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HILBERT SERIES AND APPLICATIONS TO GRADED RINGS
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This paper contains a number of practical remarks on Hilbert series that we ex-
pect to be useful in various contexts. We use the fractional Riemann-Roch formula
of Fletcher and Reid to write out explicit formulas for the Hilbert series P(t) in a
number of cases of interest for singular surfaces (see Lemma 2.1) and 3-folds. If
X is a Q-Fano 3-fold and S ∈ |−KX | a K3 surface in its anticanonical system (or
the general elephant of X), polarised with D = �S(−KX), we determine the rela-
tion between PX(t) and PS,D(t). We discuss the denominator

∏
(1− tai ) of P(t)

and, in particular, the question of how to choose a reasonably small denominator.
This idea has applications to finding K3 surfaces and Fano 3-folds whose corre-
sponding graded rings have small codimension. Most of the information about
the anticanonical ring of a Fano 3-fold or K3 surface is contained in its Hilbert
series. We believe that, by using information on Hilbert series, the classification of
Q-Fano 3-folds is too close. Finding K3 surfaces are important because they occur
as the general elephant of a Q-Fano 3-fold.

2000 Mathematics Subject Classification: 14Q10, 14Q15, 32S25, 13A02.

1. Introduction. We work with graded rings R =⊕n≥0Rn that are finitely

generated over an algebraically closed field k of characteristic 0 and satisfy

R0 = k. The Hilbert function of R is the numerical function Pn = dimRn for

n ≥ 0; the Hilbert series P(t) or PR(t) of R is the formal power series defined

by P(t)=∑Pntn. It is elementary and well known that P(t) is a rational func-

tion of t. In fact, if x1, . . . ,xd are homogeneous elements of weight wtxi = ai
generating R (or more generally, generating a subring over which R is finite),

then
∏
(1−tai)P(t)=Q(t) is a polynomial.

2. Fractional Riemann-Roch formula

2.1. Surfaces with Du Val singularities. We use the definitions and notation

of Reid [9] for singularities. If S is a projective surface with Du Val singularities

and D a Weil divisor on S, then some multiple rD is Cartier, and there is a

formula [9, Theorem 9.1]

χ
(
S,�S(D)

)= χ(�S)+ 1
2

(
D2−DKS

)+∑
P
cP (D), (2.1)

where cP(D) ∈ Q is a fractional contribution due to the singularity of S and
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�S(D) at P . Here, DKS ∈ Z is the intersection number with the canonical class,

and D2 ∈Q the self-intersection of the Q-Cartier divisor D. Moreover, cP(D)
can be written as a sum

cP(D)=−
∑

(r ,a)∈�

a(r −a)
2r

(2.2)

over a basket � = {(r ,a)} with 0 < a < r and each a is coprime to r . Here,

the basket appears simply as a list of combinatorial data for computing the

right-hand side of (2.2); Reid [9, Section 9] interprets (2.1) and (2.2) as the

singularity of S, and �S(D) at P has the same effect on χ(S,�S(D)) as a basket

� of virtual cyclic quotient singularities of type (1/r)(1,−1), at which �S(D)
is locally isomorphic to the eigensheaf of εa (see [9, Chapter III] for definition).

It follows from this interpretation and the proof of [9, Theorem 9.1] that for

n∈ Z,

cP(nD)=−
∑

(r ,a)∈�

na(r −na)
2r

, (2.3)

where, for each (r ,a) ∈ �, the bar stands for the smallest positive residue

modulo r .

Lemma 2.1. Let S be a surface with Du Val singularities andD a Weil divisor.

We assume that Hi(S,�S(nD)) = 0 for all i > 0 and for all n ≥ 1. Then, the

graded ring R(S,D)=⊕n≥0H0(S,�S(nD)) has Hilbert series

PS(t)= 1+(χ−1)t
1−t + t+t2

2(1−t)3D
2− t

2(1−t)2DKS

−
∑

(r ,a)∈�

∑r−1
n=1an(r −an)tn

2r
(
1−tr ) .

(2.4)

Here, χ = χ(�S).
Proof. The first three terms of (2.4) expand out as

1+χt+χt2+··· ,
(
t+22t2+32t3+···)D2

2
,

−
(
t+2t2+3t2+···)DKS

2
,

(2.5)

respectively, corresponding to the sum overnD of first three terms of (2.1). For

each element of the basket, the denominator 1−tr has the effect of repeating

the contribution −na(r −na)/2r from (2.3) periodically over the intervals

[0,r ],[r ,2r], . . . (zero at the endpoints), giving the last term of (2.1).

2.2. 3-folds with canonical singularities. Let X be a projective 3-fold with

canonical singularities and A a Weil divisor. To use the formulas of [9, Section

10], assume that, at every singular point P ∈ X, we have �X(A) � �X(lKX) for
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some l (possibly depending on P ). Then, [9, Theorem 10.2] states that

χ(X,A)= χ(�X)+ 1
6
A3− 1

4
A2KX+ 1

12
A
(
K2
X+c2

)+∑cQ(A), (2.6)

where cQ(A) is a sum
∑

� c(r ,a,l) taken over a basket � = {(r ,a,l)}, with a
and l coprime to r , and the contributions are

c(r ,a,l)=−r
2−1
12r

l+
l−1∑
i=1

ai
(
r −ai)
2r

(2.7)

= r
2−1
12r

(r −l)−
r−1∑
i=l

ai
(
r −ai)
2r

. (2.8)

The interpretation here is that c(r ,a,l) is the contribution from a singularity

of type (1/r)(a,1,−1) at which A is locally the εal eigensheaf.

We can write out the other terms in the Hilbert series by analogy with

Lemma 2.1 (see the following section). The contribution made by each element

(r ,a,l)∈� to the Hilbert series is thus

∞∑
n=1

c(r ,a,nl)tn = 1
1−tr

r−1∑
n=1

c(r ,a,nl)tn. (2.9)

Remark 2.2. The two formulas (2.7) and (2.8) are equal because

r−1∑
i=1

ai
(
r −ai)=

r−1∑
i=1

i(r −i)= 1
6
r
(
r 2−1

)
; (2.10)

moreover, they also hold for l not in [0,r ] (the expression only depends on l
modulo r ).

In dealing with a single divisor A, we may assume that l is coprime to r ; but

the proof of [9, Section 10] is valid for any l. Thus, we can use formulas (2.7)

and (2.8) for the contribution c(r ,a,nl) for any n in calculating χ(nA).

3. Fano 3-folds and K3 surfaces

3.1. Fano 3-folds. Let X be a Fano 3-fold, that is, a 3-fold with canonical

singularities and ample anticanonical classA=−KX . Standard use of vanishing

gives

Pn = h0(X,nA)= χ(�(nA)), for n≥ 0. (3.1)

Now, χ(�X) = 1 and the basket of X is � = {(r ,a,−1)}, and by [9, Corollary

10.3], we have

1
12
Ac2 =− 1

12
KXc2 = 2−

∑
�

r 2−1
12r

. (3.2)
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Using all this, formulas (2.6) and (2.7) specialise to give

Pn = 2n+1+ 1
12
n(n+1)(2n+1)A3+

∑
�

(
− r

2−1
12r

n+c(r ,a,−n)
)
. (3.3)

Now, consider Pn−Pn−1. To handle the second term, we use

n(n+1)(2n+1)−(n−1)(n)(2n−1)= 6n2. (3.4)

By (2.8), the bracketed expression inside the sum over � equals

−
r−1∑
i=−n

ai
(
r −ai)
2r

, (3.5)

and the difference from n to n−1 is just one term of the sum. We obtain

Pn−Pn−1 = 2+ 1
2
n2A3−

∑
(r ,a,−1)∈�

an(r −an)
2r

. (3.6)

Since Pn−Pn−1 is the coefficient of tn in (1−t)PX(t), arguing as in Lemma 2.1

gives the following result.

Corollary 3.1. The Hilbert series of a Fano 3-fold X is

PX(t)= 1+t
(1−t)2 +

t(1+t)
2(1−t)4A

3−
∑

(r ,a,−1)∈�

∑r−1
n=1an(r −an)tn
2r(1−t)(1−tr ) . (3.7)

3.2. K3 surfaces. For a K3 surface S with Du Val singularities and a Weil

divisor D, Lemma 2.1 specialises to give the Hilbert series of Pn = h0(S,nD)
in the form

PS(t)= 1+t
1−t +

t(1+t)
2(1−t)3D

2−
∑

(r ,a)∈�

∑r−1
n=1an(r −an)tn

2r
(
1−tr ) . (3.8)

Corollary 3.2. If X is a Fano 3-fold polarised by A=−KX and S ∈ |−KX|
a K3 surface polarised by D =A|S , then

PS(t)= (1−t)PX(t). (3.9)

This result follows, of course, from the restriction exact sequence

0 �→ �X
(
(n−1)A

)
�→ �X(nA) �→ �S(nD) �→ 0. (3.10)

The point, however, is that the corollary gives a formula for the Hilbert series

PX(t) of the Fano 3-fold in terms of simpler data for a K3 surface. This formula

is valid even if there is no K3 surface S ∈ |−KX|, for example, if P1(X)= 0 so

that |−KX| =∅. Compare Corti, Pukhlikov, and Reid [5, Remark 7.2.3].
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4. Applications. In [2], we studied polarised K3 surfaces S in terms of their

graded rings R(S,D). We also studied Fano 3-folds X in a similar way. The first

step in our strategy consisted of finding suitable weights a0, a1, and a2 so that

(
1−ta0

)(
1−ta1

)(
1−ta2

)
P(t) (4.1)

is a polynomial with positive coefficients and a0, a1, and a2 are “fairly small.”

This is a combinatorial analogue of finding a polynomial subring k[x0,x1,x2]⊂
R(S,D) over which R(S,D) is a finite-free module of “fairly small rank.” If

�= {(r ,a)} is the basket of S, then each (1−tr ) appears in the denominator

so that a first necessary condition for this is that each r divides some ai.
We have the obvious bound

∑
n ≤ 19 for the number and types of Du Val

singularities An, Dn, and En on a K3 surface S. This implies the bound
∑
(r −

1) ≤ 19 for the basket � = {(r ,a)} on a K3 surface (see [6, Theorem III.9.20]

and [7, Theorem II.8.21]). For a Fano 3-fold X, a similar bound on the basket

{(r ,a,−1)} is provided by an argument of Kawamata [8] who first proves that

Ac2 > 0; then (3.2) implies

∑(
r − 1

r

)
< 24. (4.2)

Thus, there are only finitely many possibilities for the basket �. An easy cal-

culation shows that in either case, at most, 5 distinct values of r occur.

In [2], we develop a procedure based on these ideas to find all possible Hilbert

series for K3 surfaces and Fano 3-folds with graded ring of given codimension.

We give explicit lists [1] of codimension 3 and 4 cases (comparable to the lists

of hypersurfaces and codimension 2 in Fletcher [7]) and, in most cases, settle

the question of the existence of the varieties.

The numerical data of a K3 surface S withD is P1 = h1(S,D), where 0≤ P1 ≤
3+codimS and the basket � = {(r ,a)}. We can rewrite D2 from the formula

of P1 in terms of P1 and the basket �,

D2 = 2
(
P1−2

)+∑ a(r −a)
r

. (4.3)

We produced the lists of codimension 3 and 4 [1] by searching all possible K3

surfaces of given numerical data. We give an example below to show how this

search is carried out. More details of applications are given in the Singapore

paper [3].

Example 4.1. A typical example is

D2 =−2+ 1
2
+ 1

2
+ 3

4
+ 4

5
. (4.4)

That is, the numerical data are the basket � = {(2,1),(2,1),(4,1),(5,1)} and

P1 = 1 (see formula (4.3)). This is #39 in the codimension 3 list [1]. Since P1 = 1,
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there is a generator of degree 1, say x. From formula (3.8),

PS(t)= 1+t
1−t +

t(1+t)
2(1−t)3

11
20
−2× t

2·2(1−t2
)

− 3t+4t2+3t3

2·4(1−t4
) − 4t+6t2+6t3+4t4

2·5(1−t5
) .

(4.5)

To kill its denominators, we must have at least two more generators, say t1 and

v , whose degrees are divisible by 4 and 5, respectively. Therefore, the smallest

choice of (a1,a2,a3) is (1,4,5). After simplifying, we obtain

(1−t)(1−t4)(1−t5)PS(t)= t10+t8+t7+2t6+t5+2t4+t3+t2+1. (4.6)

This looks like the Hilbert series of an Artinian ring with further generators y ,

z, t2 of degrees 2, 3, 4 so that the possible candidates S is in the weighted pro-

jective space P(1,2,3,4,4,5) (see [2, 6, 7] for definition). To find the structure

of its resolution, multiply (3.6) again by (1−t2)(1−t3)(1−t4),

(1−t)(1−t2)(1−t3)(1−t4)2(
1−t5)PS(t)

= 1−t6−t7−2t8−t9+t10+2t11+t12+t13−t19.
(4.7)

From here, we read off the shape of the resolution ofR(S,D) overA= k[x,y,z,
t1, t2,v], namely,

0 �→A(−19) Pt
�������������������������������������������������→A(−13)⊕A(−12)⊕A(−11)⊕A(−11)⊕A(−10)

M
�����������������������������������������→A(−9)⊕A(−8)⊕A(−8)⊕A(−7)⊕A(−6) P

�����������������������������→A �→ R �→ 0,
(4.8)

where P is a 5× 1 vector and M is a 5× 5 skew-symmetric matrix. In other

words, we expect 5 relations in degrees 6, 7, 8, 8, and 9, and 5 syzygies in

degrees 10, 11, 11, 12, and 13. Note that n = 1+2+3+4+4+5 corresponds

to the canonical class of P(1,2,3,4,4,5) and hence the canonical divisor KS of

S is �(19−n), which is trivial. The shape of the polynomial, together with the

Buchsbaum-Eisenbud theorem on Gorenstein rings in codimension 3 (see [4]),

gives us the equations of the relations as the Paffian of a 5×5 skew-symmetric

matrix M with degrees




0 2 2 3 4

2 0 3 4 5

2 3 0 4 5

3 4 4 0 6

4 5 5 6 0



. (4.9)
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