism of

Corollary 3.4 holds for A.

Example 3.6. Let A be a determined elliptic operator such that both A and

A∗ possess the unique continuation property. Then condition (1) of Corollary

3.4 holds true.

Write H(C)
A∗ (U) for the closed subspace of the Hardy space H(C)

AA∗(U) consist-

ing of all solutions to A∗g = 0 in U . We consider the extension of A to an

operator

T :H(B)
∆ (U) �→H(C)

A∗ (U), (3.13)

whose domain �T consists of all u∈H(B)
∆ (U) with the property that there is a

sequence {uν} in �∆(U)∩C∞(U,E), such that

(1) uν →u in H(B)
∆ (U);

(2) Auν is a Cauchy sequence in H(C)
A∗ (U).

Using the existence of a two-sided fundamental solution Φ for A, we easily

verify that T is a densely defined closed operator.

Let PU denote the Poisson integral of the Dirichlet problem for A∗A in U .

Then the adjoint

T∗ : �T∗ �→H(B)
∆ (U) (3.14)

is given by

T∗g = PUn
(
APUn(g)

)
(3.15)

for every g ∈�A∗(U)∩C∞(U,F). Indeed, by the elliptic regularity of the Dirich-

let problem, we deduce that PUn(APUn(g)) ∈ �∆(U)∩C∞(U,E) for each g ∈
�A∗(U)∩C∞(U,F). Then,

∫
∂U

(
t(u),t

(
PUn

(
APUn(g)

)))
x ds

=
∫
∂U
GA
(∗F APUn(g),u)

=
∫
∂U
GA∗

(∗E PUn(g),Au)
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=
∫
∂U

(
n(Au),t

(
PUn(g)

))
x ds

=
∫
∂U

(
n(Au),n(g)

)
x ds

(3.16)

for all u ∈ �T . In particular, this means that T∗ is a closed densely defined

operator.

Further, the existence of a fundamental solution implies that the range of T
is closed and equalsH(C)

A∗ (U). Hence T∗ and L1 = TT∗ are one-to-one operators

with closed range.

It is clear that TT∗ = (APUn)2. To identify the operator N1 = (TT∗)−1, we

denote by P1
U the Poisson integral of the Dirichlet problem for AA∗ in U . Then

we have

(
APUn

)−1g = P1
Ut
(
ΦUg

)
(3.17)

for all g ∈ H(C)
A∗ (U). Indeed, by the properties of the Poisson integral, we see

that

n
(
P1
Ut
(
ΦUg

))= t(ΦUg), PUt
(
ΦUg

)= ΦUg, APUt
(
ΦUg

)= g (3.18)

because A∗AΦUg =A∗g = 0 in U .

Finally, since Φ has the transmission property with respect to ∂U and the

Dirichlet problem is elliptic, we conclude that (APUn)−1 maps C∞(U,F) to

itself. Therefore, the projection π maps �∆(U)∩C∞(U,E) continuously into

�A(U)∩C∞(U,E) (see Section 2.3). By Corollary 3.4, J is a topological isomor-

phism of

�A(U)∩C∞(U,E) �
�������������������������������������→ �

(f )
A (U)′. (3.19)

Example 3.7. Suppose that A is included into an elliptic compatibility com-

plex of differential operators Ai ∈ Diffmi(X;Ei,Ei+1), i = 0,1, . . . ,N, over X,

with A0 = A. As usual, we introduce the Laplace operators ∆i = Ai∗Ai +
Ai−1Ai−1∗ for every i. They are not elliptic in general, for the orders mi may

be pairwise different.

However, any ∆i admit a well-posed Dirichlet problem (see Section 2.4).

Namely, denote by Bi the boundary system consisting of the Cauchy data with

respect to Ai and the Cauchy data with respect to Ai−1∗ on ∂U . In the nota-

tion of [22], these are t(u) and n(u), respectively. It is easy to verify that if

∆iu = 0 in U and t(u) = 0, n(u) = 0 on ∂U , then u actually satisfies Aiu = 0

and Ai−1∗u = 0 in U . Since the complex is elliptic, we deduce that u is a C∞-

section of Ei with a support in U .

Suppose that any Laplacian∆i has the property (U)s in
◦
X. Then we can intro-

duce Hardy spaces H(Bi)
∆i (U) as in Section 2.5. Since A∆ = ∆A, the differential
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A preserves the elements of H(Bi)
∆i (U) that are sufficiently smooth up to the

boundary. Hence {Ei,Ai} gives rise to a complex of closed operators in Hilbert

spaces

0 �→H(B)
∆ (U) T

������������������������������������→H(B1)
∆1 (U) T

������������������������������������→ ··· T
������������������������������������→H(BN)

∆N (U) �→ 0 (3.20)

(see Section 2.3).

The complex (3.21) has a distinguished subcomplex corresponding to the

subspaces of H(Bi)
∆i (U) with t(u) = 0. Factorising (3.21) by this subcomplex

leads to the so-called tangential complex on ∂U . More precisely, the spaces

of the tangential complex are those subspaces of H(Bi)
∆i (U) which consist of

sections withn(u)= 0, while its differential Tb is a quotient of T . By the unique

solvability of the Dirichlet problem for ∆i in U , these latter subspaces can

be specified as spaces of L2-sections of certain vector bundles Eib over the

boundary of U . In particular, E0
b =

⊕m−1
j=0 Fj|∂U . In fact, the tangential complex

corresponds to a complex {Eib,Aib} of differential operators on ∂U (cf. [22,

Section 3.1.5]). We get

0 �→ L2(∂U,E0
b
) Tb��������������������������������������������������������→ L2(∂U,E1

b
) Tb��������������������������������������������������������→ ··· Tb��������������������������������������������������������→ L2(∂U,EN−1

b
)
�→ 0, (3.21)

so that H(B)
A (U)� {u∈ L2(∂U,E0

b) : Tbu= 0}.
If the domain U � X is strictly pseudoconvex relative to the Levi form of

{Ei,Ai} at step 1, then the Neumann problem for this complex in U is solvable

at step 1. Moreover, the Neumann operator N preserves C∞-sections of F up to

the boundary (cf. [22, Section 4.1.5]). Hence the operator I−T∗b NTb, that is, the

orthogonal projection from L2(∂U,E0
b) to kerT 0

b maps C∞(U,E) continuously

to itself. As L2(∂U,E0
b) = H(B)

∆ (U), we see that the projection π has the same

property.

The question on the density of �A(U)∩C∞(U,E) in �
(f )
A (U) requires a sep-

arate discussion (cf., e.g., [21]). We only mention that this is the case if A is a

differential operator with constant coefficients in Rn and U �Rn is convex.

Thus, we can invoke Corollary 3.4 to see that the mapping J is a topological

isomorphism of �A(U)∩C∞(U,E) onto �
(f )
A (U)′. By reflexivity, the transpose J′

gives a topological isomorphism of the dual of �A(U)∩C∞(U,E) onto �
(f )
A (U).

3.2. Pairing in Lebesgue spaces. As before, we consider

Σ1 =�
(f )
∆ (U), Σ2 =�∆(U)∩C∞(U,E). (3.22)

Let V = �(0)∆ (U). Again, the Poisson formula shows that each element of

�(0)∆ (U) belongs to �
(f )
∆ (U). Write

i1 : �(0)∆ (U) �→�
(f )
∆ (U), i2 : �∆(U)∩C∞(U,E) �→�(0)∆ (U) (3.23)

for the natural inclusions.
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The mappings i1 and i2 are always injective. As already mentioned, the Pois-

son formula (2.92) implies the continuity of i1. The mapping i2 is continuous,

too, because the topology of C∞(U,E) is finer than the topology of L2(U,E).
Moreover, it follows from Theorem 2.32 that �∆(U)∩C∞(U,E) is dense in

�
(f )
∆ (U).
Our next task is to extend the natural sesquilinear pairing h(·,·) from

�(0)∆ (U)×�(0)∆ (U) to Σ1×Σ2.

Lemma 3.8. For each u∈ �
(f )
∆ (U) and v ∈ �∆(U)∩C∞(U,E), there exists a

limit

h̃(u,v) := lim
ε→0+

∫
U−ε
(u,v)x dx. (3.24)

The corresponding pairing h̃(·,·) is separately continuous on Σ1 × Σ2 and

h̃(u,v)= h(u,v) for all u,v ∈�(2)∆ (U).

The pairing in formula (3.24) is explicit in [20] in the case of harmonic func-

tions (see [20, pages 573–574]).

Proof. Using Lemma 2.25, we see that there exists a unique w ∈ C∞(U,E)
satisfying

∆w = v in U, t(w)= 0 on ∂U. (3.25)

Then,

h̃(u,v)= lim
ε→0+

∫
U−ε
(u,v)x dx

=− lim
ε→0+

∫
∂U−ε

G∆
(∗E w,u)

= lim
ε→0+

(∫
∂U−ε

(
t(u),n(Aw)

)
x ds−ε−

∫
∂U−ε

(
n(Au),t(w)

)
x ds−ε

)

=
∫
∂U

(
t(u),n(Aw)

)
x ds,

(3.26)

the last equality being due to the existence of weak boundary values t(u) and

n(Au) on ∂U (cf. [18]).

The separate continuity of the pairing h̃(·,·) follows from (3.27) and Lemma

2.25.

Finally, the restriction of h̃(u,v) to u ∈ �(0)∆ (U) and v ∈ �∆(U)∩C∞(U,E)
coincides with h(u,v) since the Lebesgue integral is a continuous function of

measurable sets.

It is well known that �(0)∆ (U) is a separable Hilbert space with a reproducing

kernel (see, e.g., [22]).
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As the unique continuation property holds for ∆ in a neighbourhood of U ,

the Dirichlet problems for both ∆ and ∆2 in U are uniquely solvable and their

Hodge parametrices GU and G∆2,U are, in fact, Green functions.

Lemma 3.9. Let K(·,·) be the reproducing kernel of �(0)∆ (U). Then, for all

(x,y)∈U×U ,

K(x,y)=−∆y
∫
∂U

(
n
(
AKGU (·,x)

)
, t
(
∆KG∆2 ,U

(·,y)
))

z
ds. (3.27)

Moreover, for every fixed x ∈ U , the columns of the matrix K(x,·) belong to

�∆(U)∩C∞(U,E).
Proof. Given any fixed x ∈ U , we solve the Dirichlet problem for ∆2 with

data

∆2V(x,·)= 0 in U,

t
(
V(x,·))= 0 on ∂U,

n
(
AV(x,·))=−n(AKGU (·,x)) on ∂U.

(3.28)

By the Poisson formula (2.92), for every solutionu∈�(0)∆ (U) and eachx ∈U ,

we have

u(x)=−
∫
∂U

(
t(u),n

(
AKGU (·,x)

))
y ds

=
∫
∂U
G∆
(∗E V(x,·),u)

=−
∫
U

(
u,∆V(x,·))y dy

(3.29)

whence

0=
∫
U

(
u,∆V(x,·)+K(x,·))y dy. (3.30)

Since the columns of ∆V(x,·)+K(x,·) belong to �(0)∆ (U), we readily deduce

that

∆yV(x,y)=−K(x,y) (3.31)

for all x,y ∈U . Representing V(x,y) in y ∈U by the Poisson formula for ∆2

and using (3.28), we arrive at (3.27).

For eachx,y ∈U , the integral on the right-hand side of (3.27) is well defined,

and it belongs to �∆(U) in y for every fixed x ∈U . By the elliptic regularity, it

is actually in E∗x ⊗(�∆(U)∩C∞(U,E)) as desired.

Theorem 3.10. The mapping � : �∆(U)∩C∞(U,E)→ �
(f )
∆ (U)′ induced by

(3.24) is a topological isomorphism of these spaces.
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Proof. Since the natural inclusion i2 is injective, the mapping � is injective

too (see Lemma 2.2).

By Theorem 2.3, to prove the surjectivity of the mapping �, we need to

show that the reproducing kernel K(·,·) of the space �(0)∆ (U) has the following

property: for every � ∈ �
(f )
∆ (U)′, the section x � ∗−1

E 〈�,K(x,·)〉 belongs to

the space �∆(U)∩C∞(U,E).
Fix any � ∈ �

(f )
∆ (U)′. Since the space �

(f )
∆ (U) is the inductive limit of the

sequence �(−s)∆ (U), s ∈N, it can be specified as a subspace of �′U(X,E). By the

Hahn-Banach theorem, there is a section v ∈ C∞(U,E) with the property that

�(u)=
∫
U
(u,v)y dy (3.32)

for all u∈�
(f )
∆ (U). In particular, we get

∗−1
E
〈
�,K(x,·)〉=∗−1

E

∫
U

(
K(x,·),v)y dy

=
∫
U

(
v,K(x,·))y dy

=
∫
U

(
∆GUv,K(x,·)

)
y dy

=
∫
∂U
G∆
(∗E K(x,·),GUv)

=
∫
∂U

(
n
(
AGUv

)
, t
(
K(x,·)))y ds

(3.33)

if x ∈U .

Obviously, the integral on the right-hand side of this formula lies in �∆(U).
As v ∈ C∞(U,E), we see that n(AGUv) belongs to

⊕m−1
j=0 C∞(∂U,Fj). From

Lemma 3.9 and the regularity properties of the Poisson kernels KGU (·,·) and

KG∆2 ,U
(·,·), it follows that the section∗−1

E 〈�,K(x,·)〉 is C∞ up to the boundary

of U as desired.

Since we have a commutative diagram

�∆(U)∩C∞(U,E)
i2

�(0)∆ (U)
i1

�
(f )
∆ (U)

∪ ∪ ∪
�A(U)∩C∞(U,E)

i2
�(0)A (U)

i1
�
(f )
A (U),

(3.34)

the pairing h̃(·,·) induces a continuous mapping

J : �A(U)∩C∞(U,E) �→�
(f )
A (U)′ (3.35)

which is the restriction of �.
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Write π for the Bergman projection

π : �(0)∆ (U) �→�(0)A (U). (3.36)

Corollary 3.11. The mapping J is a topological isomorphism of the space

�A(U)∩C∞(U,E) onto �
(f )
A (U)′ if and only if

(1) �A(U)∩C∞(U,E) is dense in �
(f )
A (U);

(2) π maps �∆(U)∩C∞(U,E) continuously into �A(U)∩C∞(U,E).
Proof. According to the general scheme, we put

S1 =�
(f )
A (U), S2 =�A(U)∩C∞(U,E), V=�(0)A (U). (3.37)

Then the statement follows from Corollary 2.7.

Example 3.12. Let A be a determined elliptic operator. In this case, the

complex {Ei,Ai} has only one nonzero operator, which is A0 = A. It is easy

to check that the Neumann problem for this complex (see Section 2.3) is just

the Dirichlet problem in L2(U,F) for the Laplacian AA∗ with the Dirichlet data

n(·) instead of t(·).
Suppose that the unique continuation property holds for the formal adjoint

A∗. Then the Neumann operatorN is the Green functionGAA∗,U of the Dirichlet

problem.

The elliptic regularity of the Dirichlet problem now implies that N maps

C∞(U,F) continuously to C∞(U,F). Therefore, π = I−A∗NA is a continuous

mapping of C∞(U,E) to itself.

Further, by the Runge theorem for determined elliptic operators (cf. [23,

Section 4.1.9]), �A(U)∩C∞(U,E) is dense in �
(f )
A (U).

Hence, according to Corollary 3.11, the mapping J is a topological isomor-

phism of �A(U)∩C∞(U,E) onto �
(f )
A (U)′. By reflexivity, the transposed map-

ping J′ is a topological isomorphism of the dual to �A(U)∩C∞(U,E) onto

�
(f )
A (U).

Example 3.13. Let A be a column of scalar differential operators with con-

stant coefficients in Rn. Then A can be included into a Hilbert compatibility

complex of differential operators with constant coefficients {Ei,Ai}. Under fa-

miliar hypotheses on A, the compatibility complex is simply a so-called Koszul

complex (cf. [22, Section 1.2.8]).

If U �Rn is a strictly convex domain with smooth boundary, then the Neu-

mann problem for Vi = L2(U,Ei) is solvable at step 1. Moreover, the Neumann

operator N preserves sections from C∞(U,F) (see ibid).

For any convex domain U � Rn, the space �A(U)∩C∞(U,E) is known to

be dense in �
(f )
A (U). By Corollary 3.11, the mapping J is a topological isomor-

phism of �A(U)∩C∞(U,E) onto �
(f )
A (U)′. The transposed mapping J′ then

gives a topological isomorphism of the dual to �A(U)∩C∞(U,E) onto �
(f )
A (U).
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3.3. Grothendieck duality. Suppose that U is an open subset of
◦
X with C∞-

boundary such that ∂X∩U =∅ or ∂X∩U = ∂X. Set

Σ1 = �
(f )
∆ (U)
�(X)

, Σ2 =
{
u∈�∆

( ◦
X \U

)
∩C∞(X \U,E) : t(u)= 0 on ∂X∩U

}
�(X)

(3.38)

and

Hm((U,∂X),E)= {u∈Hm(U,E) : t(u)= 0 on ∂X∩U}. (3.39)

For u∈Hm(U,E), we define

�U(u)∈
◦
Hm(X,E)=Hm((X,∂X),E) (3.40)

by

�U(u)=u in U,

∆�U(u)= 0 in X \U,
t
(
�U(u)

)= t(u) on ∂U.

(3.41)

Since A possesses the unique continuation property in
◦
X, the section �U(u)

is uniquely determined for every u∈Hm((U,∂X),E).
Write H for the Hodge projection onto �(X) (see Theorem 2.26). It was

proved in [15] that the Hermitean form

hU(u,v)=
∫
X

(
A�U(u),A�U(v)

)
x dx+

∫
X

(
H�U(u),H�U(v)

)
x dx (3.42)

is a scalar product on Hm((U,∂X),E), which induces a topology equivalent to

the original one.

Obviously, �(X) is a closed subspace of

�(m)∆ (X \U,∂X) :=�∆
( ◦
X \U

)
∩Hm((X \U,∂X),E), (3.43)

and we put

V =�(m)∆ (X \U,∂X)��(X), (3.44)

“�” meaning the orthogonal complement with respect to the scalar product

hX\U(·,·).
Lemma 3.14. As defined above, V is a Hilbert space with reproducing kernel.

If �(X)= 0, then this kernel is given by

K(x,·)= �U ∗−1
E KG(x,·) (3.45)

for every x ∈X \U , where G is the Hodge parametrix for the Dirichlet problem

in X.
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Proof. The space under study is a closed subspace of �(m)∆ (
◦
X \U), hence

it is a Hilbert space with reproducing kernel.

If, in addition, �(X)= 0, then G is a two-sided fundamental solution of ∆ in

the interior of X. It follows that ∆�UKG(·,x)= 0 away from ∂U for every fixed

x ∈X \U .

By the definition of a reproducing kernel, we get

u(x)= hX\U
(
u,K(x,·)) (3.46)

in
◦
X \U for all u∈ V . On the other hand, if x ∈ ◦

X \U , then, by Stokes’ formula,

we have

u(x)=
∫
∂U
G∆
(
KG(x,·),u

)

=
∫
∂U

(
t(u),n

(
A∗−1

E KG(x,·)
))
y ds−

∫
∂U

(
n(Au),t

(∗−1
E KG(x,·)

))
y ds

= hX\U
(
u,�U ∗−1

E KG(x,·)
)
,

(3.47)

which gives the desired conclusion when combined with (3.46).

Define the mapping i2 : Σ2 → V in the following way. Pick an element [u] ∈
Σ2, [u] being the equivalence class of any u∈ �(∞)∆ (X \U) satisfying t(u)= 0

on ∂X∩U . Obviously, u ∈ �(m)∆ (X \U,∂X). We set i2[u] to be the orthogonal

projection of u to V . It is easy to check that i2 : Σ2 → V is well defined and

continuous.

Further, for u∈ V , we set i1u to be the equivalence class in Σ1 of the restric-

tion of �X\U(u) to U .

Our next task is to extend the scalar product hX\U(·,·) from V×V to Σ1×Σ2.

Let [u]∈ Σ1 and [v]∈ Σ2. For any representativeu∈ [u], the Cauchy data t(u)
and n(Au) have weak boundary values on the boundary of U (cf. [18]). We set

h̃X\U
(
[u],[v]

)=−
∫
∂U
G∆
(∗E v,u), (3.48)

where v ∈ [v].
Lemma 3.15. Pairing (3.48) does not depend on the particular choice of the

representatives u∈ [u] and v ∈ [v]. Moreover, it is separately continuous and

h̃X\U
(
i1u,[v]

)= hX\U(u,i2[v]) (3.49)

for all u∈ V and [v]∈ Σ2.
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Proof. By Stokes’ formula, we get

∫
∂U
G∆
(∗E v,u)=

∫
U
(∆u,v)x dx−

∫
U
(u,∆v)x dx = 0 (3.50)

for v ∈�(X). Similarly,

−
∫
∂U
G∆
(∗E v,u)=

∫
X\U

(∆u,v)x dx−
∫
X\U

(u,∆v)x dx = 0 (3.51)

for any u ∈ �(X). This shows that h̃X\U(·,·) is independent of the choice of

u∈ [u] and v ∈ [v].
By [23, Section 9.4], the convergence of a sequence {uν} in �

(f )
∆ (U) implies

the convergence of both {t(uν)} and {n(Auν)} in
⊕m−1

j=0 �′(∂U,Fj). Therefore,

h̃X\U(·,·) is separately continuous provided the spaces Σ1 and Σ2 are endowed

with the quotient topology.

Since the solutions of V have finite order of growth close to ∂U , it follows

that

h̃X\U
(
i1u,[v]

)=−
∫
∂U
G∆
(∗E v,�X\Uu∣∣U)

=
∫
∂U

((
n
(
A�X\Uu

∣∣
U
)
, t(v)

)
y−

(
t
(
�X\Uu

∣∣
U
)
,n(Av)

)
y

)
ds

=
∫
∂U

(
n
(
A�X\Uu

∣∣
U
)
, t
(
�X\Uv

))
y ds−

∫
∂U

(
t(u),ν(Av)

)
y ds

= hX\U(u,v)−
∫
X

(
H�X\Uu,H�X\Uv

)
x dx

= hX\U(u,v),
(3.52)

the last equality being a consequence of the fact that w is orthogonal to

�(X) with respect to hX\U(·,·). The right-hand side here is obviously equal

to hX\U(u,i2[v]), which completes the proof.

This lemma gives rise to a mapping � : Σ2 → Σ′1 induced by the pairing

hX\U(·,·).
Theorem 3.16. The mapping

� :
�(∞)∆

( ◦
X \U,∂X

)
�(X)

�→
(

�
(f )
∆ (U)
�(X)

)′
(3.53)

induced by (3.48) is a topological isomorphism of these spaces.
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Proof. By the very construction, the mapping i2 is one-to-one. Lemma 2.2

shows that � is one-to-one, too.

We prove the surjectivity of �. To this end, pick a continuous linear func-

tional � on Σ1. Since �(X) is finite dimensional, � can be specified to a con-

tinuous linear functional on �
(f )
∆ (U) vanishing on �(X). By Theorem 3.10,

there is a sectionw ∈�∆(U)∩C∞(U,E) orthogonal to �(X), with the property

that

〈
�,[u]

〉=
∫
U
(u,w)x dx (3.54)

for all [u]∈ Σ2, u being a representative of [u].
Set

v(y)=∗−1
E

∫
U

(
KG(·,y),w

)
x dx =G

(
χUw

)
(y) (3.55)

for y ∈
◦
X, where χU is the characteristic function of U . By Theorem 2.26, we

deduce that v ∈H2m(X,E).
Further, G is a Hodge parametrix whence t(v) = 0 on ∂X. We assert that

∆v = 0 away from U in the interior of X.

Indeed, let u∈ C∞(X,E) have compact support in
◦
X \U . Then

∫
X\U

(∆u,v)y dy =
∫
X
(∆u,v)y dy

=
∫
U
(G∆u,w)x dx

=
∫
U
(u,w)x dx−

∫
U
(Hu,w)x dx

= 0,

(3.56)

for u≡ 0 in U and w is orthogonal to �(X).
Since G has the transmission property with respect to ∂U , we see that v ∈

C∞(U,E)whence t(v)∈⊕m−1
j=0 C∞(∂U,Fj). The elliptic regularity of the Dirich-

let problem now yields v ∈ C∞(X \U,E), and so u determines an equivalence

class [v]∈ Σ2.

If u∈�
(f )
∆ (U), then

u(x)=− lim
ε→0+

∫
∂U−ε

G∆
(
KG(x,·),u

)+ lim
ε→0+

H
(
χU−εu

)
(x) (3.57)
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for all x ∈U . Hence it follows that

〈
�,[u]

〉=
∫
U
(u,w)x dx

=− lim
ε→0+

∫
∂U−ε

G∆
(∗E v,u)+ lim

ε→0+

∫
U

(
H
(
χU−εu

)
,w
)
x dx

=− lim
ε→0+

∫
∂U−ε

G∆
(∗E v,u)

= h̃X\U(u,v)

(3.58)

because w is orthogonal to �(X).
Finally, the topological arguments are the same as in Theorem 3.2, which

completes the proof.

3.4. Pairing in Sobolev spaces. Set

Σ1 = �
(f )
∆ (U)
�(X)

, Σ2 = �∆(U)∩C∞(U,E)
�(X)

, V =�(m)∆ (U)��(X), (3.59)

“�” meaning the orthogonal complement with respect to the scalar product

hU(·,·). When equipped with the scalar product hU(·,·), the space V is obvi-

ously Hilbert.

For [u]∈ Σ2, we set

EU
(
[u]

)= [�U(u)∣∣X\U], (3.60)

the right-hand side being an equivalence class in �(∞)∆ (X \U,∂X)/�(X). This

class is independent of which representative u of [u] we choose to define it.

Indeed, from the unique continuation property for ∆ and the elliptic regular-

ity of the Dirichlet problem, it follows that �U induces a topological isomor-

phism of �∆(U)∩C∞(U,E) onto �(∞)∆ (X \U,∂X). In particular, if u ∈ �(X),
then �U(u) = u in the complement of U . This gives us the desired indepen-

dence, hence EU is well defined.

Since the space �(X) is finite dimensional, we immediately obtain the fol-

lowing lemma.

Lemma 3.17. The mapping EU is a topological isomorphism

�∆(U)∩C∞(U,E)
�(X)

�
�������������������������������������→ �(∞)∆ (X \U,∂X)

�(X)
. (3.61)

Combining Lemma 3.17 and Theorem 3.16, we see that Σ2 and Σ′1 are topo-

logically isomorphic. However, we want to recover this result within the general

scheme of Section 2.
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To this end, we write i1 : V → Σ1 and i2 : Σ2→ V for the natural embeddings.

They are obviously injective and continuous. We define an extension h̃U(·,·)
of hU(·,·) by

h̃U
(
[u],[v]

)= h̃X\U([u],EU([v])). (3.62)

Lemma 3.18. As defined by (3.62), the pairing h̃U(·,·) does not depend on

the choice of u ∈ [u] and v ∈ [v]. Moreover, it is separately continuous and

satisfies

h̃U
(
i1u,[v]

)= hU(u,i2[v]) (3.63)

for all u∈ V and [v]∈ Σ2.

Proof. The pairing is independent of the choice of u ∈ [u] and v ∈ [v]
because so are the pairing h̃X\U and the mapping EU .

Furthermore, from the definition of �U it follows that �X\U�U = �U on

�(m)∆ (U). Hence, by Lemma 3.15, we get

h̃U
(
i1u,[v]

)= h̃X\U(i1�X\U�U(u),EU
(
[v]

))
= hX\U

(
�X\U�U(u),i2EU

(
[v]

))
= hU

(
u,i2[v]

)
,

(3.64)

as desired.

Theorem 3.19. The mapping

� :
�∆(U)∩C∞(U,E)

�(X)
�→
(

�
(f )
∆ (U)
�(X)

)′
(3.65)

induced by (3.62) is a topological isomorphism of these spaces.

Proof. As mentioned, this assertion follows from Lemma 3.17 and Theo-

rem 3.16.

As we have a commutative diagram

�∆(U)∩C∞(U,E)
�(X)

i2
�(m)∆ (U)��(X)

i1 �
(f )
∆ (U)
�(X)

∪ ∪ ∪
�A(U)∩C∞(U,E)

�(X)
i2

�(m)A (U)��(X)
i1 �

(f )
A (U)
�(X)

,

(3.66)
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the pairing h̃U(·,·) induces a continuous mapping

J :
�A(U)∩C∞(U,E)

�(X)
�→
(

�
(f )
A (U)
�(X)

)′
(3.67)

which is the restriction of �.

Write π for the hU -orthogonal projection

π : �(m)∆ (U)��(X) �→�(m)A (U)��(X). (3.68)

Corollary 3.20. The mapping J is a topological isomorphism of spaces

(3.67) if and only if

(1) �A(U)∩C∞(U,E) is dense in �
(f )
A (U);

(2) π maps �∆(U)∩C∞(U,E) continuously into �A(U)∩C∞(U,E).
Proof. According to the general scheme, we put

S1 = �
(f )
A (U)
�(X)

, S2 = �A(U)∩C∞(U,E)
�(X)

, V=�(m)A (U)��(X). (3.69)

Then the statement follows from Corollary 2.7.

We thus see that Corollary 3.20 is formulated in just the same way as

Corollary 3.11, the only difference being in the pairing h̃ and corresponding

orthogonal projection π .

Note that the projection π can be described as the limit of iterations of

double layer potentials (cf. [11, 15]). We next make use of this description in

order to find several cases where the conditions (1) and (2) of Corollary 3.20

are fulfilled.

Example 3.21. Let A be a determined elliptic homogeneous operator of

order m < n/2 with constant coefficients in X = Rn. Then the Laplacian ∆ =
A∗A has a two-sided fundamental solution of convolution type vanishing at

infinity (see, e.g., [21]). By the Liouville theorem, we deduce that �(X)= {0}.
Since ∆ is formally selfadjoint, there is a formally selfadjoint fundamental

solution of convolution type, say G. It was proved in [15] that

π = lim
N→∞

MN, (3.70)

where

(Mu)(x)=−
∫
∂U
GA
(
KGA∗(x−·),u

)
(3.71)

for all u ∈ Hm(U,E), the limit being in the strong operator topology of

Hm(U,E).
We can certainly assume that G is of the form G = adA(D)adA∗(D)g where

adA(D) is the inverse array of A(D) and g is a fundamental solution of the
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(scalar) operator det∆(D)= |detA(D)|2. It is easy to verify that in this partic-

ular case the kernel KGA∗(x−y) gives a two-sided fundamental solution for

A. Hence M2 =M and π =M .

Finally, as GA∗ has the transmission property with respect to any smooth

hypersurface in Rn, we conclude that M maps C∞(U,E) continuously into

�A(U)∩C∞(U,E).
Example 3.22. Let A be a determined elliptic operator as in Example 3.12,

and let A∗ possess the unique continuation property in the interior of X. Then

the condition (1) of Corollary 3.20 is fulfilled.

We are going to invoke the Neumann operator for the short complex con-

sisting of A0 =A only (see Section 2.3 in order to prove that the condition (2)

of Corollary 3.20 also holds).

Consider the continuous operator T : Hm(U,E) → L2(U,F) induced by A,

that is, Tu = Au. According to [15, Theorem 6.2] the adjoint T∗ of T with

respect to hU(·,·) is given by TUf =GA∗(χUf) where A∗ is the formal adjoint

of A.

As we are interested in the projection to �(m)A (U)��(X), we need to identify

the adjoint of the restriction of T to Hm(U,E)��(X). Obviously, this adjoint

is equal to (1−π�(X))T∗ where π�(X) is the orthogonal projection onto �(X)
with respect to hU(·,·).

We have π�(X) = H�U where H is the L2(X,E)-orthogonal projection to

�(X). Since ∆(TUf) = A∗(χUf) in the sense of distributions in the interior

of X, we get �UTU = TU on all of X. It follows that

(
1−π�(X)

)
T∗ = (1−H�U

)
TU = (1−H)TU. (3.72)

The Laplacian L1 = TT∗ is a bounded selfadjoint operator in L2(U,F). Let

us show that it is injective.

Indeed, L1f = 0 if and only if TUf = 0, for T∗ = TU . Moreover, if TUf = 0

in U , then TUf = EUTUf = 0 in X, and so ∆(TUf) = A∗(χUf) = 0 in X. As A∗

possesses the unique continuation property in a neighbourhood of U we see

that χUf ≡ 0 in U .

Since L1 is selfadjoint, we conclude that the range of TTU is dense in L2(U,F).
Moreover, the range of T is equal to L2(U,F), and so the range of TU = T∗ is

closed in Hm(U,E), too. It follows that Hm(U,E) = kerT ⊕TUL2(U,F), hence

the range of L1 coincides with that of T . We have thus proved that L1 is an

isomorphism of L2(U,F). In fact, L1 = 1 in the case considered in Example 3.21.

We next show that TU(L1)−1T maps C∞(U,E) continuously to C∞(U,E), and

hence π does so. For this purpose, pick g ∈ L2(U,F). Then there exists f ∈
L2(U,F) satisfying TTUf = g in U .

Note that ATUf is defined on all of X and belongs to L2(X,F). Therefore, g
can be extended to a section g̃ ∈ L2(X,F) in such a way that ATUf = g̃ in X. It
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follows from Theorem 2.26 that

A∗g̃ =A∗ATUf = (1−H)A∗
(
χUf

)=A∗(χUf ) (3.73)

in H−m(X,E), for HA∗ = 0.

This formula implies, in particular, that AA∗g̃ = 0 away from U in the inte-

rior of X, and thus g̃ is C∞ on this set.

Since A∗ (as well as A) possesses the unique continuation property in
◦
X,

there exists a two-sided fundamental solution to this operator, say ΦA∗ in a

neighbourhood O of U . Applying it to both sides of formula (3.73) yields for

each x ∈U

(
L1)−1g(x)= g̃(x)+

∫
∂O
GA∗

(
KΦA∗ (x,·), g̃

)
. (3.74)

It is well known that the kernel of ΦA∗ is smooth outside of the diagonal {x =
y}. Therefore, the boundary integral in (3.74) is a C∞-section of F near U .

We thus deduce that the inverse (L1)−1 preserves the C∞-sections of F
over U .

Finally, if u∈ C∞(U,E), then (L1)−1Au∈ C∞(U,F), and so TU(L1)−1Au be-

longs to C∞(U,E) because the Green operator G has the transmission prop-

erty with respect to ∂U . The continuity of π now follows from the equality

π = I−TU(L1)−1T modulo the smoothing operator HTU(L1)−1T . Thus, condi-

tions (1) and (2) of Corollary 3.20 hold for A.

Example 3.23. Let A be included in an elliptic complex of differential op-

erators Ai ∈ Diffm(X;Ei,Ei+1) of the same order on X so that A0 = A. We

formulate a particular Neumann problem (see Section 2.3) corresponding to

our situation.

We have a continuous operator A :Hm(U,E)��(X)→ L2(U,F). Arguing as

in Example 3.22, we see that the adjoint A∗ of A with respect to hU(·,·) is

given by TUf =GA∗(χUf).
Let nA2 represent the Cauchy data with respect the formal adjoint of A2

and

Hm
nA

(
U,E2)= {u∈Hm(U,E2) :nA(u)= 0

}
(3.75)

on ∂U . Obviously, it is a closed subspace of Hm(U,E2).
For x ∈ U , pick a cutoff function ωx at x, that is, any C∞-function with

a compact support in U , equal to 1 near x and vanishing outside a larger

neighbourhood of x. The difference 1−ωx is equal to 1 close to ∂U ; hence,
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for every w ∈Hm
νA(U,E

2), we get

TU
(
A1)∗w =G(ωx+

(
1−ωx

))
A∗
(
χUA1∗w

)
= (Gωx

)
A∗A1∗w+(G(1−ωx

))
A∗A1∗(χUw)

= 0

(3.76)

at x.

Consider the complex

0←� Hm(U,E)
TU←�������������������������������������������������������������� L2(U,E1) A1∗←������������������������������������������������������������������������������������������ Hm

νA

(
U,E2)←� ··· , (3.77)

the fragments indicated by dots being unimportant in the sequel.

Under our assumptions on {Ei,Ai}, the Laplacians ∆i = Ai∗Ai+Ai−1Ai−1∗

are elliptic operators of order 2m.

Let Bi be the block operator

L2
(
U,Ei+1

)
Bi =

(
Ai

Ai−1∗

)
:Hm(U,Ei) �→ ⊕

L2
(
U,Ei−1

) (3.78)

whose Laplacian is Bi∗Bi = ∆i. As ∆i are elliptic differential operators, the

same is true for Bi.
We endow the space Hm(U,E2) with the scalar product

h2
U(f ,g)=

∫
X

(
B�2

U(f),B�2
U(g)

)
x dx+

∫
X

(
H�2

U(f),H�2
U(g)

)
x dx (3.79)

constructed for B2 in the same way as the scalar product hU = h0
U onHm(U,E)

was constructed for A.

Write G2 for the Hodge parametrix of the Dirichlet problem corresponding

to ∆2 in X, and T(2,2)U for the composition G2A1χU . Then, the adjoint complex

to (3.77) is given by

0 �→Hm(U,E) A
������������������������������������→ L2(U,E1) pT(2,2)U������������������������������������������������������������������������������������������������������������������������������������������������������→Hm

nA

(
U,E2) �→ ··· , (3.80)

where p : Hm(U,E2) → Hm
nA(U,E

2) is the orthogonal projection with respect

to h2
U(·,·). Indeed, by [15, Theorem 6.2], the adjoint B2∗ to B2 with respect to

h2
U(·,·) is given by

T 2
Uf =G2B2∗(χUf )= (G2A2∗(χUf ),G2A1(χUf ))= (T(2,1)U ,T (2,2)U

)
f , (3.81)

where B2∗ is the formal adjoint of B2.
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It follows that (A1∗)∗ = T(2,2)U is the adjoint to A1∗ in the sense of Hilbert

spaces ifA1∗ is considered as a bounded operator fromHm(U,E2) to L2(U,E1).
Obviously,pT(2,2)U is the adjoint in the sense of Hilbert spaces for the restriction

of A1∗ to Hm
nA(U,E

2). Hence the Laplacian of (3.80) at step 1 is the bounded

selfadjoint operator

L1 =A1∗pT(2,2)U +ATU (3.82)

on L2(U,F).
From now on, we assume that �2(X)= 0. We show that under this assump-

tion the null space of pT(2,2)U just amounts to �(m)A1 (U). Denote by G2
U the Green

function of the Dirichlet problem for ∆2 in U . Then for every f ∈ Hm(U,E2),
we have

f =M2
Uf +G2

U∆2f (3.83)

by the Poisson formula (2.92). As �2
U(g)= 0 in X \U for any g ∈ ◦

Hm(U,E2), we

conclude that

h2
U
(
M2
Uf ,G

2
U∆2f

)=
∫
U

(
B2M2

Uf ,B2G2
U∆2f

)
x dx

=
∫
U

(
∆2M2

Uf ,G
2
U∆2f

)
x dx−

∫
∂U
GB2∗

(∗E2G2
U∆2f ,B2M2

Uf
)

= 0

(3.84)

because ∆2M2
Uf = 0 in U and G2

U∆2f ∈
◦
Hm(U,E2). We thus deduce that the

Poisson formula gives an orthogonal decomposition with respect to h2
U(·,·) if

�2(X)= 0. Since

◦
Hm(U,E2

) Hm
nA

(
U,E2

)
, (3.85)

we actually see that

(
Hm
nA

(
U,E2

))⊥ ( ◦
Hm(U,E2

))⊥ =�(m)∆2 (U). (3.86)

Thus, pT(2,2)U f = 0 implies ∆2T 2,2
U f = 0 in U . On the other hand, in X we

have

∆2T(2,2)U f =A1(χUf )−H2A1(χUf )=A1(χUf ) (3.87)

because H2A1 = 0. In particular, this means that A1f = 0 in U if and only if

∆2T(2,2)U f = 0 in U .
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Conversely, if A1f = 0 in U , then ∆2T(2,2)U f = 0 in U , and

T(2,2)U f (x)=
∫
∂U
GB2∗

(
KG2(x,·),0⊕f ) (3.88)

for all x ∈ U , the last equality being a consequence of Stokes’ formula. More-

over, for all g ∈Hm
nA(U,E

2), we have

h2
U
(
T(2,2)U f ,g

)=
∫
X

(
B2T(2,2)U f ,B2�2

Ug
)
x dx

=
∫
∂U
GB2

(
0⊕∗E1f ,g

)

=
∫
∂U
GA1∗

(∗E1 f ,g
)

= 0,

(3.89)

the last equality being due to jump theorems for a single layer potential and the

fact thatnA(�2
U(g))=nA(g)= 0 on ∂U . HenceA1f = 0 in U implies pT(2,2)U f =

0 in U as desired.

Describe the null space of L1. Note that L1f = 0 if and only if both TUf and

pT(2,2)U f vanish, for the operator

Hm
nA

(
U,E2

)(
pT(2,2)U

TU

)
: L2(U,F) �→ ⊕

Hm(U,E)

(3.90)

is adjoint to the differential operator B1∗.

Hence kerL1 = kerTU ∩�(0)A1 (U). It was proved in [15] (see Lemma 8.4) that

kerTU ∩�A1(U)= {f ∈ L2(U,F) :A∗f = 0, A1f = 0, n(f)= 0 on ∂U
}
. (3.91)

This is the so-called harmonic space at step 1 for the differential complex

{Ei,Ai} in U . We usually realise it as the null space for the Neumann problem

in the L2-setting for {Ei,Ai}.
As the Laplacian L1 is defined everywhere on L2(U,F), the Neumann problem

for complex (3.80) at step 1 reads as follows: given any f ∈ L2(U,F), find

g ∈ L2(U,F) satisfying L1g = f . If the range of L1 is closed, then so is the range

of A : Hm(U,E) → L2(U,F). For the Dolbeault complex, this latter fails to be

the case even for the small balls U of Cn. Hence, for the Dolbeault complex,

the Neumann problem in the present setting cannot highlight any properties

of the projection π .

The last observation in Example 3.23 leads us to another choice of function

spaces, which could be Hm(U,Ei).
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Example 3.24. Let X =Rn, n≥ 3, U ⊂Rn a ball, and A a Dirac operator in

Rn (see Example 3.5).

It is proved in [16] that there are systems {bν} and {cµ} of (Ck-valued) ho-

mogeneous harmonic polynomials such that

(a) {bν} is an orthogonal basis in all the spaces �(s)A (U), s ∈ Z+, simulta-

neously and an orthonormal basis in �(m)A (U) with respect to hU(·,·);
(b) {bν} ∪ {cµ} is an orthogonal basis in all the spaces �(s)∆ (U), s ∈ Z+,

simultaneously and an orthonormal basis in �(m)∆ (U) with respect to

hU(·,·).
Property (a) implies, in particular, that condition (1) of Corollary 3.20 is

fulfilled. Moreover, the projection π , if restricted to �(s)∆ (U), coincides with

the hU(·,·)-orthogonal projection �(s)∆ (U) → �(s)A (U). It follows that π maps

�∆(U)∩C∞(U,E) continuously into �A(U)∩C∞(U,E). Hence Corollary 3.20

holds for A.

4. Duality for solutions of arbitrary order of growth. In this section, we

describe the dual space of �A(U) by using various pairings in Hilbert spaces

of the solutions of the system Au= 0 in U . We assume that both X and A are

real analytic.

4.1. Duality in Hardy spaces. Let U � X be a domain with real analytic

boundary. In this and the next section, we restrict ourselves to the case Σ1 =
�∆(U) and Σ2 =�∆(U). Let V =H(B)

∆ (U) and

i1 :H(B)
∆ (U) �→�∆(U), i2 : �∆(U) �→H(B)

∆ (U) (4.1)

be natural inclusions.

The mapping i1 is always one-to-one, and the mapping i2 is one-to-one be-

cause of the unique continuation property (U)s . As mentioned, the Poisson

formula (2.92) implies the continuity of i1. The mapping i2 is continuous by a

priori estimates for solutions of elliptic equations.

From the Runge theorem for the solutions of elliptic systems (see, for in-

stance, [23, Theorem 4.1.26]) it follows that �∆(U) is dense in �∆(U).
Our next goal is to extend the sesquilinear pairing h(·,·) (see (2.100)) from

H(B)
∆ (U)×H(B)

∆ (U) to Σ1×Σ2.

Note that the analyticity of ∂U implies that also ∂D±ε is real analytic for each

sufficiently small ε > 0.

Theorem 4.1. Let 0 ≤ j ≤m−1 and let δ > 0 be small enough. Then there

exist a compact set K ⊂ U , ε0 > 0, and C > 0 depending on j, δ, K, and ε0 such

that, for all u∈�∆(U), v ∈�∆(Uδ)∩C2m(Uδ,E), and ε ∈ (0,ε0],

∣∣∣∣∣
∫
∂U−ε

(
Bju,Bjv

)
x ds−ε

∣∣∣∣∣≤ C‖u‖C(K,E)‖v‖C2m(Uδ,E). (4.2)
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Proof. Let

n(f)=
m−1⊕
j=0

∗−1
Fj Cj∗F f (4.3)

be the Dirichlet system adjoint to the system t with respect to the Green for-

mula for A. Given any sufficiently small ε > 0, we consider the Cauchy problem

A∗Avj,−ε = 0 near ∂U−ε,

t
(
vj,−ε

)= 0 on ∂U−ε,

n
(
Avj,−ε

)= (0, . . . ,0,Bjv,0, . . . ,0) on ∂U−ε

(4.4)

in a neighbourhood of U−ε. The following statement is a consequence of the

Cauchy-Kovalevskaya theorem.

Lemma 4.2. Given any δ > 0 small enough, there are ε0 > 0 and C0 > 0 such

that, for all ε ∈ (0,ε0], the sections vj,−ε belong to �∆(U−ε+r \U−2ε0) with some

r > 0 independent of ε and satisfy

∥∥vj,−ε∥∥C2m(U−ε+r \U−2ε0 ,E)
≤ C0‖v‖C2m(Uδ,E). (4.5)

Proof. First, we note that there exists a neighbourhood O of ∂U and sec-

tions Wj,−ε, real analytic near O, such that

t
(
Wj,−ε

)= 0 on ∂U−ε,

n
(
AWj,−ε

)= (0, . . . ,0,Bjv,0, . . . ,0) on ∂U−ε,
∥∥Wj,−ε∥∥C2m(O,E) ≤ C0‖v‖C2m(Uδ,E).

(4.6)

For instance, if mj = j, we can take

W0,−ε(x)=
(
�(x)+ε)2m−1

(2m−1)!
(
σ 2m−1(∗−1

F0
C0∗F A

)(
x,∇�(x)))−1B0v(x),

W1,−ε(x)=
(
�(x)+ε)2m−2

(2m−2)!
(
σ 2m−2(∗−1

F1
C1∗F A

)(
x,∇�(x)))−1B1v(x)−···

(4.7)

and so on.
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Hence vj,−ε =Wj,−ε+wj,−ε wherewj,−ε is a solution of the Cauchy problem

A∗Awj,−ε =−A∗AWj,−ε near ∂U−ε,

t
(
wj,−ε

)= 0 on ∂U−ε,

n
(
Awj,−ε

)= 0 on ∂U−ε.

(4.8)

As the Dirichlet system {t,n◦A} represents the Cauchy data for the Lapla-

cian ∆, we see that

A∗Awj,−ε =−A∗AWj,−ε near ∂U−ε,

wj,−ε vanishes up to order 2m−1 on ∂U−ε.
(4.9)

Since the hypersurfaces ∂U−ε are real analytic and compact, we can argue

locally. Fix a point x0 ∈ ∂U . Then, after a suitable bianalytic change of variables

x = δ(y) in a neighbourhood of x0, we obtain the Cauchy problem

∆�wj,−ε
(
δ(y)

)=−A∗AWj,−ε(δ(y)) if yn <−ε,(
∂
∂yn

)k
wj,−ε

(
δ(y)

)
vanishes for j = 0,1, . . . ,2m−1 if yn =−ε,

(4.10)

where ∆� is a differential operator of order 2m with real analytic coefficients.

Obviously, ∆� inherits the ellipticity from ∆.

Finally, complexifying problem (4.10) and using (4.6) and [7, Theorem 9.4.5],

we arrive at the assertion of the lemma.

Further, letG∆ be a Green operator for∆. Then, using Lemma 4.2 and Stokes’

formula, we get

∫
∂U−ε

(
Bju,Bjv

)
x ds−ε

=
∫
∂U−ε

(
t(u),n

(
Avj,−ε

))
x ds−ε−

∫
∂U−ε

(
n(Au),t

(
vj,−ε

))
x ds−ε

=
∫
∂U−ε

G∆
(∗E vj,−ε,u)

=
∫
∂U−ε0

G∆
(∗E vj,−ε,u)

(4.11)

for all 0< ε ≤ ε0.

Since G∆(·,·) is a bidifferential operator of order 2m−1 on ∂U , we conclude

that

∣∣∣∣∣
∫
∂U−ε

(
Bju,Bjv

)
x ds−ε

∣∣∣∣∣≤ c‖u‖C2m−1(∂U−ε0 ,E)
∥∥vj,−ε∥∥C2m−1(∂U−ε0 ,E)

, (4.12)
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the constant C depending on the coefficients ofA and {Bj} only. By Lemma 4.2,

there is a constant C0 > 0 such that

∥∥vj,−ε∥∥C2m−1(∂U−ε0 ,E)
≤ C0‖v‖C2m(Uδ,E). (4.13)

for all v ∈�∆(Uδ)∩C2m(Uδ,E). Finally, by a priori estimates for the solutions

of elliptic systems, there exists a constant C1 > 0 such that for all u ∈ �∆(U)
we get

‖u‖C2m−1(∂U−ε0 ,E) ≤ C1‖u‖C(U−ε0/2,E). (4.14)

Now, combining inequalities (4.12), (4.13), and (4.14), we obtain (4.2) as

desired.

In the case where ∆ is the usual Laplace operator in Rn, Stout [19] proved

that ∂D should be necessarily real analytic for estimate (4.2) to hold.

Corollary 4.3. For every u∈�∆(U) and v ∈�∆(U), the limit

h̃(u,v)= lim
ε→0+

∫
∂D−ε

(
t(u),t(v)

)
x ds−ε (4.15)

exists. The pairing h̃(·,·) is separately continuous on �∆(U)×�∆(U), and h̃(u,v)
= h(u,v) for all u∈H(B)

∆ (U) and v ∈�∆(U).

Proof. By the assumption, there exists a δ > 0 with the property that v ∈
�∆(Uδ)∩C2m(Uδ,E).

Given any ε ∈ (0,ε0], ε0 being from Theorem 4.1, we define a continuous

functional �v,−ε on �∆(U) by

�v,−ε(u)=
∫
∂U−ε

(
t(u),t(v)

)
x ds−ε (4.16)

for u ∈ �∆(D). According to Theorem 4.1, there is a constant C > 0 indepen-

dent of ε such that

∣∣�v,−ε(u)
∣∣≤ C‖u‖C(Uε0/2,E) (4.17)

for all 0< ε ≤ ε0.

Let Σ be the subset of �∆(U) consisting of all solutions u with the property

that

‖u‖C(Uε0/2,E) <
1
C
. (4.18)
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This means that for each ε ∈ (0,ε0] the functional �v,−ε belongs to the polar

of Σ, that is,

Σ◦ = {�∈�∆(U)′ :
∣∣�(u)

∣∣≤ 1 ∀u∈ Σ}. (4.19)

By a familiar theorem of Alaoglu and Banach, this polar is weak∗ compact.

Since the space �∆(U) is separable, this polar is metrisable in the weak∗ topol-

ogy. By compactness, there are limit points for the net {�v,−ε}0<ε≤ε0 . Let �0

be such a limit point. Thus, for some sequence εk ∈ (0,ε0] converging to 0, we

have

lim
k→∞

�v,−εk =�0(u) (4.20)

for all u∈�∆(U).
It is easy to see that for any u∈H(B)

∆ (U) we have

�0(u)= lim
k→∞

�v,−εk(u)= h(u,v). (4.21)

Hence, each weak∗ limit point of the net {�v,−ε}0<ε≤ε0 agrees on H(B)
∆ (U) with

u� h(u,v).
As �∆(U) is dense in �∆(U), the space H(B)

∆ (U) is dense there, too. This

implies the existence of a limit

lim
ε→0+

�v,−ε =�0 (4.22)

which defines an element of �∆(U)′.
Finally, the separate continuity of the pairing h̃(·,·) follows immediately

from (4.2).

Theorem 4.4. The mapping � : �∆(U)→�∆(U)′ induced by (4.15) is a topo-

logical isomorphism of these spaces.

Proof. Since the natural inclusion i2 is one-to-one, the mapping � is one-

to-one, too (see Lemma 2.2).

According to Corollary 2.5, to prove the surjectivity of the mapping we have

to show that the reproducing kernel K(·,·) of the space H(B)
∆ (U) has the fol-

lowing property.

Lemma 4.5. For every fixed x ∈ U , the Szegö kernel K(x,·) belongs to the

space E∗x ⊗�∆(U).

Proof. Since X, ∂D,∆, and {Bj} are real analytic, Theorem A of [10] implies

that any solution u of the Dirichlet problem (2.82) actually satisfies ∆u= 0 in

a neighbourhood of U if the data
⊕m−1

j=0 uj are real analytic (cf., for instance,
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[12, Lemma 4.4]). This means, in particular, that GU(x,·) is real analytic in a

neighbourhood of ∂U . Hence, we deduce from (2.104) thatK(x,·)∈ Ex⊗�∆(U)
for every fixed x ∈U as desired.

We have thus proved that the mapping � is an isomorphism of vector spaces

�∆(U)
�

�∆(U)′. (4.23)

We are now going to invoke an operator-theoretic argument to conclude that

this algebraic isomorphism is in fact a topological one. To this end, we note that

the spaces �∆(U) and �∆(U)′ are both spaces of type DFS. For �∆(U), see the

proof of Theorem 1.5.5 in Morimoto [9, page 13]. As the closed graph theorem

is correct for linear mappings between spaces of type DFS (see [9, Corollary

A.6.4, page 254]), to see that v � �v is a topological isomorphism it suffices

to show that it is continuous. The latter conclusion, however, follows from

Theorem 4.1 and the explicit construction of �v . This completes the proof of

Theorem 4.4.

Recently, Stout [19] proved Theorem 4.4 for the usual Laplace operator ∆ in

Rn.

As we have a commutative diagram

�∆(U)
i2

H(B)
∆ (U)

i1
�∆(U)

∪ ∪ ∪
�A(U)

i2
H(B)
A (U)

i1
�A(U),

(4.24)

the pairing h̃(·,·) induces a continuous mapping

J : �A(U) �→�A(U)′ (4.25)

which is the restriction of �.

Write π for the Szegö projection

π :H(B)
∆ (U) �→H(B)

A (U). (4.26)

Corollary 4.6. The mapping J is a topological isomorphism of the space

�A(U) onto �A(U)′ if and only if

(1) �A(U) is dense in �A(U);
(2) π maps �∆(U) continuously into �A(U).

Proof. According to the general scheme, we have

S1 =�A(U), S2 =�A(U), V=H(B)
A (U), (4.27)

hence the statement follows from Corollary 2.7.
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Stout [19] proved this theorem for the overdetermined Cauchy-Riemann op-

erator A= ∂ in Cn, n> 1.

In [17] it is proved that conditions (1) and (2) of Corollary 4.6 hold for a Dirac

operator A in a ball of X =Rn (see Example 3.5).

Example 4.7. Let A be a determined elliptic operator with real analytic co-

efficients on X. Then both A and A∗ possess the unique continuation property

in the interior of X. Again, condition (1) of Corollary 4.6 is fulfilled.

As in Example 3.6, we consider the extension of A to an operator

T :H(B)
∆ (U) �→H(C)

A∗ (U), (4.28)

where H(C)
A∗ (U) is the closed subspace of the Hardy space H(C)

AA∗(U) consisting

of all the solutions of A∗g = 0 in U .

As is proved in Example 3.6, for any g ∈H(C)
A∗ (U) we have

(
APUn

)−1g = P1
Ut
(
ΦUg

)
, (4.29)

where P1
U the Poisson integral of the Dirichlet problem for AA∗ in U .

Let u ∈ �∆(U). Then Au ∈ �A∗(U), and hence it is real analytic in a neigh-

bourhood of U . By Stokes’ formula,

ΦU(Au)(x)=u(x)+
∫
∂U
GA
(
KΦ(x,·),u

)
(4.30)

for all x ∈U .

If u∈�∆(Uδ)∩C2m(Uδ,E)with δ > 0 sufficiently small, then by the Cauchy-

Kovalevskaya theorem there exist a neighbourhood O of ∂U and a section

v ∈ Cm(O,E) such that

Av = 0 in O, t(v)= t(u) on ∂U. (4.31)

By Stokes’ formula,

ΦU(Au)(x)=u(x)−v(x)+
∫
∂O∩U

GA
(
KΦ(x,·),v

)
(4.32)

for all x ∈O∩U .

By the definition of v , the right-hand side of the last equality uniquely ex-

tends to a solution of Au= 0 in O. It follows that ΦU(Au)∈�∆(O∪U).
Arguing as in the proof of Lemma 4.2, we see that the neighbourhood O

does not depend on u but does on δ and ∂U . Moreover, for every solution

u∈�∆(Uδ)∩Cm(Uδ,E), we get

‖v‖Cm(O,E) ≤ C‖u‖Cm(Uδ,E) (4.33)



DUALITY BY REPRODUCING KERNELS 383

with C > 0 a constant independent of u. Hence ΦU(Au) maps �∆(U) continu-

ously into �∆(U).
Further, since X, ∂U , AA∗, and {Bj} are real analytic, Theorem A of [10] im-

plies that the Poisson integral P1
UΦU(Au) is real analytic in a neighbourhood of

∂U provided thatu∈�∆(U). Therefore,πu is real analytic in a neighbourhood

of ∂U , too.

If {uν} converges to u ∈ �∆(U), then ΦU(Auν) converges to ΦUu by (4.32)

and P1
UΦU(Auν) converges to P1

UΦU(Au) by [12] (see the proof of Lemma 4.4).

Hence π maps �∆(U) continuously into �A(U) (see Section 2.3).

Summarising, we conclude that the mapping J is a topological isomorphism

of �A(U) onto �A(U)′.

Example 4.8. Suppose that A is an overdetermined elliptic differential op-

erator with constant coefficients in Rn as in Example 3.7. If U �Rn is a strictly

convex domain with real analytic boundary, then under reasonable assump-

tions on A the Neumann problem for the tangential complex is solvable at

step 1, see Example 3.7 for more details.

Moreover, the Neumann operator N1 possesses the analytic hypoelliptic-

ity property (cf. [22]). Hence the operator I−T∗b NTb, that is, the orthogonal

projection from L2(∂U,E0
b) to kerT 0

b , maps �∆(U) continuously to �A(U). As

L2(∂U,E0
b) = H(B)

∆ (U) and kerT 0
b = H(B)

A (U), we see that the projection π has

the same property.

As the domain U is strictly convex, we see that �A(U) is dense in �A(U).
By Corollary 3.11, the mapping J is a topological isomorphism of �A(U) onto

�A(U)′. By reflexivity, the transpose J′ gives us a topological isomorphism

between the spaces �A(U)′ and �A(U).

4.2. Duality in Lebesgue spaces. We now study the case that

Σ1 =�∆(U), Σ2 =�∆(U), V =�(0)∆ (U), (4.34)

and

i1 : �(0)∆ (U) �→�∆(U), i2 : �∆(U) �→�(0)∆ (U) (4.35)

are natural inclusions.

The mapping i1 is always one-to-one and the mapping i2 is one-to-one be-

cause of the unique continuation property (U)s . By a priori elliptic estimates,

the mappings i1 and i2 are continuous. As mentioned, �(0)∆ (U) is a separable

Hilbert space with reproducing kernel. To proceed, we thus need to extend the

pairing

h(u,v)=
∫
U
(u,v)x dx (4.36)

from L2(U,E)×L2(U,E) to Σ1×Σ2.



384 A. SHLAPUNOV AND N. TARKHANOV

Corollary 4.9. Let δ > 0 be small enough. Then there are a compact set

K ⊂U , ε0 > 0, and C > 0 depending on δ, K, and ε0 such that for all u∈�∆(U)
and v ∈�∆(Uδ)∩C2m(Uδ,E),

∣∣∣∣∣
∫
U−ε
(u,v)x dx

∣∣∣∣∣≤ C‖u‖C(K,E)‖v‖C2m(Uδ,E) (4.37)

whenever ε ∈ (0,ε0].

Proof. Let ε0 be the number from Theorem 4.1. Since ∂U is sufficiently

smooth, there exists 0< ε′ ≤ ε0 such that for 0< ε ≤ ε′ we have

∫
U−ε
(u,v)x dx =

∫
U−ε′

(u,v)x dx+
∫ ε′
ε
dr

∫
∂U−r

(u,v)x ds−r , (4.38)

whence

∣∣∣∣∣
∫
U−ε
(u,v)x dx

∣∣∣∣∣
≤meas(U)‖u‖C(U−ε′ ,E)‖v‖C(U−ε′ ,E)+ε′ sup

r∈[ε,ε′]

∣∣∣∣∣
∫
∂U−r

(u,v)x ds−r

∣∣∣∣∣.
(4.39)

Now, the statement of the corollary follows from Theorem 4.1 with B0 = I
as desired.

In case ∆ is the usual Laplace operator in Rn, Zorn [26] proved that the

boundary of U should be necessarily real analytic in order that estimate (4.37)

may hold.

Corollary 4.10. For every solutionsu∈�∆(U) and v ∈�∆(U), there exists

a limit

h̃(u,v)= lim
ε→0+

∫
U−ε
(u,v)x dx. (4.40)

The corresponding pairing h̃(·,·) is separately continuous on �∆(U)×�∆(U),
and h̃(u,v)= h(u,v) for all u∈�(0)∆ (U) and v ∈�∆(U).

Proof. The proof is similar to the proof of Corollary 4.3.

Theorem 4.11. The mapping � : �∆(U) → �∆(U)′ induced by (4.40) is a

topological isomorphism of these spaces.
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Proof. Since the natural inclusion i2 is one-to-one, the mapping � is one-

to-one, too (see Lemma 2.2).

By Corollary 2.5, to prove the surjectivity of the mapping we have to show

that the reproducing kernel K(·,·) of the space �(0)∆ (U) has the following prop-

erty.

Lemma 4.12. For every fixed x ∈ U , the Bergman kernel K(x,·) belongs to

E∗x ⊗�∆(U).

Proof. In the proof of Lemma 3.9, we derived the formula

∆V(x,·)=−K(x,·) (4.41)

in U for any fixed x ∈ U where V(x,·) is a solution of the Dirichlet problem

(3.28) for the operator ∆2. Since all the objects X, ∂U , ∆, and {Bj} are real

analytic, we deduce by [10, Theorem A] that V(x,·) ∈ E∗x ⊗�∆2(U) for every

fixed x ∈ U (see for instance [12, Lemma 4.4]). Hence the lemma follows as

desired.

We have proved that the mapping � is an isomorphism of vector spaces

�∆(U) and �∆(U)′. The topological arguments are actually the same as those

in the proof of Theorem 4.4.

Since we have a commutative diagram

�∆(U)
i2

�(0)∆ (U)
i1

�∆(U)
∪ ∪ ∪

�A(U)
i2

�(0)A (U)
i1

�A(U)

(4.42)

the pairing h̃(·,·) induces a continuous mapping

J : �A(U) �→�A(U)′ (4.43)

which is the restriction of �.

Write π for the Bergman projection

π : �(0)∆ (U) �→�(0)A (U). (4.44)

Corollary 4.13. In order that the mapping J be a topological isomorphism

of the space �A(U) onto �A(U)′, it is necessary and sufficient that

(1) �A(U) be dense in �A(U);
(2) π would map �∆(U) continuously into �A(U).
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Proof. According to the general scheme, we have

S1 =�A(U), S2 =�A(U), V=�(0)A (U), (4.45)

and so the statement follows from Corollary 2.7.

Zorn [26] proved that the conditions of Corollary 4.13 hold for the Cauchy-

Riemann operator A = ∂̄ in any strictly pseudoconvex domain U of Cn with

real analytic boundary.

Example 4.14. Let A be a determined elliptic operator as in Example 3.12.

Since X, ∂U , AA∗, and n(·) are real analytic, Theorem A of [10] implies that

NAu is real analytic in a neighbourhood of ∂U if u∈�∆(U). Therefore, πu=
u−A∗NAu is real analytic in a neighbourhood of ∂U , too. Furthermore, if

{uν} converges to u ∈ �∆(U), then Nuν converges to Nu (cf. the proof of

Lemma 4.4 in [12]). Hence π maps �∆(U) continuously onto �A(U). Finally, by

the Runge theorem for determined elliptic operators (see [23, Section 4.1.9]),

�A(U) is dense in �A(U). Hence, according to Corollary 4.13, the mapping J is a

topological isomorphism of �A(U) onto �A(U)′. By reflexivity, the transposed

mapping J′ is a topological isomorphism of �A(U)′ onto �A(U).

Example 4.15. Assume that A is a column of first-order scalar partial dif-

ferential operators with constant coefficients in Rn. Under familiar assump-

tions on A, the compatibility complex of A is simply a Koszul complex (cf. [22,

Section 1.2.8]). LetU �Rn be a strictly convex domain with real analytic bound-

ary. Then the Neumann problem for the compatibility complex in U is solvable

at step 1, and the Neumann operator N preserves real analytic sections in a

neighbourhood of U . The latter remains valid with convex replaced by pseu-

doconvex in an appropriate sense (cf. [22, Section 4.1.5]). As the domain U is

strictly convex, the subspace �A(U) is dense in �A(D). By Corollary 4.13, the

mapping J arranges a topological isomorphism of �A(U) onto �A(U)′.

Example 4.16. Let X = Rn, n ≥ 3, and let U ⊂ Rn be a ball and A a Dirac

operator in Rn (see Example 3.5). It is proved in [16] that there are systems

{bν} and {cµ} of (Ck-valued) homogeneous harmonic polynomials such that

(a) {bν} is an orthogonal basis in all spaces �(0)A (Uε), ε ∈R, simultaneously;

(b) {bν}∪{cµ} is an orthogonal basis in all spaces �(0)∆ (Uε), ε ∈ R, simul-

taneously.

Property (a) implies that condition (1) of Corollary 3.11 is satisfied. Moreover,

the projection π restricted to �(0)∆ (Uε), ε > 0, coincides with the orthogonal

projection

�(0)∆
(
Uε
)
�→�(0)A

(
Uε
)
. (4.46)

It follows that π maps �∆(U) continuously into �A(U). Hence Corollary 3.20

holds for A.
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4.3. Grothendieck duality. Suppose that U is an open subset of
◦
X with C∞-

boundary such that ∂X∩U =∅ or ∂X∩U = ∂X. Set

Σ1 = �∆(U)
�(X)

, Σ2 =
{
u∈�∆(X \U) : t(u)= 0 on ∂X

}
�(X)

, (4.47)

and

V =�(m)∆ (X \U,∂X)��(X), (4.48)

“�” meaning the orthogonal complement with respect to the scalar product

hX\U(·,·).
For each [u]∈ Σ2, we set

i2[v]= p(v), (4.49)

where v is a representative of the class [v] and p(v) the orthogonal projection

of v to V in �(m)∆ (X \U,∂X). If v1,v2 ∈ [v], then v1 − v2 ∈ �(X) whence

p(v1 −v2) = 0. It follows that the mapping i2 : Σ2 → V is well defined and

continuous as is easy to check.

Further, for u∈ V , we set

i1u=
[
�X\U(u)

]
, (4.50)

that is, the equivalence class in Σ1 corresponding to the restriction of �X\U(u)
to U .

We are now in a position to extend the sesquilinear pairing hX\U(·,·) from

V ×V to Σ1×Σ2. Namely, if [v] ∈ Σ2, then there exists a domain O � U with

smooth boundary ∂O such that v ∈�∆(X \O) for all v ∈ [v]. Given any [u]∈
Σ1 and [v]∈ Σ2, we set

h̃X\U
(
[u],[v]

)=−
∫
∂O
G∆
(∗E v,u), (4.51)

where u∈ [u] and v ∈ [v].
Lemma 4.17. As defined by (4.51), the pairing h̃X\U(·,·) does not depend on

the choice of O and u∈ [u], v ∈ [v]. Moreover, it is separately continuous, and

h̃X\U
(
i1u,[v]

)= hX\U(u,i2[v]) (4.52)

for all u∈ V and [v]∈ Σ2.

Proof. By Stokes’ formula, we get

∫
∂O
G∆
(∗E v,u)=

∫
O
(∆u,v)x dx−

∫
O
(u,∆v)x dx = 0 (4.53)
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for all v ∈�(X). Similarly,

−
∫
∂O
G∆
(∗E v,u)=

∫
X\O

(∆u,v)x dx−
∫
X\O

(u,∆v)x dx = 0 (4.54)

for all u∈�(X). This means that h̃X\U(·,·) does not depend on the choice of

u∈ [u] and v ∈ [v].
Let O′ �U be another domain with smooth boundary such that ∆v = 0 near

X \O′ for all v ∈ [v]. Without loss of generality, we can assume that O � O′.
Then by Stokes’ formula, we get

∫
∂O′
G∆
(∗E v,u)−

∫
∂O
G∆
(∗E v,u)=

∫
∂(O′\O)

G∆
(∗E v,u)= 0, (4.55)

for both u and v belong to �∆(O
′ \O). Thus, h̃X\U(·,·) is independent of the

particular choice of O.

Obviously, h̃X\U(·,·) is separately continuous if the spaces Σ1 and Σ2 are

endowed with canonical quotient topology.

Since any solution u∈ V has finite order of growth near ∂U , it follows from

(4.55) that

h̃X\U
(
i1u,[v]

)=−
∫
∂O
G∆
(∗E v,�X\Uu)

=−
∫
∂U
G∆
(∗E v,�X\Uu)

=−
∫
∂U

((
t
(
�X\Uu

)
,n(Av)

)
x−

(
n
(
A�X\Uu

)
, t(v)

)
x

)
ds

=
∫
∂U

((
n
(
A�X\Uu

)
, t
(
�X\Uv

))
x−

(
t(u),n(Av)

)
x

)
ds

= hX\U(u,v)−
∫
X

(
H�X\Uu,H�X\Uv

)
x dx

= hX\U(u,v),

(4.56)

the last equality being a consequence of the fact that u⊥�(X) with respect to

hX\U(·,·).
Finally, we obtain

hX\U(u,v)= hX\U
(
p(u),v

)= hX\U(u,p(v))= hX\U(u,i2[v]), (4.57)

which shows the lemma.

We thus conclude that there is a mapping � : Σ2→ Σ′1 induced by the pairing

h̃X\U(·,·).
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Theorem 4.18. The mapping

� :

{
u∈�∆(X \U) : t(u)= 0 on ∂X

}
�(X)

�→
(

�∆(U)
�(X)

)′
(4.58)

induced by (4.51) is a topological isomorphism of these spaces.

Proof. As p(u)= 0 implies u∈�(X), we see that i2 is one-to-one. Then �

is one-to-one, too (see Lemma 2.2).

We prove the surjectivity of �. To this end, we pick a continuous linear func-

tional � on Σ1. Then � can be thought of as a functional on �∆(U) vanishing

on �(X).
Since �∆(U) is a subspace of Cloc(U,E), the space of continuous sections of

E over U , this functional can be extended, by the Hahn-Banach theorem, to an

E∗-valued measure m with compact support in U orthogonal to �(X).
Take a domain O′ � U containing the support of m. Then, for every u ∈

�∆(U) and x ∈O′, we have

u(x)=−
∫
∂O′
G∆
(
KG(x,·),u

)+H(χO′u)(x), (4.59)

where G is the Hodge parametrix for the Dirichlet problem in X (see Section

2.4).

Hence

〈
�,[u]

〉=−
∫
∂O′
G∆
(∗E v,u) (4.60)

with an element u∈ [u], and

v(y)=∗−1
E
〈
dm,KG(·,y)

〉=G(∗−1
E dm

)
(y) (4.61)

for y away from the support of m.

Since G is a Hodge parametrix, we see that t(v)= 0 on ∂X. Moreover, we get

∆v =∗−1
E dm−H(∗−1

E �
)=∗−1

E dm, (4.62)

for � vanishes on �(X). It follows that ∆v = 0 in a neighbourhood of X \O′,
that is, v determines an equivalence class [v] in Σ2. Obviously, we have �[v]=
�, which proves the surjectivity of �.

Finally, the topological arguments are actually the same as those in Theorem

4.4.

4.4. Duality in Sobolev spaces. From now on, we assume that the manifold

X, the bundles E, F , and the coefficients of the operator A are real analytic.
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Let U �X be a domain with real analytic boundary. We introduce the spaces

of the solutions

Σ1 = �∆(U)
�(X)

, Σ2 = �∆(U)
�(X)

, V =�(m)∆ (U)��(X), (4.63)

“�” meaning the orthogonal complement in �(m)∆ (U) with respect to the scalar

product hU(·,·). We endow V with the scalar product hU(·,·), thus making it

a Hilbert space.

For [u]∈ Σ2, we set

EU[v]=
[
�U(u)

]
(4.64)

with u a representative of [u]. We check that this definition does not depend

on the particular choice of u∈ [u]. Indeed, it was proved in [12] (see the proof

of Corollary 4.1) that the mapping

�U : �∆(U) �→
{
u∈�∆(X \U) : t(u)= 0 on ∂X

}
(4.65)

is a topological isomorphism of the spaces. Therefore, we conclude that �U(u)
belongs to �∆(X \U) and satisfies t(�U(u)) = 0 on ∂X. In particular, if u ∈
�(X), then �U(u) = u, and this gives us the independence on the choice of

u∈ [u] as desired.

As the space �(X) is finite dimensional, we immediately obtain the following

lemma.

Lemma 4.19. The mapping

EU :
�∆(U)
�(X)

�→
{
u∈�∆(X \U) : t(u)= 0 on ∂X

}
�(X)

(4.66)

is a topological isomorphism of the spaces.

Of course, Lemma 4.19 and Theorem 4.18 already imply that the spaces Σ2

and Σ′1 are topologically isomorphic. However, we want to derive an explicit

construction of this duality.

To this end, we set

i1 : V �→ Σ1, i2 : Σ2 �→ V (4.67)

to be the natural inclusions. They are obviously one-to-one and continuous.

We define an extension h̃U(·,·) of hU(·,·) as follows:

h̃U
(
[u],[v]

)= h̃X\U([u],EU[v]) (4.68)

(see (3.62)).
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Lemma 4.20. As defined by (4.68), the pairing h̃U(·,·) does not depend on

the choice of u ∈ [u] and v ∈ [v]. Moreover, it is separately continuous and

satisfies

h̃U
(
i1u,[v]

)= hU(u,i2[v]) (4.69)

for all u∈ V and [v]∈ Σ2.

Proof. The pairing is independent of the choice of u ∈ [u] and v ∈ [v]
because so are the pairing h̃X\U and the mapping EU .

Moreover, from the definition of �U , it follows that �X\U�U = 1 on �(m)∆ (U).
Hence, by Lemma 4.17 we get

h̃U
(
i1u,[v]

)= h̃X\U(i1�X\U�U(u),EU
(
[v]

))
= hX\U

(
�X\U�U(u),i2EU

(
[v]

))
= hU

(
u,i2[v]

) (4.70)

as desired.

Theorem 4.21. The mapping

� :
�∆(U)
�(X)

�→
(

�∆(U)
�(X)

)′
(4.71)

induced by (4.68) is a topological isomorphism of these spaces.

Proof. This follows from Lemma 4.19 and Theorem 4.18.

As we have a commutative diagram

�∆(U)
�(X)

i2
�(m)∆ (U)��(X)

i1 �∆(U)
�(X)

∪ ∪ ∪
�A(U)
�(X)

i2
�(m)A (U)��(X)

i1 �A(U)
�(X)

,

(4.72)

the pairing h̃U(·,·) induces a continuous mapping

J :
�A(U)
�(X)

�→
(

�A(U)
�(X)

)′
, (4.73)

which is the restriction of �.

Denote by π the orthogonal projection

π : �(m)∆ (U)��(X) �→�(m)A (U)��(X). (4.74)
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Corollary 4.22. The mapping J is a topological isomorphism of spaces

(4.73) if and only if

(1) �A(U) is dense in �A(U);
(2) π maps �∆(U) continuously into �A(U).

Proof. According to the general scheme, we have

S1 = �A(U)
�(X)

, S2 = �A(U)
�(X)

, V=�(m)A (U)��(X), (4.75)

hence the statement follows from Corollary 2.7.

Example 4.23. Assume that A is a homogeneous determined elliptic op-

erator with constant coefficients of order m in X = Rn with n > 2m (see

Example 3.12). As we have already seen in the latter example, the projection

π is given by

(Mu)(x)=−
∫
∂U
GA
(
KΦ(x−·),u

)
(4.76)

for any u∈Hm(U,E), where Φ is a fundamental solution of convolution type

for A.

If u ∈ �∆(Uε)∩Cm(Uε,E) with ε > 0 small enough, then by the Cauchy-

Kovalevskaya theorem there exist a neighbourhood O of ∂U and a section

v ∈ Cm(O,E), such that

Av = 0 in O, t(v)= t(u) on ∂U. (4.77)

By the definition of M , we get Mu=Mv in U . Then Stokes’ formula yields

Mu(x)= v(x)−
∫
(∂O)∩U

GA
(
KΦ(x−·),v

)
(4.78)

for all x ∈ O∩U . The right-hand side of the latter equality uniquely extends

to a solution of Au= 0 in O. Hence we deduce that Mu∈�A(U∪O).
Arguing as in the proof of Lemma 4.2, we see that O is actually independent

of u, but it depends on ε and ∂U . Moreover, for every u∈�∆(Uε)∩Cm(Uε,E),
we have

‖v‖Cm(O,E) ≤ C‖u‖Cm(Uε,E) (4.79)

with C > 0 a constant independent of u. Hence M maps �∆(U) continuously

into �A(U).

Example 4.24. Let A be a determined elliptic operator as in Example 3.22.

Then the condition (1) of Corollary 4.22 is fulfilled. Assume for simplicity that

�(X)= 0.
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As we have seen in Example 3.22, π = I−TU(ATU)−1A where the operator

(ATU)−1 is given by (3.74).

It is well known that the kernel of ΦA∗ is real analytic outside the diagonal

{x = y}. Recall that ΦA∗ stands for a two-sided fundamental solution of the

operator A∗ near U . Hence it follows that the boundary integral in (3.74) is real

analytic in a neighbourhood O of U .

We thus conclude that (ATU)−1f is real analytic in O if f has the same

property.

If u ∈ �∆(U)∩C2m(Uε,E) with sufficiently small ε > 0 such that Uε � O,

then (ATU)−1Au is real analytic in a neighbourhood of Uε.
We see that TUf is real analytic in a neighbourhood of U if f is real analytic

in Uε.
By the Cauchy-Kovalevskaya theorem, there exist a neighbourhood O′ of ∂U

and a section v ∈ Cm(O′,E) such that

Av = f in O′, t(v)= 0 on ∂U. (4.80)

Then Stokes’ formula yields

TUf(x)= TU\O′f(x)+v(x)−
∫
(∂O′)∩U

GA
(
KGA∗(x,·),v

)
(4.81)

for all x ∈O′ ∩U .

By the definition of v , the right-hand side of the last equality uniquely ex-

tends to O′ as a real analytic section. Therefore, the same conclusion is valid

for TUf .

Finally, arguing as in the proof of Lemma 4.2, we obtain that the neighbour-

hood O′ does not depend on f but does on ε and ∂U . Moreover, for every

f ∈ Cm(Uε,E) real analytic in Uε, we get

‖v‖Cm(O′,E) ≤ C‖f‖Cm(Uε,F) (4.82)

with C > 0 a constant independent of f . Hence, the continuity of π follows

from the continuity of the operators A, TU , H, ΦA∗ , and formula (3.74).

Example 4.25. Let X =Rn, n≥ 3, U be a ball in Rn, and A a Dirac operator

in Rn (see Example 3.5). In [16] it is proved that there are systems {bν} and

{cµ} of homogeneous harmonic polynomials with values in Ck such that

(a) {bν} is an orthogonal basis in all spaces �(1)A (Uε), where ε ∈R simulta-

neously;

(b) {bν}∪{cµ} is an orthogonal basis in all spaces �(1)∆ (Uε), ε ∈ R, simul-

taneously.
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Property (a) implies that condition (1) of Corollary 4.22 is satisfied. Moreover,

the projection π restricted to �(1)∆ (Uε), ε > 0, coincides with the orthogonal

projection

�(1)∆
(
Uε
)
�→�(1)A

(
Uε
)
. (4.83)

It follows that π maps �∆(U) continuously into �A(U). Hence Corollary 4.22

is valid for A.

Acknowledgment. A. Shlapunov was partially supported by the Univer-

sity of Potsdam and Regional Science Fund of Krasnoyarsk.

References

[1] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950),
337–404.
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