
IJMMS 2003:70, 4421–4434
PII. S0161171203205378

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON THE RESOLVENT OF AN IDEAL
AND SOME APPLICATIONS

DRISS BOUZIANE and ABDELILAH KANDRI RODY

Received 5 May 2002

We give an algorithm to compute a resolvent of an algebraic variety without com-
puting its irreducible components; we decompose the radical of an ideal into prime
ideals and we test the primality of a regular ideal.
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1. Introduction. A fundamental construction in algebraic geometry is the

decomposition of a variety into irreducible components; this is connected from

commutative algebra viewpoint with the primary decomposition of ideals. The

purpose of this paper is to study the structure of an affine variety V defined by

a zero-set of a finite set of the polynomial ring K[x1, . . . ,xn]. We characterize

the associated irreducible varieties of V by a resolvent.

The concept of resolvent was introduced by Ritt [14] in his work on differ-

ential algebra. He showed that generic zeros of a prime differential ideal are

birationally equivalent to general zeros of one differential polynomial.

Based on Ritt-Wu’s algorithm to decompose a variety into irreducible vari-

eties, Gao and Chou [8] extended Ritt’s concept of resolvent to an ideal, not

necessarily prime, with respect to a parametric set. They use a factorization

over a tower of algebraic extensions of the field of coefficients. In the ordinary

differential case, Cluzeau and Hubert [6] extended also Ritt’s concept of resol-

vent to regular differential ideals. We exploit the interplay between both results

to compute a resolvent of an ideal � with respect to a parametric set. We use a

decomposition of
√

� as an intersection of regular ideals, we compute a basis

of
√

�, and then we deduce the resolvent of the ideal
√

�. The approach taken

in this paper is interesting. Avoiding factorization, we compute irreducible va-

rieties associated to a given affine variety and we check whether a regular ideal

is prime.

We begin the paper with some basic definitions and properties on irre-

ducible, regular, and characterizable ideals and we recall the link between

Gröbner bases and characteristic sets. In Section 4, we prove the Ritt’s theorem

and some related properties of the resolvent. Section 5 describes an algorithm

which computes a resolvent of an ideal. In Section 6, we illustrate some appli-

cations of resolvents.
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2. Preliminaries and notation

2.1. Definitions and notation. Let K[x]= K[x1, . . . ,xn] be the ring of alge-

braic polynomials in n indeterminates with coefficients in a field K of charac-

teristic zero. We fix an order on the indeterminates such that x1 ≺ ··· ≺ xn.

Let f be a polynomial not in K. The leading variable of f is the highest inde-

terminate xi appearing in f ; it is denoted by lv(f ). The initial of f , init(f ), is

the coefficient of the highest power of lv(f ) in f . The rank of f , rank(f ), is

the monomial lv(f )d, where d is the degree of f in ld(f ). The tail of f , tail(f ),
is the polynomial f − init(f ) · lv(f )d. The separant of f , sep(f ), is equal to

∂f/∂v with v = lv(f ). We also define hf to be the product of the initial and

the separant of f .

Let Σ be a subset of K[x]. We denote, respectively, by (Σ) and
√
(Σ) the ideal

and the radical ideal generated by Σ. An ideal � is said to be radical if
√

�= �.

A polynomial g is said to be reduced with respect to f if the degree of g in

lv(f ) is strictly less than the degree of f in lv(f ).
Let f and g be two elements of K[x]. With a finite number of pseudodivi-

sions, we can compute a polynomial rem(g;f) reduced with respect to f such

that there exists α∈N satisfying

init(f )α ·g ≡ rem(g;f)mod(f ). (2.1)

Any order ≺ on x can be extended to a partial order on K[x] as follows: for f
and g in K[x], we say that f is less than g, and we write f ≺ g if either

(i) f ∈K and g ∉K;

(ii) lv(f )≺ lv(g); or

(iii) lv(f )= lv(g)= v and degree(f ,v) < degree(g,v).
If neither f ≺ g nor g ≺ f , we say that f and g are equivalent, we write f ≡ g.

2.2. Autoreduced sets. A subset � of K[x] is called an autoreduced set if

every element of � is reduced with respect to the others. An autoreduced set

is finite (see [13, page 77]). An autoreduced set � = {A1, . . . ,Ap} is denoted

by A1, . . . ,Ap if A1 ≺ ··· ≺ Ap . If � = A1, . . . ,Ap and � = B1, . . . ,Bq are two

autoreduced sets, we say that � is less than � and we write �≺� if either

(i) there exists k≤min(p,q) such that Ai ≡ Bi for i < k and Ak ≺ Bk; or

(ii) p > q and Ai ≡ Bi for 1≤ i≤ q.

If neither � ≺ � nor � ≺ �, we say that � and � are equivalent, we write

�≡�.

Remark 2.1. The order on the set of autoreduced sets is Artinian (well

ordering) (see [14, page 4] and [13, page 81]).

Let F be a nonempty subset of K[x], then the set of all autoreduced sets of F
has a minimal element; it is called a characteristic set of F . There is no nonzero

element of F reduced with respect to its characteristic set. Two characteristic

sets of F are equivalent.
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Proposition 2.2. Let � = A1, . . . ,Ap be an autoreduced set. Then for any

polynomial f , there exist nonnegative integer α and a polynomial g reduced

with respect to � such that Iα� ·f ≡ gmod(�), where I� is the product of the

initials of elements in �.

Let S be a nonempty subset of K[x] and let � be an ideal of K[x]. We define

the saturation of � by S as � : S∞ = {f ∈K[x] : h · f ∈ � for h a product of

elements of S}. It is also an ideal of K[x]. When S is finite, � : S∞ is in fact

equal to {f ∈ K[x] | ∃α ∈ N, sα · f ∈ �} that is usually denoted by � : s∞,

where s is the product of elements of S.

Proposition 2.3. Let Σ be a nonempty subset of K[x]. Let f1, . . . ,fr ∈K[x]
and let S be a finite subset of K[x]. Then the following properties hold true:

(i)
√
(Σ,

∏r
i=1fi)=

⋂r
i=1

√
(Σ,fi);

(ii)
√
(Σ) : S∞ = √(Σ) : s, where s is the product of elements of S.

Proof. See [1, 9].

2.3. Regular and characterizable ideal. Let � be an autoreduced set with

respect to some given order on x. Let H� = I�S�, where I� and S� are, respec-

tively, the product of initials and the product of separants of elements in �.

The autoreduced set � is said to be consistent if 1 ∉ (�) :H∞
� .

Definition 2.4. Let � be an ideal of K[x].
(i) The ideal � is said to be a regular ideal with respect to some order ≺

on the variables x if it is of the form (�) :H∞
� , where � is an autoreduced set

with respect to the same order ≺.

(ii) The ideal � is said to be a characterizable ideal with respect to some

order ≺ on x if there is an autoreduced set � with respect to the same order

≺ such that � is a characteristic set of � and �= (�) :H∞
� . In this case we say

that � is a characteristic set.

Remark 2.5. (1) Every characterizable ideal is regular. The converse is false

(see [10, Example 2.5]).

(2) Every prime ideal is characterizable for any order on the variables. But a

characterizable ideal is not necessarily prime.

(3) There exists some ideal that is characterizable with respect to some order

on x but not with respect to another order (see [10, Example 3.6]).

(4) There is an algorithm to decompose a radical of an ideal as intersection

of characterizable ideals (see [5, 10]).

(5) There is an algorithm to decompose a radical of an ideal as intersection

of regular ideals (see [3]).

In the following theorem we recall some properties of a regular ideal.

Theorem 2.6 (Lazard’s lemma). Let � be an autoreduced set of K[x]. Then

(�) : H∞
� is a radical ideal. Furthermore, the characteristic set of a minimal

prime component of (�) :H∞
� has the same set of leaders as �.
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Proof. See [4, 10].

The following theorem gives a necessary and sufficient condition for a reg-

ular ideal to be characterizable.

Theorem 2.7. Let � = A1, . . . ,Ap be an autoreduced set of K[x]. The au-

toreduced set � is a characteristic set if and only if

(i) init(Ai) is not a zero divisor modulo (�i−1) : I∞�i−1
;

(ii) sep(Ai) is not a zero divisor modulo (�i) : I∞�i ,
where �i =A1, . . . ,Ai.

Proof. See [1, 5].

2.4. Irreducible autoreduced set. Let �=A1, . . . ,Ap be an autoreduced set

of K[x] and y = y1, . . . ,yp are the leading variables of elements in �, and let

u=u1, . . . ,uq be the other indeterminates that are present in the elements of

�. The autoreduced set � becomes an autoreduced set in the ring K[u,y].

Definition 2.8. An autoreduced set � is said to be irreducible if either

(i) p = 1 and A1 is irreducible in K(u)[y1]; or

(ii) A1, . . . ,Ap−1 is irreducible and Ap is irreducible as a polynomial in yp
with coefficients considered in the quotient field of K(u)[y1, . . . ,yp−1]/
�p−1, where �p−1 = (�p−1) :H∞

�p−1
and �p−1 =A1, . . . ,Ap−1.

Proposition 2.9. Let � = A1, . . . ,Ap be an autoreduced set in K[x] such

that A1 is irreducible in K(u)[y1] and for all i = 2, . . . ,p, Ai has degree one in

its leading variable. Then � is an irreducible autoreduced set.

Proposition 2.10. An irreducible autoreduced set � is a characteristic set

of a prime ideal. This ideal is exactly the regular one associated to �, that is,

(�) :H∞
� .

2.5. The link between Gröbner basis and characteristic set. In this section,

we recall an interesting result cited in [11, 12], which says that we can extract

a characteristic set from a lexicographical Gröbner basis.

Lemma 2.11. Let � be an autoreduced set in K[x] and let � be an ideal

containing �. Then � is a characteristic set of � if and only if for all nonzero

polynomial f in �, f is not reduced with respect to �.

Proof. See [14, page 5].

Let �= B1 ≺ ··· ≺ Br be the reduced Gröbner basis (see [2] for more details

about this notion) of � an ideal in K[x] with respect to the lexicographical

term order such that x1 ≺ ··· ≺ xn.

Let C1 = B1, C2 = rem(Bi1 ;C1) with Bi1 the first polynomial that contains a

new variable not appearing in B1.

Let C2 = rem(Bi2 ;C1,C2) with Bi2 the first polynomial that contains a new

variable not appearing in Bi1 .
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We continue this finite processes; we obtain a family of polynomials � =
C1, . . . ,Cs which is an autoreduced set with respect to the order x1 ≺ ··· ≺ xn.

Proposition 2.12. With the same notation as above, � is a characteristic

set of � with respect to the order x1 ≺ ··· ≺ xn and is called the extracted

characteristic set from �.

Proof. Let f ∈ � and f ≠ 0; by Lemma 2.11 it is sufficient to show that f is

not reduced with respect to �. Since � is a Gröbner basis of �, then there is Bi in

� such that the leading lexicographical monomial of Bi divides some monomial

in f . So there exists Cj in � such that deg(f , lv(Cj))≥ deg(Cj, lv(Cj)). Hence,

f is not reduced with respect to �.

In what follows, autoreduced sets are supposed to be consistent.

3. Resolvent of an ideal. Gao and Chou have introduced in [8] the notion

of resolvent for an arbitrary ideal with respect to a parametric set as a gener-

alization of the one introduced by Ritt for a prime ideal; they have given an

algorithm to compute a resolvent using the decomposition of a radical ideal

into prime ideals. In this section, we recall some definitions and properties

about this notion. Then we give an algorithm to compute a resolvent of an

ideal � using a decomposition of
√

� into regular ideals without using factor-

ization over a tower of algebraic extensions.

Definition 3.1. Let � be an ideal ofK[x]. A subsetu=u1, . . . ,uq of {x1, . . . ,
xn} is said to be a parametric set of � if K[u]∩� = (0) and for every y ∈
{x1, . . . ,xn}\{u1, . . . ,uq}, K[u,y]∩�≠ (0).

The set of nonleading variables of elements in an autoreduced set � is called

the parametric set of �.

Remark 3.2. Let � be an irreducible autoreduced set with the parametric

set u. Then u is a parametric set of the prime ideal (�) :H∞
� .

Lemma 3.3. Let � be a prime ideal with a parametric set u and let f ∉ �.

Then (�,f )∩K[u]≠ (0).
Proof. See [14].

Lemma 3.4. Let � be an autoreduced set in K[x] with u the parametric set

of �. Then u is a parametric set of (�) :H∞
� .

Proof. By Lazard’s lemma, each minimal prime component of (�) : H∞
�

has u as a parametric set. Then (�) : H∞
� is a decomposition of prime ideals

such that each one has u as a parametric set. So u is a parametric set of

(�) :H∞
� .

Lemma 3.5. Let � be an ideal of K[x] = K[u,y] having u = u1, . . . ,uq as a

parametric set with y = x \u = y1, . . . ,yp . Let �′ be the ideal obtained from �
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by replacing each yi by a new variable zi. Consider � the ideal generated by �

and �′ in K[u,y,z]. Then � has u as a parametric set.

Proof. Let h ∈ �∩K[u], since h is independent of y and z, then if we

replace zi’s by the yi’s, we obtain that h is in �, hence �∩K[u] = (0). Since

�⊆ �, then for all i= 1, . . . ,p, we have �∩K[u,yi]≠ (0) and �∩K[u,zi]≠ (0).

In the following theorem proved in [7] for a prime ideal, we extend the same

result for an arbitrary ideal.

Theorem 3.6 (Ritt’s theorem). Let � be an ideal of K[u,y] with u=u1, . . . ,
uq as a parametric set. Then there exist G ∈K[u]\{0} and integers M1, . . . ,Mp

such that two distinct zeros of � with the u taking the same values for which G
does not vanish give different values for Q=M1y1+···+Mpyp .

Proof. Let �= (�,�′) be the ideal defined in Lemma 3.5.

(a) Let
√

�= �1∩···∩�t be the decomposition of
√

� into prime ideals.

(A) If, for some j ∈ {1, . . . , t}, u is not a parametric set of �j , then there

is hj(u)∈ �j∩K[u] and hj ≠ 0.

(B) If, for some j, the ideal (y1−z1, . . . ,yp−zp) ⊆ �j and u is a para-

metric set of �j , then we put h′j = 1.

(C) If, for some j, the ideal (y1−z1, . . . ,yp −zp) is not a subset of �j
and u is a parametric set of �j . Then there exists k∈ {1, . . . ,p} such

that yk−zk ∉ �j . Since �j is a prime ideal and u is a parametric

set of �j , then by Lemma 3.3, (�j,yk−zk)∩K[u]≠ (0), hence there

exists h′j(u)∈ (�j,yk−zk)∩K[u], h′j(u)≠ 0.

The cases (A), (B), and (C) exhaust all possibilities.

(b) Let j1, . . . ,js be such thatu is a parametric set of �j and (y1−z1, . . . ,yp−
zp) is not a subset of �j for all j ∈ {j1, . . . ,js}. Then there exist integers

M1, . . . ,Mp such that c̄ = M1(y1 − z1)+ ··· +Mp(yp − zp) ∉ �j for all

j ∈ {j1, . . . ,js}. Consequently, by Lemma 3.3, (�j, c̄)∩K[u] ≠ (0). We

put h′′ = h′′1 ···h′′s with h′′j ∈ (�j, c̄)∩K[u], h′′j ≠ 0.

(c) Let G be the product of hj (case (A)), of h′j (cases (B) and (C)), and of h′′.
Let (ū,y ′) and (ū,y ′′) be two distinct zeros of �, then (ū,y ′,y ′′) is a zero of

�.

We assume that
∑p
i=1Mi(y ′i −y ′′i ) = 0; there are three cases to be distin-

guished:

(i) (ū,y ′,y ′′) is a zero of some �j satisfying case (A), then hj(ū)= 0, and

hence G(ū)= 0;

(ii) (ū,y ′,y ′′) is a zero of some �j satisfying case (B), then y ′ = y ′′ and

hence (ū,y ′)= (ū,y ′′). This case is impossible;

(iii) (ū,y ′,y ′′) is a zero of some �j satisfying case (C).

If there exists k∈ {1, . . . ,p} such thaty ′k =y ′′k , then (ū,y ′,y ′′)will be a zero of

(�j,yk−zk), and we will have h′j(ū)= 0; this implies that G(ū)= 0. If y ′k ≠y
′′
k
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for all k∈ {1, . . . ,p}, then (ū,y ′,y ′′) will be a zero of (�j, c̄), hence h′′(ū)= 0,

and then G(ū)= 0.

Lemma 3.7. Let �1 and �2 be two ideals in K[x], ω a new variable, and

Q = ∑p
i=1Miyi, where the Mi’s are integers. Then (�1∩�2,ω−Q) = (�1,ω−

Q)∩(�2,ω−Q).

Proof. It is sufficient to prove the indirect inclusion.

Let f be in (�1,ω−Q)∩ (�2,ω−Q), then f = ∑s
i=1λifi + h1(ω−Q) =∑t

j=1µjgj +h2(ω−Q), where h1, h2, λi, µj are in K[x,ω] and fi ∈ �1 and

gj ∈ �2 for i= 1, . . . ,s and j = 1, . . . , t.
We can consider the λi’s and the µj ’s as free from ω because otherwise we

reduce these polynomials with respect to ω−Q, then
∑s
i=1λifi−

∑t
j=1µjgj =

(h2−h1)(ω−Q).
Since the left-hand side is free of ω, then

∑s
i=1λifi =

∑t
j=1µjgj , and f is in

(�1∩�2,ω−Q).

Lemma 3.8. Let � be a prime ideal in K[u,y] such that u is a parametric

set, ω a new variable, and Q = ∑p
i=1Miyi, where the Mi’s integers. Then the

ideal (�,w−Q) is prime and has u as a parametric set.

Proof. See [14, page 40].

Lemma 3.9. Let � be an ideal of K[u,y] having u as a parametric set. Letω
be a new variable andQ=∑p

i=1Miyi with theMi’s integers. Then
√
(�,w−Q)=

(
√

�,w−Q) and u is a parametric set of the ideal �= (�,w−Q) in K[x,ω].

Proof. For the first point, let f ∈ √(�,w−Q), then there exists α∈N such

that fα ∈ (�,ω−Q), hence fα = g+h(ω−Q), where g ∈ (�) in K[x,ω] and

h∈K[x,ω]. We reduce f and g with respect toω−Q, then we obtain f = f1+
f2(ω−Q) and g = g1+g2(ω−Q)with f1 ∈K[x], g1 ∈ �, and f2,g2 ∈K[x,ω].
Consequently, fα = fα1 +F(ω−Q)= g1+g2(ω−Q) for some F ∈K[x,ω], then

fα1 = g1 ∈ �; this implies that f ∈ (√�,ω−Q).
For the second property, we show that �∩K[u]= (0) and �∩K[u,ω]≠ (0).

Firstly, we assume that �∩K[u] ≠ (0), then there exist a nonzero polyno-

mial P(u) in � ∩ K[u]; this implies that there exist f ,f1, . . . ,fr ∈ K[x,ω]
and g1, . . . ,gr ∈ � such that P(u) = ∑r

i=1figi + f(w −Q); for ω = Q, we

will have P(u) ∈ K[u]∩ �, but this is impossible because u is a paramet-

ric set of �. Secondly, we decompose
√

� into prime ideals such that
√

� =
(
⋂s
i=1mi)∩(

⋂t
j=1pj), where themi’s are the prime components having u as a

parametric set and the pj ’s are those satisfying pj∩K[u]≠ (0). By Lemma 3.8,

we have (mi,ω−Q)∩K[u,ω]≠ (0), then by the first property and Lemma 3.7,

we deduce that u is a parametric set of �.

Theorem 3.10. Let � be an ideal of K[u,y] with u a parametric set. Let

w be a new variable, M1, . . . ,Mp integers satisfying the Ritt’s theorem, and

Q=∑p
i=1Miyi. Let �= (�,w−Q). Then

√
� has a characteristic set of the form
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R(u,w),R1(u,w,y1), . . . ,Rp(u,w,yp)with respect to the orderu1 < ···<uq <
w <y1 < ···<yp such that deg(Rj,yj)= 1 for j = 1, . . . ,p.

Proof. See [8, page 7].

Corollary 3.11. Let � be an ideal of K[u,y] with u a parametric set. Let

w,λ1, . . . ,λp be indeterminates and Q = ∑p
i=1λiyi. Then � = (�,w −Q) has

u as parametric set and
√

� has a characteristic set of the form R(λ,u,w),
R1(λ,u,w,y1), . . . ,Rp(λ,u,w,yp) with respect to the order λ1 ≺ ··· ≺ λp ≺
u1 < ···<uq <w <y1 < ···<yp such that deg(Rj,yj)= 1 for j = 1, . . . ,p.

Proof. For showing that u is a parametric set of �, we use the same proof

as the one given for Lemma 3.9.

It is clear that λ1, . . . ,λp satisfy the Ritt’s theorem for the ideal �, then by

Theorem 3.10 the Ri’s are linear in their leading variables.

Definition 3.12. The polynomial R defined in Theorem 3.10 is said to be

a resolvent of � with respect to the parametric set u.

4. Computation of the resolvent

4.1. Computation of a basis of the radical of an ideal

Lemma 4.1. Let � be an autoreduced set in K[x] and z a new indeterminate.

Then (�) :H∞
� = (�,zH�−1)∩K[x].

Proof. For the direct inclusion, let f ∈ (�) : H∞
� , then there exists α ∈ N

such thatHα
�f ∈ (�), hence (zH�)αf ∈ (�) inK[x,z] since f = f+f(zH�)α−

f(zH�)α, therefore f ∈ (�,zH�−1)∩K[x]. For the other inclusion, we take

f ∈ (�,zH�−1)∩K[x], then f will be a linear combination of elements in �

and the polynomial zH�−1 with coefficients in K[x,z] since f is independent

of z, so if we replace z by 1/H�, we will obtain that f ∈ (�) :H∞
� .

Remark 4.2. By Lemma 4.1, one can compute a basis of the ideal (�) :H∞
�

using Gröbner basis.

Lemma 4.3. Let � be an ideal in K[x]. Then there is an effective method to

compute a basis of
√

�.

Proof. We decompose
√

� into regular ideals as
√

�=⋂si=1((�i) :H∞
�i
) (see

Remark 2.5). By Lemma 4.1, we can determine a basis of each (�i) :H∞
�i

. So, by

the use of Gröbner-basis computation, we deduce a basis of
√

�.

4.2. Computation of the resolvent of a regular ideal. In [6], Cluzeau and

Hubert have given an algorithm to compute a resolvent of a regular differen-

tial ideal in ordinary differential case. In this subsection, we give a determin-

istic method to compute a resolvent of a regular ideal using zero-dimensional

Gröbner-basis computation.
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Lemma 4.4. Let � be an autoreduced set in K[x], u the parametric set of �,

ω a new variable, M1, . . . ,Mp integers satisfying Ritt’s theorem, and Q =∑p
i=1.

Then the ideal (�,ω−Q) : H∞
� is a characterizable ideal with respect to u ≺

ω≺y .

Proof. See [6].

Lemma 4.5. Let � be an autoreduced set with u the parametric set and y
the other variables. Then � is a characteristic set in K[u,y] if and only if � is

a characteristic set in K(u)[y].

Proof. See [10].

Theorem 4.6. Let � be an autoreduced set in K[u,y]withu the parametric

set. Then there is an algorithm to compute a resolvent of (�) :H∞
� .

Proof. Let λ1, . . . ,λp be new variables. The λi’s satisfy the Ritt’s theorem for

(�) : H∞
� , then, by Lemma 4.4, (�,w−∑p

i=1λiyi) : H∞
� is characterizable with

respect to λ≺u≺w ≺ y and has a characteristic set of the form R,R1, . . . ,Rp
such that deg(Ri,yi)= 1 (by Corollary 3.11). Let D = II1 ···Ip with I,I1, . . . , Ip ,

respectively, the initials of R,R1, . . . ,Rp . Let M1, . . . ,Mp be integers such that

D(M,u,w) ≠ 0. After substituting the Mi’s in λi’s, we obtain R′,R′1, . . . ,R′p
which will be a characteristic set of ((�) : H∞

� ,ω − ∑p
i=1Miyi) verifying

deg(R′i,yi)= 1.

The polynomial R′ is a resolvent of (�) :H∞
� with respect to the parametric

set u.

Algorithm 4.7. Let � be an autoreduced set in K[u,y], where u is the

parametric set.
Step 1. Let λ1, . . . ,λp and z be new variables. We compute �, the Gröbner ba-

sis inK(λ,u)[w,y,z], of the zero-dimensional ideal (�,zH�−1,w−∑p
i=1λiyi)

with respect to a lexicographical order such that w ≺y ≺ z.

Step 2. Let � := C,C1, . . . ,Cp be the extracted characteristic set from �∩
K(λ,u)[w,y].

Step 3. Let � := T ,T1, . . . ,Tp be obtained from � by clearing out the denom-

inators.

Step 4. Let � := R,R1, . . . ,Rp be obtained from � by replacing the λi’s by

Mi’s such thatD(M,u,y)≠ 0, whereD = II1 ···Ip with I,I1, . . . , Ip , respectively,

the initials of T ,T1, . . . ,Tp .

The polynomial R is a resolvent of (�) :H∞
� with respect to the parametric

set u.

Correctness 4.8. It is a consequence of Lemmas 4.4, 4.5 and Theorem 4.6.

4.3. Computation of the resolvent of an ideal

Algorithm 4.9. Let � be an ideal of K[x].
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Step 1 (the computation of a parametric set of �). We decompose
√

� into

regular ideals
⋂s
i=1(�i) :H∞

�i
. The parametric set of �i such that |�i| is minimal

is a parametric set of �.

Step 2. We compute a basis G of
√

�.

Step 3. Let ω,λ1, . . . ,λp be new variables.

We compute the Gröbner basis � of the ideal (
√

�,ω−∑p
i=1λiyi)= (G,ω−∑p

i=1λiyi) with respect to the lexicographical order term satisfying λ ≺ u ≺
ω≺y .

Let � be the extracted characteristic set from �.

The autoreduced set � has the form R,R1, . . . ,Rp such that deg(Ri,yi)= 1.

Step 4. Let D = II1 ···Ip with I,I1, . . . , Ip , respectively, the initials of

R,R1, . . . ,Rp .

Let M1, . . . ,Mp be integers such that D(M,u,w)≠ 0.

Let R′,R′1, . . . ,R′p be obtained from R,R1, . . . ,Rp after substituting the Mi’s in

λi’s.

The autoreduced set R′,R′1, . . . ,R′p is a characteristic set of(
√

�,ω−∑p
i=1Miyi)

verifying deg(R′i,yi)= 1.

The polynomial R′ is a resolvent of � with respect to the parametric set u.

Correctness 4.10. It is a consequence of Proposition 2.12, Corollary 3.11,

and Lemma 4.3.

5. Applications. The resolvent has a wide range of applications, namely it

transforms a set of polynomial equations to a single polynomial equation such

that their varieties are birationally equivalent, it permits to compute a primitive

element for a finitely generated algebraic extension over a field of characteristic

zero, and obviously it has other areas of applications.

In this section, we show how the resolvent can be used to decompose a

variety into irreducible varieties and how to test that a variety associated to a

regular ideal is irreducible.

5.1. Decomposition of a variety into irreducible varieties. Let �=A1, . . . ,
Ap be an autoreduced set,M1, . . . ,Mp integers satisfying Ritt’s theorem for the

regular ideal (�) : H∞
� , and w a new indeterminate. Put � = (�,w−Q) : H∞

� ,

where Q = M1y1+···+Mpyp . We know that � is characterizable and has a

characteristic set of the form � = R,R1, . . . ,Rp , where each Ri is linear in yi.
We can assume R square free because � is radical.

Lemma 5.1. With the same notations as above, the following properties hold:

(1) �= (�) :H∞
� ;

(2) �∩K[u,y]= (�) :H∞
� .

Proof. (1) It is a corollary of Lemma 4.4.

(2) It is sufficient to prove the direct inclusion; for this, let f be in �∩K[u,y],
then there exists g ∈ ((�) :H∞

� ) (considered in the ring K[u,y,w]) and there
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exists h ∈ (w−Q) such that f r = g+h for r ∈ N. Let ḡ = rem(g;w−Q); we

obtain f r = ḡ+ h̄ for h̄ ∈ (w−Q). Since f r is free of w, then f r = ḡ, hence

f r ∈ (�) :H∞
� , therefore f ∈ (�) :H∞

� because (�) :H∞
� is perfect by Lazard’s

lemma.

Theorem 5.2. With the same notations as in Lemma 5.1. Let R = B1 ···Bs
be the factorization of R into irreducible polynomials in K[u][ω] and �i =
Bi,R1, . . . ,Rp for i = 1, . . . ,s. Then, (�,ω−Q) : H∞

� = ⋂si=1(�i) : H∞
�i

and each

(�i) :H∞
�i

is a prime ideal with �i a characteristic set.

Proof. Since the Mi’s satisfy The Ritt’s theorem, then, by Lemma 4.4,

(�,ω−Q) : H∞
� is a characterizable ideal with respect to u ≺ω ≺ y and by

Lazard’s lemma the ideal (�,ω−Q) :H∞
� is radical and is equal to (�	) :H∞

�	

with �	 = R,R1, . . . ,Rp , then (�,ω−Q) : H∞
� = (�	) : H∞

�	 =
√
((�	) :H∞

�	) =√
(�	) : H�	 =

⋂s
i=1

√
(Bi,R1, . . . ,Rp) : H∞

�	 (by Proposition 2.3). To finish the

proof, it is sufficient to show that
√
(Bi,R1, . . . ,Rp) :H�	 =

√
(�i) :H�i .

For this let f ∈
√
(Bi,R1, . . . ,Rp) :H�	, then

f ·H�	 ∈
√(
Bi,R1, . . . ,Rp

)
. (5.1)

We haveH�	 = hR ·H�	′ = I ·S ·H�	′ , where �	′ = R1, . . . ,Rp , I = init(R) and

S = sep(R). We have sep(R) = ∂R/∂ω = ∂(B1 ···Bs)/∂ω =∑s
k=1(Sk ·

∏
j≠k Bj),

where Sk = sep(Bk). Furthermore, init(R) =∏s
k=1 Ik, where Ik = init(Bk). Since

all terms in
∑s
k=1(Sk ·

∏
j≠k Bj), except Si ·

∏
j≠i Bj , are in

√
(Bi,R1, . . . ,Rp), then

f ·H�	 ∈
√(
Bi,R1, . . . ,Rp

)
�⇒ f · init(R)·Si ·

∏
j≠i
Bj ·H�	′ ∈

√(
Bi,R1, . . . ,Rp

)

�⇒ f ·
∏
j≠i

(
IjBj

)∈ √(Bi,R1, . . . ,Rp
)

:H�i

(
since init(R)=

s∏
k=1

Ik, H�i = IiSiH�	′

)

�⇒ f ·
∏
j≠i

(
IjBj

)∈ (Bi,R1, . . . ,Rp
)

:H∞
�i

(5.2)

(the last implication follows by Proposition 2.3 and Lazard’s lemma).

The autoreduced set �i is irreducible, then it is a characteristic set of the

prime ideal (�i) : H∞
�i

. For j ≠ i, Bj ∉ (�i) : H∞
�i

because otherwise Bi will be

equal to Bj . So f ∈ (�i) :H∞
�i

.

In the following, we will illustrate how one obtains the decomposition of

(�) :H∞
� into prime ideals from the decomposition of the characterizable ideal

� = (�,w−Q) :H∞
� . For j = 1, . . . ,s, let 
̄j =D1, . . . ,Dp , D̄j be a characteristic

set of (�j) :H∞
�j

with respect to the order u≺y ≺w.
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Lemma 5.3. With the same notations as above, the ideal (�j) :H∞
�j
∩K[u,y]

has 
̃j =D1, . . . ,Dp as a characteristic set with respect to u≺ y and it is equal

to (
̃j) :H∞

̃j

for j = 1, . . . ,s.

Proof. We have that �j is irreducible by Proposition 2.9, then (�j) : H∞
�j

is a prime ideal and also (�j) :H∞
�j
∩K[u,y].

Let f be in (�j) : H∞
�j
∩K[u,y] and f̄ = rem(f ;
̃j). Since f is in K[u,y],

then rem(f ;
̃j) = rem(f ;
̄j) = 0 because 
̄j is a characteristic set of (�j) :

H∞
�j

. It follows that (�j) :H∞
�j
∩K[u,y]= (
̃j) :H∞


̃j
because it is a prime ideal

and 
̃j is its characteristic set.

The following proposition is the aim result; it gives the decomposition of

(�) :H∞
� into prime ideals that each one is given by its characteristic set 
̃j .

Proposition 5.4. With the same notations as above,

(�) :H∞
� =

s⋂
j=1

(

̃j
)

:H∞

̃j
. (5.3)

Proof. This result is a corollary of Lemma 5.1 and Theorem 5.2.

Remark 5.5. For the radical of an ideal � = (Σ), we firstly decompose
√

�

into regular ideals (see [3, 4, 5, 9]), and afterwards, using the techniques above,

decompose each regular ideal into prime ideals.

5.2. Test of the primality of a regular ideal

Proposition 5.6. Let �= (�) :H∞
� with � an autoreduced set having u as

the parametric set and R a resolvent of � with respect tou. Then R is irreducible

over K(u) if and only if
√

� is a prime ideal.

Proof. LetM1, . . . ,Mp be integers satisfying the Ritt’s theorem for the ideal

� with respect to the parametric set u, then there exist R1, . . . ,Rp linear in their

leading variables such that R,R1, . . . ,Rp is a characteristic set of
√
(�,w−Q),

where Q =M1y1+···+Mpyp , hence, by Lemma 4.4,
√
(�,w−Q) = (�) : H∞

� ,

where � = R,R1, . . . ,Rp . This implies, by Proposition 2.9 and Lemma 5.1, that

R is irreducible over K(u) if and only if � is prime.

6. Examples

Example 6.1. Let � be the ideal, in the ring K[x,y,z], generated by the

following polynomials:

f1 :=y6−2x5y3+x10,
f2 := x2y3z−x7z−y5+x5y2,
f3 :=y4z−x5yz−x3y3+x8,
f4 := x4z2−2x2y2z+y4.

(6.1)
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Firstly, we compute the decomposition of
√

� into regular ideals; we obtain

√
� := �1∩�2, �1 := (x2z−y2,y3−x5) : (x,y)∞, �2 := (x,y). (6.2)

We remark that x is a parametric set of �.

We verify that M1 = 1, M2 = 1 are integers satisfying Ritt’s theorem for the

ideal �1 with respect to the parametric set x (that is two distinct zeros of

�1, with the x taking the same value, give different values for Q = M1y +
M2z = y+z), and so we obtain a characteristic set R,R1,R2 of (�1,w−y−z),
satisfying the definition of the resolvent, that is, deg(R1,y) = deg(R2,z) = 1,

where R := −3x3w +w3−x5−x4, R1 := (−x+x2)y +w2−x2w −2x3, and

R2 := (−x+x2)z+xw−w2+2x3. Since R is irreducible, then
√

� := �1∩�2

is the decomposition into prime ideals. The polynomial xR is a resolvent of �

with respect to the parametric set x.

Example 6.2. Let � :=A1,A2 be an autoreduced set in K[x,y,z] with A1 :=
y2−(1+x)y+x and A2 := z2−(3+x)z+3x.

The autoreduced set R,R1,R2 is a characteristic set of ((�) :H∞
� ,w−y−z)

with respect to x ≺w ≺y ≺ z, where R := 24x+w4+5w2x2−4w3x+32x2−
2x3w+8x3−8w3+19w2−54xw−28x2w−12w+28xw2, R1 := (−4+2x)y−
8x2+15xw−6w2−14x+9w+w3−3xw2+2x2w, R2 := (−4+2x)z+3xw2−
2x2w−w3+6w2+14x+8x2−17xw−5w, R is a resolvent of (�) :H∞

� with

respect to the parametric set x, and R := (w−4)(w−2x)(w−x−3)(w−x−1)
is the factorization of R over K[u].

We put B1 := w − 4, B := w − 2x, B3 := w − x − 3, and B4 := w − x − 1.

Then ((�) : H∞
� ,w − y − z) := ⋂4

i=1 �i, where �i := ((Bi,R1,R2) : H∞) and

H := init(R1) init(R2) := (4−2x)2.

Changing of the order on the variables, we obtain

(�) :H∞
� := (z−3,y−1)∩(z−x,y−x)∩(z−x,y−1)∩(z−3,y−x).

(6.3)

7. Conclusion. We have developed an algorithm to compute a resolvent of

an algebraic variety. No factorization is needed. Some of the main problems

in polynomial ideal theory can be solved by means of the resolvent. We com-

pute the irreducible varieties associated to a given affine variety, we test the

primality of a regular ideal.

The algebraic complexity of the resolvent and the computational complex-

ity of the associated algorithms have been explicitly explored by Gallo and

Mishra [7].

The generalization of the resolvent and its complexity to differential equa-

tions is a future investigation.
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