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For each positive integer n, set γ(n) =∏p|np. Given a fixed integer k ≠ ±1, we
establish that if the ABC-conjecture holds, then the equation γ(n+1)−γ(n)= k
has only finitely many solutions. In the particular cases k=±1, we provide a large
family of solutions for each of the corresponding equations.
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1. Introduction. Comparing values of an arithmetic function at consecutive

integers is a common problem in number theory. For example, in 1952, Erdős

and Mirsky [4] asked if there are infinitely many integers n such that d(n) =
d(n+1) (here d(n) stands for the number of divisors of n), a question which

was answered in the affirmative when Heath-Brown [8] proved in 1984 that the

number of positive integers n ≤ x such that d(n) = d(n+1) is � x/ log7x,

a lower bound which was later improved by Hildebrand [9] and thereafter by

Erdős et al. [6].

An apparently more difficult problem seems to be that of establishing that

the equations φ(n) = φ(n + 1) (where φ is Euler’s function) and σ(n) =
σ(n+1) (where σ(n) stands for the sum of the divisors of n) each has in-

finitely many solutions n; see Erdős et al. [5] for developments concerning this

problem.

The distribution of the values of the kernel function γ(n) := ∏p|np (also

called the core function or the algebraic radical of n) is the source of a variety

of open problems, many of them tied in with the famous ABC-conjecture. For

instance, in 1999, Cochrane and Dressler [2] showed that, assuming the ABC-

conjecture, if two positive integers have the same prime factors, they cannot

be too close; more precisely, they proved that if the ABC-conjecture is true,

then given any ε > 0, there exists a positive constant C = C(ε) such that if

γ(n)= γ(n+k), then k≥ Cn1/2−ε. No easier is the conjecture of P. Erdős and

A. Woods which asserts that there exists an integer k ≥ 3 such that if m and

n are positive integers satisfying γ(m+ i) = γ(n+ i) for all 1 ≤ i ≤ k, then

m = n. Although it remains unsolved, this conjecture has been extensively

studied and generalized; see, for instance, Langevin [10], Balasubramanian et

al. [1], as well as Langevin [11].
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Many more results regarding the kernel function and the ABC-conjecture

have been published; for some recent ones, see Mitrinović et al. [12], Granville

[7], or Cutter et al. [3].

Perhaps an even more difficult problem seems to be the one of comparing

the values of the kernel function at consecutive integers. In this note, we look

at the values of the function γ(n+1)−γ(n) for positive integers n.

2. Preliminary observations and statement of the main results. We first

make a few observations. Note that it is always the case that one of the numbers

n and n+1 is even and the other one is odd. In particular, γ(n+1)−γ(n) is

always an odd number, and therefore the equation γ(n+1)−γ(n) = k has

no solutions when k is a fixed even positive integer. From now on, we assume

that k is a fixed odd positive integer. When k = 1 and both n and n+1 are

square-free, we certainly have that γ(n+1)−γ(n)= (n+1)−n= 1= k. Since,

for a large positive real number x, there are only (1−6/π2+o(1))x positive

integers n<x for which n is not square-free, it follows that there are at most

(2−12/π2+o(1))x positive integers n < x such that one of n or n+1 is not

square-free. In particular, the number of numbers n<x for which both n and

n+1 are square-free is at least

x−
(

2− 12
π2

+o(1)
)
x =

(
12
π2

−1+o(1)
)
x > 0.215x. (2.1)

Thus, the solutions n of the equation γ(n+1)−γ(n)= 1 form a subset of all

the positive integers of positive lower asymptotic density.

From now on, we look for positive integer solutions n of the equation γ(n+
1)− γ(n) = k such that n(n+ 1) is not square-free. Here is a “parametric

family” of solutions for k = 1. Let r > 1 be an integer and assume that both

2r−1 − 1 and 2r − 1 are square-free. Put n = 2r+1(2r−1 − 1). Then n+ 1 =
2r+1(2r−1−1)+1= 22r−2r+1+1= (2r−1)2. It is clear that n+1 is not square-

free, and if r ≥ 3, thenn is not square-free either. Since both 2r−1−1 and 2r−1

are square-free, we have γ(n+1) = 2r −1, γ(n) = 2(2r−1−1) = 2r −2, which

implies that γ(n+1)−γ(n) = (2r −1)− (2r −2) = 1. It is not even known if

there are infinitely many r such that 2r−1 is square-free, and therefore it is not

known if there are infinitely many solutionsn of the above form to the equation

γ(n+1)−γ(n)= 1. However, computations revealed that there are 106 values

of the positive integer r < 200 having the property that both 2r−1−1 and 2r−1

are square-free; all these values are listed in Section 5. A similar type of “para-

metric solution” can be found when k = −1. In this case, if r > 1 is such that

both 2r−1+1 and 2r+1 are square-free, then takingn= 2r+1(2r−1+1), we have

n+1 = (2r +1)2, in which case γ(n+1)−γ(n) = (2r +1)−2(2r−1+1) = −1.

The list of those r < 200 such that both 2r−1+1 and 2r +1 are square-free is

also included in Section 5.
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We conjecture that for every fixed value of k ≠ ±1, the equation γ(n+1)−
γ(n) = k has only finitely many positive integer solutions n; the solutions

n < 109 of this equation, when 1 < |k| < 100, are given in Section 4. We also

conjecture that when k=±1, the equation γ(n+1)−γ(n)= k has only finitely

many positive integer solutions n, which are not of one of the forms specified

above.

In this note, we prove that our conjectures are implied by the ABC-conjec-

ture. In fact, assuming the ABC-conjecture, we prove a much stronger state-

ment which implies the above conjectures.

We first recall that the ABC-conjecture is the following statement.

The ABC-conjecture. For every ε > 0, there exists a constant K := K(ε)
such that whenever A, B, C are three coprime nonzero integers with A+B = C ,

then

max
{|A|,|B|,|C|}<Kγ(ABC)1+ε. (2.2)

We will choose to write the above inequality as

max
{|A|,|B|,|C|}�ε γ(ABC)1+ε. (2.3)

Theorem 2.1. (i) Let ε > 0 be given. Then the ABC-conjecture implies that

the inequality

∣∣γ(n+1)−γ(n)∣∣�ε n1/10−ε (2.4)

holds whenever |γ(n+1)−γ(n)|> 1. In particular, if k > 1 is any fixed positive

integer, then the equation |γ(n+1)−γ(n)| = k has only finitely positive integer

solutions n.

(ii) TheABC-conjecture implies that there are only finitely many positive solu-

tions n to the equation γ(n+1)−γ(n)= 1 such that n(n+1) is not square-free,

and such that n is not of the form n = 2r+1(2r−1−1) with some integer r > 1

such that both 2r−1−1 and 2r −1 are square-free.

(iii) The ABC-conjecture implies that there are only finitely many positive

solutions n to the equation γ(n+1)−γ(n)=−1 for which n is not of the form

n = 2r+1(2r−1+1) with some integer r > 1 such that both 2r−1+1 and 2r +1

are square-free.

Remark 2.2. The above result implies that the only cluster points of the

sequence {|γ(n+1)−γ(n)|}n≥1 are 1 and infinity, and that

liminf
n→∞
n∈�

log
∣∣γ(n+1)−γ(n)∣∣

logn
≥ 1

10
, (2.5)
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where � is the set of all positive integers n such that n(n+1) is not square-

free, and n is not of the form 2r+1(2r−1±1).

The following result is a more general version of Theorem 2.1.

Theorem 2.3. (i) Let ε > 0 be given. Then the ABC-conjecture implies that

the inequality

∣∣γ(m)−γ(n)∣∣�ε |m−n|1/15−ε (2.6)

holds for all coprime positive integers m and n.

(ii) Let ε > 0 be given and let j > 1 be a fixed integer. Then theABC-conjecture

implies that the inequality

∣∣γ(n+j)−γ(n)∣∣�j,ε n1/10−ε (2.7)

holds for all positive integers n coprime to j such that |γ(n+j)−γ(n)|> j.
(iii) Let j > 1 be a fixed integer. Then the ABC-conjecture implies that all but

finitely many solutions in positive integers n coprime to j of the inequality

∣∣γ(n+j)−γ(n)∣∣≤ j (2.8)

have the property that n(n+j) is square-free, unless j = j2
0 is a perfect square,

in which case all the other solutions of inequality (2.8) are of the form n =
2r (2r +2ηj0), for some η ∈ {±1} and some nonnegative integer r such that

both 2r +2ηj0 and 2r +ηj0 are square-free.

3. The proof of Theorem 2.1. We let ε > 0 be some small number. Now let

k be an odd integer and n a positive integer such that γ(n+1)−γ(n) = k.

Furthermore, let a and b be the two square-free integers given by a := γ(n+
1) and b := γ(n). Assume first that max{a,b} ≤ 2|k|. In this case, the ABC-

conjecture applied to the equation

(n+1)−n= 1 (3.1)

yields

n≤n+1�ε
(
γ(n)γ(n+1)

)1+ε�ε (ab)1+ε�ε
(
2|k|)2(1+ε)�ε |k|2(1+ε),

(3.2)

leading to

|k|�ε n1/2(1+ε) (3.3)
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which is an even better inequality than inequality (2.4). We note that when k
is fixed, then the fact that the equation γ(n+1)−γ(n) = k has only finitely

many positive integer solutions n satisfying max{a,b} ≤ 2|k| can be proved

unconditionally as follows. Let � be the set of all prime numbers p ≤ 2|k| and

let � be the set of all positive integers whose prime factors belong to �. In this

case, both n and n+1 belong to �, and therefore the pair (x,y) := (n+1,n)
is a solution of the equation x−y = 1, with x,y ∈ �, and it is known that

such a diophantine equation has only finitely many solutions (x,y) which are

effectively computable.

Thus, we may assume that max{a,b} > 2|k|. In this case, since a−b = k,

it follows that max{a,b}< 2min{a,b}. In particular, both inequalities a < 2b
and b < 2a hold. Further, let c := (n+1)/γ(n+1) and d := n/γ(n). We may

assume that max{c,d}> 1, for otherwise both n and n+1 are square-free, and

this implies that k= 1. We now have the system of equations

a−b = k, ca−db = 1. (3.4)

Applying the ABC-conjecture to the second equation of (3.4), we get

ca�ε γ(abcd)1+ε = (ab)1+ε�ε
(
2a2)1+ε�ε a2+2ε. (3.5)

Inequality (3.5) implies that

c�ε a1+2ε�ε (2b)1+2ε�ε b1+2ε. (3.6)

A similar argument shows that the inequality

d�ε
(
min{a,b})1+2ε

(3.7)

holds. We now multiply both sides of the first equation of (3.4) by c and sub-

tract the second equation of (3.4) to get

kc−1= db−cb = b(d−c). (3.8)

Note that d and c are coprimes and that at least one of them is larger than 1.

Hence, d−c ≠ 0. Thus, in view of (3.6) and (3.8),

|d−c|b = |kc−1| ≤ 2|k|c�ε |k|b1+2ε (3.9)

so that

|d−c|�ε |k|b2ε. (3.10)
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In particular, since b < 2a, it follows that

|d−c|� |k|(min{a,b})2ε. (3.11)

We now write d−c = e. Then, since b = a−k and d= c+e, we have

1= ca−db = ca−(c+e)(a−k)= ca−(ca+ea−kc−ke)= kc−ea+ke,
(3.12)

in which case

kc−ea= 1−ke. (3.13)

Assume first that 1−ke≠ 0. In this case, since γ(c)|a, we read from (3.13) that

γ(c) divides |1−ke|. In particular, it follows from (3.11) and (3.13) that

γ(c)≤ |1−ke| ≤ 2|k||e|�ε |k|2a2ε. (3.14)

Therefore,

1= ca−db = (d−e)(b+k)−db = (db−eb+kd−ek)−db =−eb+kd−ek,
(3.15)

and hence,

kd−eb = 1+ek. (3.16)

Assume now that 1+ek≠ 0. In this case, since γ(d)|b, we get that γ(d) divides

|1+ek| and therefore

γ(d)≤ |1+ek| ≤ 2|k||e|�ε |k|2a2ε. (3.17)

Applying the ABC-conjecture to the equation

d−c = e, (3.18)

we get, using (3.11), (3.14), and (3.17), that

max{d,c}�ε γ
(
dc|e|)1+ε�ε

(
γ(d)γ(c)|e|)1+ε

�ε
(|k|4a4ε|e|)1+ε�|k|4(1+ε)a5ε|e|1+ε,

(3.19)
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provided that ε < 1/4. On the one hand, inequality (3.19) combined with (3.11)

gives

max{d,c}�ε |k|4(1+ε)a5ε|e|1+ε�ε |k|5(1+ε)aε(5+2(1+ε))�ε |k|5(1+ε)a8ε,
(3.20)

provided that ε < 1/2, while on the other hand, returning to (3.8), it follows

from (3.19) and (3.11) that

b|e| = b|d−c| = |kc−1| ≤ 2|k|c�ε |k|5+4εa5ε|e|1+ε, (3.21)

and therefore

b�ε |k|5+4εa5ε|e|ε�ε |k|5(1+ε)a7ε. (3.22)

Since a≤ 2b, it follows from (3.22) that

b�ε |k|5(1+ε)/(1−7ε)�ε |k|5(1+10ε), (3.23)

provided that ε < 1/35. Substituting (3.23) into (3.20) and using again the fact

that a≤ 2b, we get

max{d,c}�ε |k|5((1+ε)+8ε(1+10ε))�ε |k|5(1+10ε), (3.24)

provided that ε < 1/80. From (3.23) and (3.24), we immediately get that

n= bd�ε |k|10(1+10ε), (3.25)

leading to

|k|�ε n1/10(1+10ε)�ε n1/10−ε, (3.26)

which is precisely inequality (2.4).

Our reasoning was based on the fact that we assumed, aside from the ABC-

conjecture, that 1−ke ≠ 0 and 1+ke ≠ 0. Hence, we now assume that (1−
ke)(1+ke) = 0. Note that this is possible only when |k| = 1, which, together

with the previous arguments, justifies Theorem 2.1(i). Now assume that 1−
ke = 0. In this case, ke = 1 and therefore 1+ke = 2. Equation (3.16) now tells

us that γ(d)|2 and therefore d = 2r for some integer r ≥ 0. Since ke = 1, we

either have k= e= 1 or k= e=−1. When k= e= 1, we have d−c = 1, in which

case c = d−1 = 2r −1 and a−b = 1. From (3.13), we also have c−ea = 0 so

that a= ea= c = 2r−1, and b = a−1= 2r−2= 2(2r−1−1). The condition that

a and b are positive and square-free forces r > 1 and both 2r −1 and 2r−1−1

to be square-free. Hence n+ 1 = ac = (2r − 1)2, while n = (2r − 1)2 − 1 =
2r+1(2r−1−1), which is exactly the parametric family mentioned in Section 2.

Now assume that k = e = −1. In this case, we have d−c = −1, which implies
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that c = d+ 1 = 2r + 1, and a−b = −1. From (3.13), we also have c = a so

that a = 2r + 1, and b = a+ 1 = 2r + 2 = 2(2r−1 + 1). The condition that a
and b are square-free forces r > 1 and 2r−1+1 and 2r +1 to be square-free.

Thus n+1= (2r +1)2 and n= (2r +1)2−1= 2r+1(2r−1+1). Now assume that

1+ke= 0, in which case (3.16) shows that kd= eb. Since ke=−1, we get that

k = −e ∈ {±1}, and therefore d = −b. This is impossible because both d and

b are positive. The proof of Theorem 2.1 is thus complete.

4. The proof of Theorem 2.3. The proof of this result can be achieved by

following the same procedure as in the proof of Theorem 2.1, and we will only

sketch it. Let ε > 0 be a very small number. Put j :=m−n, k := γ(m)−γ(n),
and K := max{j,|k|}. We may assume that j > |k|, for otherwise we already

have that |γ(m)−γ(n)| = |k| ≥ j = |m−n|, which implies inequality (2.6).

We write a := γ(m) and b := γ(n). If max{a,b} ≤ 2K, then the ABC-

conjecture applied to the equation m−n= j shows that

j�ε (abK)1+ε�ε K3(1+ε), (4.1)

which gives

K�ε j1/3(1+ε), (4.2)

which is a better inequality than the one asserted at (2.6). Thus, we may assume

that max{a,b}> 2K. As in the proof of Theorem 2.1, we set c :=m/γ(m) and

d :=n/γ(n) and we have the system of equations

a−b = k, ca−db = j. (4.3)

Applying the ABC-conjecture to the second equation of (4.3), we get

ca�ε
(
γ(abcd)j

)1+ε�ε K1+εa2+2ε, (4.4)

which, together with the fact that a≤ 2b, leads easily to the fact that

c�ε K1+ε(min{a,b})1+2ε. (4.5)

In the same way, one shows that

d�ε K1+ε(min{a,b})1+2ε. (4.6)

We now multiply both sides of the first equation of (4.3) by c and subtract the

second equation of (4.3) to get

kc−j = b(d−c). (4.7)

Note that d and c are coprimes, thus d−c = 0 only when d = c = 1. This, in

turn, is possible only when both m and n are square-free, therefore |k| = j,
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which is a contradiction. Hence, d−c ≠ 0. Thus, in view of (4.5) and of (4.7),

b|d−c| = |kc−j| ≤Kc�ε K2+εb1+2ε (4.8)

so that

|d−c|�ε K2+εb2ε, (4.9)

and since b ≤ 2a, we get that

|d−c|�ε K2+ε(min{a,b})2ε. (4.10)

As before, we let e = d−c and using the fact that b = a−k and d = c+e, we

rewrite the second equation of (4.3) as

kc−ea= j−ke. (4.11)

Assume that j−ke≠ 0. Since γ(c)|a, we then get from (4.11) and (4.10) that

γ(c)≤ |j−ke|�K|e|�ε K3+ε(min{a,b})2ε. (4.12)

An inequality similar to (4.12) holds with c replaced by d provided that j+ke≠
0, and now the ABC-conjecture applied to the equation d−c = e gives

max{c,d}�ε
(
γ(c)γ(d)|e|)1+ε�ε K(6+2ε)(1+ε)(min{a,b})4ε(1+ε)|e|1+ε

�ε K6(1+2ε)(min{a,b})5ε|e|1+ε,
(4.13)

provided that ε < 1/4. On the one hand, inequality (4.13), together with (4.10),

gives

max{c,d}�ε K6(1+2ε)+(2+ε)(1+ε)(min{a,b})5ε+2ε(1+ε)

�ε K8(1+2ε)(min{a,b})8ε,
(4.14)

provided that ε < 1/2, while, on the other hand, inequality (4.13) and (4.7) show

that

b|e| = |kc−j| ≤Kc�ε K7+12ε(min{a,b})5ε|e|1+ε (4.15)

and therefore

b�ε K7+12ε(min{a,b})5ε|e|ε

�ε K7+12ε+ε(2+ε)(min{a,b})5ε+2ε2 �ε K7+15ε(min{a,b})7ε.
(4.16)

Multiplying (4.14) and (4.16) and using the fact that a≤m, we get

m= bd�ε K15+31εm15ε, (4.17)
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leading to the conclusion that

K�ε m(1−15ε)/(15+31ε)�ε m1/15−2ε�ε j1/15−2ε, (4.18)

which implies inequality (2.6) in light of the fact that ε can be taken arbitrarily

small.

It remains to consider the degenerate cases in which j ± ke = 0. Assume

first that j−ke = 0. In this case, we have that k|j. Put j = kj0. Then e = j0.

Note that k and j0 have the same sign. Equation (4.11) then shows that kc =
ea = j0a. Write D := gcd(k,j0) > 0 and write k = Dk1, j0 = Dj1. Note that k1

and j1 have the same sign. We then get that c = j1ρ and a = k1ρ, and since

γ(c)|a and a is square-free, we get that j1|ρ, and therefore ρ = j1ρ1, which

implies that c = j2
1ρ1 and a = k1j1ρ1. The analogue of relation (3.16) is now

kd−eb = j+ek = 2j, which can be rewritten as kd−j0b = 2kj0. Simplifying

D, we get k1d−j1b = 2k1j0. Reducing this modulo k1, we get that k1 divides

j1b, and since k1 is coprime to j1, we get that k1 divides b. But k1 also divides

a, therefore k1 divides both m and n, which shows that k1 = ±1. Since j0

is a multiple of j1, we may reduce the above equation modulo j1 and read

that j1 divides k1d, which implies that j1 divides d. Since it also divides a, it

follows that j1 = ±1. Thus, we have showed that k = ηj0, j = j2
0 , a = c, and

d= b+2ηj0, where η∈ {±1}. The relation a−b = k gives a= b+ηj0, therefore

m= ac = (b+ηj0)2 andn= bd= b(b+2ηj0). It is clear thatm−n= j, and the

only restriction now is that both b and b+ηj0 = a are square-free, coprimes,

and that every prime number p dividing b+2ηj0 = c divides b. Every prime

dividing b+2ηj0 and b must divide 2j0, but if it divides j0, then it will divide

both b and a = b+ηj0, which is impossible. Therefore, the only possibility is

that either c = b+2ηj0 = 1 or j0 is odd, and that b+2ηj0 is a power of 2, say,

b+2ηj0 = 2r for some nonnegative integer r . This gives that b = 2r−2ηj0 and

that both 2r −2ηj0 and a= 2r −ηj0 are positive and square-free. At any rate,

note that in this case we have thatK = j2
0 , therefore |γ(m)−γ(n)| = |m−n|1/2,

which confirms inequality (2.6) in this case as well. The remaining case, that

is, the one for which k− ej = 0, also does not lead to any solution by sign

considerations.

The above arguments take care of part (i) of Theorem 2.3. Part (ii) can be

proved in an identical manner as Theorem 2.1 (simply treat the number j as a

constant); note that since |k| > j, the degenerate instances considered above

do not occur here. Finally, part (iii) of Theorem 2.3 follows from the above

discussion of the degenerate instances. Theorem 2.3 is therefore proved.

5. Computational results. There exist 106 integers r , 1 < r < 200, such

that 2r −1 and 2r−1−1 are both square-free. These are

2, 3, 4, 5, 8, 9, 10, 11, 14, 15, 16, 17, 23, 26, 27, 28, 29, 32, 33, 34,

35, 38, 39, 44, 45, 46, 47, 50, 51, 52, 53, 56, 57, 58, 59, 62, 65, 68,

69, 70, 71, 74, 75, 76, 77, 82, 83, 86, 87, 88, 89, 92, 93, 94, 95, 98,
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Table 5.1

k n< 109 such that γ(n+1)−γ(n)= k
3 4, 49

7 9, 12

11 20, 27, 288, 675, 71199

13 18, 152, 3024

15 16, 28

17 1681, 59535, 139239, 505925

19 98, 135, 11375

21 25, 2299, 18490

23 75, 1215, 1647, 2624

27 52, 39325

29 171, 847, 1616, 4374

31 32, 36, 40, 45, 60, 1375

39 76, 775

41 50, 63000

43 56, 84

45 22747, 182182

47 92, 1444, 250624

49 54, 584, 21375, 23762, 71874, 177182720

53 147, 315, 9152, 52479

55 512, 9408, 12167, 129311

59 324, 4239

67 72, 88, 132, 5576255

69 82075, 656914

71 140, 3509, 114375

73 872, 1274, 3249

75 148, 105412, 843637

79 81, 104, 117, 156, 343, 375, 7100, 47375, 76895

83 164, 275, 5967, 33124, 89375, 7870625, 38850559

85 126, 1016, 16128, 471968, 10028976

89 531, 11736

91 96, 100, 1050624

93 832, 201019, 1608574

97 3807, 4067, 12716, 73304

99 112, 1975, 8575
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Table 5.2

k n< 109 such that γ(n+1)−γ(n)=−k
5 7, 11

7 44, 80

9 19

11 17, 360, 31212

13 15, 175, 944, 69375

17 23, 351, 1183, 5750, 240064

19 63, 116, 120, 242, 29645

21 43, 424

23 26, 99, 279, 2400, 110079

25 51, 1808, 2808

27 1519

29 31, 35, 39, 59, 168, 2375, 6655, 167112000

31 350

33 67

35 423, 1376

37 9800

41 47, 55, 62, 83, 296, 824, 3699, 3968, 100499

43 207, 260, 528, 5687

45 91

47 53, 539

49 1475, 3536, 317600, 834272

51 9250

55 332

57 115, 124

59 74, 89, 711, 735

61 123, 62000, 945624

65 71, 87, 131

67 1224, 11583, 362556

69 79, 139, 18784

71 855, 2988

73 188, 549, 624, 783, 975, 2645, 28593

77 103, 155, 1368, 129032

79 476, 725, 2600, 2783

81 163, 10624

83 97, 4655, 26568, 334719

85 6128

87 244

89 95, 119, 440, 58080, 1292400

91 548, 1025, 2208, 50255

93 187

95 1143

97 111, 6992, 44375, 68607
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99, 104, 107, 112, 113, 116, 117, 118, 119, 122, 123, 124, 125, 128,

129, 130, 131, 134, 135, 142, 143, 146, 149, 152, 153, 154, 158, 159,

164, 165, 166, 167, 170, 171, 172, 173, 176, 177, 178, 179, 182, 183,

184, 185, 188, 191, 194, 195, 196, 197.

There exist 113 integers r , 1 < r < 200, such that 2r +1 and 2r−1+1 are

both square-free. These are

5, 6, 7, 8, 12, 13, 14, 17, 18, 19, 20, 23, 24, 25, 26, 29, 32, 35, 36, 37,

38, 41, 42, 43, 44, 47, 48, 49, 53, 54, 59, 60, 61, 62, 65, 66, 67, 72,

73, 74, 77, 80, 83, 84, 85, 86, 89, 92, 95, 96, 97, 98, 101, 102, 103,

104, 107, 108, 109, 113, 114, 115, 116, 119, 120, 121, 122, 125, 126,

127, 128, 132, 133, 134, 137, 138, 139, 140, 143, 144, 145, 146, 149,

152, 155, 156, 157, 158, 161, 162, 163, 164, 167, 168, 169, 173, 174,

175, 176, 179, 180, 181, 185, 186, 187, 188, 192, 193, 194, 197, 198,

199, 200.

Moreover, here Table 5.1 presents all the solutions n< 109 to the equation

γ(n+1)−γ(n) = k, for 1 < k < 100 (note that this equation has no solution

n< 109 for k= 5,9,25,33,35,37,51,57,61,63,65,77,81,87, and 95.)

Finally, Table 5.2 presents all the solutions n < 109 to the equation γ(n+
1)−γ(n)=−k, for 1< k< 100 (note that this equation has no solutionn< 109

for k= 3,15,39,53,63,75, and 99).
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