ON HOPF GALOIS HIRATA EXTENSIONS

GEORGE SZETO and LIANYONG XUE

Received 17 March 2003

Let *H* be a finite-dimensional Hopf algebra over a field *k*, H^* the dual Hopf algebra of *H*, and *B* a right H^* -Galois and Hirata separable extension of B^H . Then *B* is characterized in terms of the commutator subring $V_B(B^H)$ of B^H in *B* and the smash product $V_B(B^H)$ #*H*. A sufficient condition is also given for *B* to be an H^* -Galois Azumaya extension of B^H .

2000 Mathematics Subject Classification: 16W30, 16H05.

1. Introduction. Let *H* be a finite-dimensional Hopf algebra over a field *k*, H^* the dual Hopf algebra of *H*, and *B* a right H^* -Galois extension of B^H . In [3], the class of H^* -Galois Azumaya extensions was investigated and in [8], it was shown that *B* is a Hirata separable extension of B^H if and only if the commutator subring $V_B(B^H)$ of B^H in *B* is a left *H*-Galois extension of *C*, where *C* is the center of *B* (see [8, Lemma 2.1, Theorem 2.6]). The purpose of the present paper is to characterize a right H^* -Galois and Hirata separable extension *B* of B^H in terms of the commutator subring $V_B(B^H)$ and the smash product $V_B(B^H)#H$. Let *B* be a right H^* -Galois extension of B^H such that $B^H = B^{H^*}$. Then the following statements are equivalent:

- (1) *B* is a Hirata separable extension of B^H ,
- (2) $V_B(B^H)$ is an Azumaya *C*-algebra and $V_B(V_B(B^H)) = B^H$,
- (3) $V_B(B^H)$ is a right H^* -Galois extension of C and a direct summand of $V_B(B^H)#H$ as a $V_B(B^H)$ -bimodule,
- (4) $V_B(B^H)$ is a right H^* -Galois extension of C and $V_B(B^H)#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

Moreover, an equivalent condition is given for a right H^* -Galois and Hirata separable extension B of B^H to be an H^* -Galois Azumaya extension which was studied in [3, 7]. Also, let B be a right H^* -Galois and Hirata separable extension of B^H and A a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A containing A as a direct summand as an A-bimodule. Then $V_{B^H}(A)$ is a separable subalgebra of B^H over C, and there exists an H-submodule algebra D in B which is separable over C such that $D^H = V_{B^H}(A)$ and $D \cong V_{B^H}(A) \otimes_Z F$ as Azumaya Z-algebras, where Z is the center of D and F is an Azumaya Z-algebra in D.

2. Basic definitions and notations. Throughout, *H* denotes a finite-dimensional Hopf algebra over a field *k* with comultiplication Δ and counit ε , *H*^{*} the dual Hopf algebra of *H*, *B* a left *H*-module algebra, *C* the center of *B*, $B^H = \{b \in B \mid hb = \varepsilon(h)b$ for all $h \in H\}$ which is called the *H*-invariants of *B*, and $B^{\#}H$ the smash product of *B* with *H*, where $B^{\#}H = B \otimes_k H$ such that for all $b^{\#}h$ and $b'^{\#}h'$ in $B^{\#}H$, $(b^{\#}h)(b'^{\#}h') = \sum b(h_1b')^{\#}h_2h'$, where $\Delta(h) = \sum h_1 \otimes h_2$. The ring *B* is called a right H^* -Galois extension of B^H if *B* is a right H^* -comodule algebra with structure map $\rho : B \to B \otimes_k H^*$ such that $\beta : B \otimes_{B^H} B \to B \otimes_k H^*$ is a bijection, where $\beta(a \otimes b) = (a \otimes 1)\rho(b)$.

For a subring *A* of *B* with the same identity 1, we denote the commutator subring of *A* in *B* by $V_B(A)$. We call *B* a separable extension of *A* if there exist $\{a_i, b_i \text{ in } B, i = 1, 2, ..., m$, for some integer *m*} such that $\sum a_i b_i = 1$ and $\sum ba_i \otimes b_i = \sum a_i \otimes b_i b$ for all *b* in *B*, where \otimes is over *A*. An Azumaya algebra is a separable extension of its center. A ring *B* is called a Hirata separable extension of *A* if $B \otimes_A B$ is isomorphic to a direct summand of a finite direct sum of *B* as a *B*-bimodule. A right *H**-Galois extension *B* is called an *H**-Galois Azumaya extension if *B* is separable over *B*^H which is an Azumaya algebra over *C*^H. A right *H**-Galois extension *B* of *B*^H. Throughout, an *H**-Galois extension means a right *H**-Galois extension unless it is stated otherwise.

3. The *H**-Galois Hirata extensions. In this section, we will characterize an *H**-Galois Hirata extension *B* of *B*^{*H*} in terms of the commutator subring $V_B(B^H)$ of B^H in *B* and the smash product $V_B(B^H)#H$. A relationship between an *H**-Galois Hirata extension and an *H**-Galois Azumaya extension is also given. We begin with some properties of an *H**-Galois Hirata extension *B* of *B*^{*H*}. Throughout, we assume $B^H = B^{H^*}$.

LEMMA 3.1. If A_1 and A_2 are H^* -Galois extensions such that $A_1^H = A_2^H$ and $A_1 \subset A_2$, then $A_1 = A_2$.

PROOF. By [3, Theorem 5.1], there exist $\{x_i, y_i \in A_1 \mid i = 1, 2, ..., n\}$ for some integer n such that, for all $h \in H$, $\sum x_i(hy_i) = T(h)1_{A_1}$, where $T \in \int_{H^*}^r$, the set of right integrals in H^* . Let $t \in \int_{H}^l$, the set of left integrals in H, such that T(t) = 1, then $\{x_i, f_i = t(y_i -) \mid i = 1, 2, ..., n\}$ is a dual basis of the finitely generated and projective right module A_1 over A_1^H . Since $A_1 \subset A_2$ such that $A_1^H = A_2^H$, $\{x_i, f_i \mid i = 1, 2, ..., n\}$ is also a dual basis of the finitely generated and projective right module A_2 over A_1^H . This implies that $A_1 = A_2$.

LEMMA 3.2. If *B* is an H^* -Galois Hirata extension of B^H , then B^H is a direct summand of *B* as a B^H -bimodule.

PROOF. We use the argument as given in [2]. Since *B* is an H^* -Galois and a Hirata separable extension of B^H , $V_B(B^H)$ is a left *H*-Galois extension of *C* (see [8, Lemma 2.1, Theorem 2.6]). Hence, $V_B(B^H)$ is a finitely generated and

projective module over *C* (see [3, Theorem 2.2]). Let $\Omega = \text{Hom}_C(V_B(B^H), V_B(B^H))$. Since *C* is commutative, $V_B(B^H)$ is a progenerator of *C*. Thus, *B* is a right Ω -module such that $B \cong V_B(B^H) \otimes_C \text{Hom}_\Omega(V_B(B^H), B) \cong V_B(B^H) \otimes_C B^{H^*}$ as *C*-algebras, where $f(1) \in B^{H^*}$ for each $f \in \text{Hom}_\Omega(V_B(B^H), B)$ by the proof of [2, Lemma 2.8]. But $V_B(V_B(B^H)) = B^H$ (see [2, Lemma 2.5]), so $B \cong V_B(B^H) \otimes_C B^H$. This implies that $V_B(B^H)$ is an H^* -Galois extension of *C* (see [2, Lemma 2.8]); and so *C* is a direct summand of $V_B(B^H)$ as a *C*-bimodule (see [2, Corollaries 1.9 and 1.10]). Therefore, B^H is a direct summand of *B* as a B^H -bimodule.

By the proof of Lemma 3.2, $V_B(B^H)$ is an H^* -Galois extension of *C*.

COROLLARY 3.3. If *B* is an H^* -Galois Hirata extension of B^H , then $V_B(B^H)$ is an H^* -Galois extension of *C*.

COROLLARY 3.4. If B is an H^* -Galois Hirata extension of B^H , then $B = B^H \cdot V_B(B^H)$ and the centers of B, B^H , and $V_B(B^H)$ are the same C.

PROOF. By Corollary 3.3, $V_B(B^H)$ is an H^* -Galois extension of C, so $B^H cdot V_B(B^H)$ is also an H^* -Galois extension of B^H (= $(B^H cdot V_B(B^H))^H$) with the same Galois system as $V_B(B^H)$ (see [3, Theorem 5.1]). Noting that $B^H cdot V_B(B^H) \subset B$, we conclude that $B = B^H cdot V_B(B^H)$ by Lemma 3.1. Moreover, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]), so the centers of B^H , $V_B(B^H)$, and B are the same C.

THEOREM 3.5. Let *B* be an H^* -Galois extension of B^H . The following statements are equivalent:

- (1) *B* is a Hirata separable extension of B^H ,
- (2) $V_B(B^H)$ is an H^* -Galois extension of C and a direct summand of $V_B(B^H)$ #H as a $V_B(B^H)$ -bimodule,
- (3) $V_B(B^H)$ is an Azumaya *C*-algebra and $V_B(V_B(B^H)) = B^H$,
- (4) $V_B(B^H)$ is an H^* -Galois extension of C and $V_B(B^H)#H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

PROOF. (1)=(3). Since *B* is an *H**-Galois and a Hirata separable extension of *B*^{*H*}, by Lemma 3.2, *B*^{*H*} is a direct summand of *B* as a *B*^{*H*}-bimodule. Thus, $V_B(V_B(B^H)) = B^H$ and $V_B(B^H)$ is a separable *C*-algebra (see [4, Propositions 1.3 and 1.4]). But the center of $V_B(B^H)$ is *C* by Corollary 3.4, so $V_B(B^H)$ is an Azumaya *C*-algebra.

(3)⇒(1). Since $V_B(B^H)$ is an Azumaya *C*-algebra and *B* is a bimodule over $V_B(B^H)$, $B \cong V_B(B^H) \otimes_C V_B(V_B(B^H)) = V_B(B^H) \otimes_C B^H$ as a bimodule over $V_B(B^H)$ (see [1, Corollary 3.6, page 54]). Noting that $B \cong V_B(B^H) \otimes_C B^H$ is also an isomorphism as *C*-algebras and that $V_B(B^H)$ is an Azumaya *C*-algebra, we conclude that $V_B(B^H) \otimes_C B^H$ is a Hirata separable extension of B^H ; and so *B* is a Hirata separable extension of B^H .

(3)⇒(2). By the proof of (3)⇒(1), $B \cong V_B(B^H) \otimes_C B^H$ such that $V_B(B^H)$ is a finitely generated and projective module over *C*, so $V_B(B^H)$ is an *H**-Galois extension of *C* (see [2, Lemma 2.8]). Moreover, since $V_B(B^H)$ is an Azumaya

C-algebra, $V_B(B^H)$ is a direct summand of $V_B(B^H) \otimes_C (V_B(B^H))^\circ$ as a $V_B(B^H)$ bimodule, where $(V_B(B^H))^\circ$ is the opposite algebra of $V_B(B^H)$. But $V_B(B^H) \otimes_C (V_B(B^H))^\circ \cong \text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H) \# H$ (see [3, Theorem 2.2]), so $V_B(B^H)$ is a direct summand of $V_B(B^H) \# H$ as a $V_B(B^H)$ -bimodule.

 $(2)\Rightarrow(3)$. Since $V_B(B^H)$ is an H^* -Galois extension of C, $B^H \cdot V_B(B^H)$ is an H^* -Galois extension of $(B^H \cdot V_B(B^H))^H$. But $(B^H \cdot V_B(B^H))^H = B^H$, so $B^H \cdot V_B(B^H)$ and B are H^* -Galois extensions of B^H such that $B^H \cdot V_B(B^H) \subset B$. Hence, $B^H \cdot V_B(B^H) = B$ by Lemma 3.1. Thus, the centers of B and $V_B(B^H)$ are the same C. Moreover, $V_B(B^H)$ is a direct summand of $V_B(B^H)\#H$ as a $V_B(B^H)$ -bimodule by hypothesis, so it is a separable C-algebra (see [3, Theorem 2.3]). Thus, $V_B(B^H)$ is an Azumaya C-algebra. But then $B \cong V_B(B^H) \otimes_C V_B(V_B(B^H))$. On the other hand, by hypothesis, $V_B(B^H)$ is an H^* -Galois extension of C, so $B \cong V_B(B^H) \otimes_C B^H$ (see [2, Lemma 2.8]). Therefore, $V_B(V_B(B^H)) = B^H$.

(3)⇔(4). Since $V_B(B^H)$ is an H^* -Galois extension of C, it is a finitely generated and projective module over C and $\text{Hom}_C(V_B(B^H), V_B(B^H)) \cong V_B(B^H) \# H$ (see [3, Theorem 2.2]). But then $V_B(B^H)$ is a Hirata separable extension of Cif and only if $V_B(B^H) \# H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$ (see [5, Corollary 3]). Thus, $V_B(B^H)$ is an Azumaya C-algebra if and only if $V_B(B^H)$ is an H^* -Galois extension of C and $V_B(B^H) \# H$ is a direct summand of a finite direct sum of $V_B(B^H)$ as a bimodule over $V_B(B^H)$.

By Theorem 3.5, we can obtain a relationship between the class of H^* -Galois Hirata extensions and the class of H^* -Galois Azumaya extensions which were studied in [3, 7].

COROLLARY 3.6. Let *B* be an H^* -Galois Azumaya extension of B^H . Then *B* is an H^* -Galois Hirata extension of B^H if and only if $C = C^H$.

PROOF. (\Rightarrow) Since *B* is an *H**-Galois Hirata extension of *B^H*, *V*_{*B*}(*B^H*) is an Azumaya algebra over *C* and a left *H*-Galois extension of *C* (see [8, Theorem 2.6]). Hence, *V*_{*B*}(*V*_{*B*}(*B^H*)) = *B^H* (see [8, Lemma 2.5]). Thus, *C* \subset *B^H*; and so *C* = *C^H*.

(⇐) Since *B* is an *H**-Galois Azumaya extension of *B^H*, *V_B*(*B^H*) is separable over *C^H* (see [3, Lemma 4.1]). Since *B* is an *H**-Galois Azumaya extension of *B^H* again, *V_B*(*B^H*) is an *H**-Galois extension of (*V_B*(*B^H*))^{*H*} (see [3, Lemma 4.1]), so both *B^H* · *V_B*(*B^H*) and *B* are *H**-Galois extensions of *B^H* such that *B^H* · *V_B*(*B^H*) ⊂ *B*. Hence, *B^H* · *V_B*(*B^H*) = *B* by Lemma 3.1. This implies that the center of *V_B*(*B^H*) is *C*. But by hypothesis, *C* = *C^H*, so *V_B*(*B^H*) is an Azumaya *C*-algebra. Hence, *V_B*(*B^H*) is a Hirata separable extension of *C*. But *B* = *B^H* · *V_B*(*B^H*) ≅ *B^H* ⊗_{*C*} *V_B*(*B^H*) as Azumaya *C*-algebras, so *B* is a Hirata separable extension of *B^H*.

COROLLARY 3.7. Let *B* be an H^* -Galois Hirata extension of B^H . Then *B* is an H^* -Galois Azumaya extension of B^H if and only if *B* is an Azumaya C^H -algebra.

PROOF. (\Rightarrow) Since *B* is an *H*^{*}-Galois Azumaya extension of *B*^{*H*}, *B*^{*H*} is an Azumaya *C*^{*H*}-algebra and *B* is separable over *B*^{*H*} (see [3, Theorem 3.4]). Hence, *B* is separable over *C*^{*H*} by the transitivity of separable extensions. But *B* is an *H*^{*}-Galois Azumaya extension of *B*^{*H*} and an *H*^{*}-Galois Hirata extension of *B*^{*H*} by hypothesis, so *C* = *C*^{*H*} by Corollary 3.6. This implies that *B* is an Azumaya *C*^{*H*}-algebra.

(⇐) By hypothesis, *B* is an Azumaya C^H -algebra. Hence, $C = C^H$. But *B* is an H^* -Galois Hirata extension of B^H , so $V_B(B^H)$ is an Azumaya subalgebra of *B* over *C* by Theorem 3.5(3). Since *B* is an H^* -Galois Hirata extension of B^H again, *B* is a Hirata separable extension of B^H and a finitely generated and projective module over B^H . Thus, $V_B(V_B(B^H)) = B^H$ (see [8, Lemma 2.5]); and so B^H (= $V_B(V_B(B^H))$) is an Azumaya subalgebra of *B* over C^H by the commutator theorem for Azumaya algebras (see [1, Theorem 4.3, page 57]). This proves that *B* is an H^* -Galois Azumaya extension of B^H .

4. Invariant subalgebras. For an H^* -Galois Hirata extension B as given in Theorem 3.5, let A be a subalgebra of B^H over C such that B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. In this section, we show that $V_{BH}(A)$ is the H-invariant subalgebra of a separable subalgebra D in B over C, that is, $D^H = V_{B^H}(A)$. We denote by \mathcal{G} the set $\{A \mid A \text{ is a subalgebra of } B^H$ over C such that B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule}.

LEMMA 4.1. Let *B* be an H^* -Galois Hirata extension of B^H . For any $A \in \mathcal{G}$, $V_B(A)$ is an *H*-submodule algebra of *B* and separable over *C*, and $(V_B(A))^H = V_{R^H}(A)$ which is a separable *C*-algebra.

PROOF. Since $A \in \mathcal{G}$, B^H is a projective Hirata separable extension of A and contains A as a direct summand as an A-bimodule. But B is an H^* -Galois Hirata extension of B^H , so B is a projective Hirata separable extension of B^H . Hence, by the transitivity property of projective Hirata separable extensions, B is a projective Hirata separable extension of A. Also B^H is a direct summand of B as a B^H -bimodule by Lemma 3.2, so A is a direct summand of B as an A-bimodule. Thus, $V_B(A)$ is a separable algebra over C (see [6, Theorem 1]). Moreover, it is clear that $(V_B(A))^H = V_{BH}(A)$, so $V_{BH}(A)$ is a separable C-algebra (see Corollary 3.4 and [6, Theorem 1]).

Next we want to show which separable subalgebra of B^H over C is an H-invariant subring of an H-submodule algebra in B. Let $\mathcal{T} = \{E \subset B \mid E \text{ is a separable } C$ -subalgebra of B^H and satisfies the double centralizer property in B^H such that $V_{B^H}(E) \in \mathcal{F}\}$. Next we show that for any $E \in \mathcal{T}$, E is the H-invariant subring of an H-submodule algebra D in B which is separable over C.

THEOREM 4.2. Let *E* be in *T*. Then there exists an *H*-submodule algebra *D* in *B* which is separable over *C* such that $D^H = E$.

PROOF. Since *E* is in \mathcal{T} , $V_{B^H}(E)$ is in \mathcal{S} such that $V_{B^H}(V_{B^H}(E)) = E$. Now by Lemma 4.1, $V_B(V_{B^H}(E))$ is an *H*-submodule algebra of *B* and separable over *C* such that $(V_B(V_{B^H}(E)))^H = V_{B^H}(V_{B^H}(E))$. But $V_{B^H}(V_{B^H}(E)) = E$, so

$$(V_B(V_{B^H}(E)))^H = E.$$
 (4.1)

Let $D = V_B(V_{B^H}(E))$. Then *D* satisfies the theorem.

By Theorem 4.2, we obtain an expression for the separable *H*-submodule algebra *D* for a given *E* in \mathcal{T} .

COROLLARY 4.3. *By keeping the notations as given in Theorem 4.2, let Z be the center of E. Then D* $\cong E \otimes_Z V_D(E)$ *as Azumaya Z-algebras.*

PROOF. Since *E* satisfies the double centralizer property in B^H , $V_{B^H}(V_{B^H}(E)) = E$. Hence, the centers of *E* and $V_{B^H}(E)$ are the same *Z*. Similarly as given in the proof of Lemma 4.1, since $V_{B^H}(E)$ is in \mathcal{F} , $B (= B^H \cdot V_B(B^H))$ is a projective Hirata separable extension of $V_{B^H}(E)$ and contains $V_{B^H}(E)$ as a direct summand as a $V_{B^H}(E)$ -bimodule by the transitivity property of projective Hirata separable extensions and the direct summand conditions. Thus, $V_{B^H}(E)$ satisfies the double centralizer property in *B*, that is, $V_B(V_B(V_{B^H}(E))) = V_{B^H}(E)$. This implies that the centers of $V_{B^H}(E)$ and $V_B(V_{B^H}(E))$ are the same. Therefore, *D* and *E* have the same center *Z*. Noting that *D* and *E* are separable *C*-algebras by Theorem 4.2, we conclude that $E (= D^H)$ is an Azumaya subalgebra of *D* over *Z*; and so $D \cong E \otimes_Z V_D(E)$ as Azumaya *Z*-algebras (see [1, Theorem 4.3, page 57]).

REMARK 4.4. When *B* is an H^* -Galois Azumaya extension of B^H , the correspondence $A \rightarrow V_B(A)$ as given in Lemma 4.1 recovers the one-to-one correspondence between the set of separable subalgebras of B^H and the set of H^* -Galois extensions in *B* containing $V_B(B^H)$ as given in [3].

ACKNOWLEDGMENTS. This paper was written under the support of a Caterpillar Fellowship at Bradley University. The authors would like to thank Caterpillar Inc. for the support.

REFERENCES

- [1] F. DeMeyer and E. Ingraham, *Separable Algebras over Commutative Rings*, Lecture Notes in Mathematics, vol. 181, Springer-Verlag, New York, 1971.
- [2] H. F. Kreimer and M. Takeuchi, *Hopf algebras and Galois extensions of an algebra*, Indiana Univ. Math. J. **30** (1981), no. 5, 675-692.
- [3] M. Ouyang, Azumaya extensions and Galois correspondence, Algebra Colloq. 7 (2000), no. 1, 43-57.
- [4] K. Sugano, On centralizers in separable extensions, Osaka J. Math. 7 (1970), 29-40.
- [5] _____, Note on separability of endomorphism rings, J. Fac. Sci. Hokkaido Univ. Ser. I 21 (1970/1971), 196–208.
- [6] _____, On centralizers in separable extensions. II, Osaka J. Math. 8 (1971), 465-469.

4038

- [7] G. Szeto and L. Xue, On Hopf DeMeyer-Kanzaki Galois extensions, Int. J. Math. Math. Sci. 2003 (2003), no. 26, 1627–1632.
- [8] K.-H. Ulbrich, Galoiserweiterungen von nicht-kommutativen ringen [Galois extensions of noncommutative rings], Comm. Algebra 10 (1982), no. 6, 655-672 (German).

George Szeto: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: szeto@hilltop.bradley.edu

Lianyong Xue: Department of Mathematics, Bradley University, Peoria, IL 61625, USA *E-mail address*: lxue@hilltop.bradley.edu