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Rooted quivers are quivers that do not contain A∞ ≡ ··· → • → • as a subquiver.
The existence of flat covers and cotorsion envelopes for representations of these
quivers have been studied by Enochs et al. The main goal of this paper is to prove
that flat covers and cotorsion envelopes exist for representations of A∞. We first
characterize finitely generated projective representations of A∞. We also see that
there are no projective covers for representations ofA∞, which adds more interest
to the problem of the existence of flat covers.
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1. Introduction. It is known that, for an arbitrary quiver Q, the category of

representations by modules ofQ is a Grothendieck category with a generating

system of projective representations. An explicit construction of such a system

was given in [6], where, furthermore, flat representations were characterized,

not for all quivers, but for a large class of them called rooted quivers. This

characterization of flat representations of rooted quivers was very useful in

proving that every representation of a rooted quiver admits a flat cover and a

cotorsion envelope, see [6, Theorem 4.3]. Rooted quivers were also character-

ized in [6] as those quivers with no path of the form ··· → •→ •. In this paper,

we study flat representations and flat covers of representations of the quiver

A∞ ≡ ··· → •→ • as a first step in the treatment of nonrooted quivers.

In Section 2, we characterize finitely generated and projective representa-

tions of A∞, and this will allow us to define flat representations as direct limits

of them. To do this, we give necessary and sufficient conditions for a repre-

sentation P of A∞ to be projective. Finally, we give an example which shows

that projective covers of representations of A∞ do not exist in general. This

makes Theorem 5.3, the main result of Section 5, more interesting: we prove

that any representation by modules of A∞ has a flat cover. This will be done

using the techniques developed by Eklof and Trlifaj in [4] concerning cotorsion

theories cogenerated by sets in the categories of modules (see [7] for a more

detailed explanation about cotorsion theories) and the generalizations of these

techniques to Grothendieck categories with projective generators given in [1].

2. Preliminaries. All rings considered in this paper will be associative with

identity and, unless otherwise specified, they are not necessarily commutative.

The letter R will usually denote a ring.
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A quiver Q is a directed graph whose edges are called arrows. An arrow of a

quiver from a vertex v1 to a vertex v2 is denoted by a : v1 → v2 or v1
a
�������→ v2. A

quiver Q may be thought of as a category in which the objects are the vertices

of Q and the morphisms are the paths (a path is a sequence of arrows) of Q.

A representation by modules X of a given quiver Q is a functor X : Q →
R-Mod. Such a representation is determined by giving a module X(v) (or Xv )

for each vertex v of Q and a homomorphism X(a) : X(v1)→ X(v2) for each

arrowa : v1→ v2 ofQ. A morphism η between two representationsX and Y is a

natural transformation, so it is a family ηv such that Y(a)◦ηv1 = ηv2 ◦X(a) for

any arrow a : v1→ v2 of Q. Thus, the representation of a quiver Q by modules

over a ring R is a category denoted by (Q,R-Mod), which is a Grothendieck

category with enough projectives.

As usual, A∞ will be used to denote the quiver

··· �→ vn �→ vn−1 �→ ··· �→ v1 �→ v0, (2.1)

where vi, i = 1, . . . ,n, are the vertices of the quiver; representation will mean

representation by modules of A∞. For a representation M of A∞, and for an

arrow a : vn → vn−1, we will often use the notation fn :Mn →Mn−1 or Mn
fn�������������������������������→

Mn−1 to refer to M(a) :M(vn)→M(vn−1), n≥ 1. A morphism ψ between two

representations will be a family {ψk : k≥ 1} satisfying the conditions above.

Since we will prove the existence of flat covers and cotorsion envelopes mak-

ing use of the techniques developed by Eklof and Trlifaj (see [4]) over cotorsion

theories, we introduce some general definitions on covers and envelopes and

recall what is understood by a pair of classes cogenerated by a set.

Recall from [5] that, given a class � of objects in an abelian category �, an

�-precover (resp., an �-pre-envelope) of an object C ∈ Ob(�) is a morphism

F ϕ
����������������→ C (C ϕ

����������������→ F ) with F ∈ � such that Hom(F ′,F) → Hom(F ′,C) → 0 (resp.,

Hom(C,F ′) → Hom(F,F ′) → 0) is exact for every F ′ ∈ �. If, moreover, every

f : F → F such that ϕ◦f =ϕ (resp., f ◦ϕ =ϕ) is an automorphism, then ϕ
is said to be an �-cover (resp., an �-envelope). For the same class �, �⊥ will

denote the class of all objects C of � such that Ext1(F,C)= 0 for every F ∈�.

Then, the pair of classes (�,�⊥) is said to be cogenerated by a set if there exists

a set of objects of �, say Z , such that C ∈ �⊥ if and only if Ext1(F,C) = 0 for

every F ∈ Z .

We also have to recall the definition of a finitely generated representation

of a quiver.

Definition 2.1. Let Q be a quiver, D a representation of Q, and Z a set of

elements ofD. The subrepresentation ofD generated by the set Z is defined as

the intersection of all representations ofQ containing Z . The representationD
is said to be finitely generated provided thatD is generated by a finite subset of

elements, or equivalently, if it is finitely generated as an object of the category

of representations of Q.
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It follows immediately from Definition 2.1 that a representation S of the

quiver A∞ is finitely generated if and only if it is of the form

S ≡ ··· �→ 0 �→ 0 �→ Sn fn����������������������������������������→ Sn−1 �→ ··· �→ S1
f1�����������������������������������→ S0 (2.2)

for some natural number n≥ 1 and with Si finitely generated as an R-module

for all i≥ 1.

3. Projective representations. Projective representations of A∞ by vector

spaces over a field K were characterized in [2, Example, page 102] as those rep-

resentations P such that the homomorphisms Pn→ Pn−1 are always injections

and that lim←����������������������������������� Pn = 0. The condition is indeed necessary; however, we will now

give an example of a representation of A∞ by vector spaces satisfying these

two conditions, but which is not a projective representation. Notice first that

it is immediate to see that any representation of A∞ of the form

T ≡ ···0 �→U id
��������������������������→ U �→ ··· �→U id

��������������������������→ U, (3.1)

where U is a projective R-module, is projective since Hom(A∞,R-Mod)(T ,M) 

HomR(U,M(vn)) (where n is the position where U appears for the first time

in T ) for every representation M of A∞.

Example 3.1. Let K be a field and L the following representation of A∞:

L≡ ··· ⊆
∞∏
i=2

K ⊆
∞∏
i=1

K ⊆
∞∏
i=0

K. (3.2)

For every n∈N, we consider the representation P(n) of A∞ given by

P(n)≡ ··· �→ 0 �→K id
��������������������������→ ··· id

��������������������������→ K, (3.3)

where the first K appears innth place. The direct sum⊕∞n=0P(n) is a projective

representation of A∞ since each P(n) is a projective representation. Further-

more, it is easy to see that ⊕∞n=0P(n) is a projective generator for the category

of representations by K-modules of the quiver A∞, so if L was a projective

representation of A∞, then L should be a direct summand of (⊕∞n=0P(n))(X)

for some set X. We prove that L cannot be contained in (⊕∞n=0P(n))(X), so we

will have a contradiction.

It is immediate to observe that the kernel of any morphism L→ P(n) con-

tains the subrepresentation

T ≡ ··· ⊆
∞∏
n+3

K ⊆
∞∏
n+2

K ⊆
∞∏
n+1

K ⊆ ··· ⊆
∞∏
n+1

K, (3.4)

where the K-module
∏∞
n+2K is the corresponding module to the vertex vn+2.

Then, any morphism L → P(n) factors through the quotient L/T (which is
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clearly a finitely generated representation by the comments made in Section 2),

and then we have

Hom
(
L,P(n)(X)

)
Hom
(
L
T
,P(n)(X)

)
. (3.5)

Suppose we have

L⊆ (⊕∞n=0P(n)
)(X) 
⊕∞n=0P(n)

(X) (3.6)

for some set X. Then, for any natural number n, we have a morphism

L↩⊕∞n=0P(n)
(X) �→ P(n)(X), (3.7)

and by (3.5), we see that there exists a finite subset Xn ⊆ X such that (3.7)

factors through

L �→ P(n)(Xn)↩ P(n)(X). (3.8)

Let X′ = ∪∞n=0Xn. Then, we have that in fact L ⊆ ⊕∞n=0P(n)(X
′), and this is

impossible in general since (⊕∞n=0P(n)(X
′))(v0) has a countable base and L(v0)

does not in general (take, e.g., Q).

In Propositions 3.2 and 3.3, we give, respectively, necessary and sufficient

conditions for a representation ofA∞ to be projective in the general case where

R is an arbitrary ring. These will lead to a characterization of finitely generated

projective representations of A∞ (Proposition 3.4).

Proposition 3.2. Let P ≡ ··· → Pn fn�������������������������������→ Pn−1 → ··· → P1
f1��������������������������→ P0 be a projec-

tive representation of A∞. Then the following statements hold:

(1) Pn is a projective R-module for every n∈N;

(2) fn is a splitting monomorphism for every n∈N;

(3) lim←����������������������������������� Pn = 0.

Proof. The first statement is easy: take n∈N and letM h
�������→N be an epimor-

phism of R-modules. Now, if Pn
gn�����������������������������������→ N is a morphism of R-modules, we may

extend h and gn to morphisms of representations by puttingM and idM (resp.,

N and idN ) for k ≥ n and 0 on the rest. We finally apply that P is a projective

representation to get the desired extension Pn→M of gn.

Consider now the family of representations

Kn ≡ ···0 �→ ··· �→ Pn id
��������������������������→ Pn �→ ··· �→ Pn (3.9)
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of A∞ (first Pn is in nth position) for all n ∈ N. Then, the direct sum ⊕n≥0Kn

can be considered as the representation

···⊕k≥nPk λn����������������������������������→⊕k≥n−1Pk �→ ··· �→⊕k≥1Pk
λ1����������������������������→⊕k≥0Pk, (3.10)

where each λj is the canonical injection.

It is clear that the map ϕ :⊕n≥0Kn→ P given by

ϕn
((
xj
)
j≥n
)= xn+

∑
k≥1

fn+1 ◦···◦fn+k
(
xn+k

)
(3.11)

is a morphism of representations and that it is in fact an epimorphism of

representations. But P is projective by hypothesis, so there exists φ : P →
⊕k≥0Kn with ϕ ◦φ = idP , which means that ϕn ◦φn = idPn , for all n ∈ N.

If we now look at the canonical projections πn : ⊕k≥n−1Pk → ⊕k≥nPk, we see

that idPn = ϕn ◦φn = ϕn ◦πn ◦λn ◦φn = ϕn ◦πn ◦φn−1 ◦fn, where the last

equality holds sinceφ is a morphism of representations (so, λn◦φn =φn−1◦fn
for all n ≥ 1). Therefore, we immediately obtain that each fn is a splitting

monomorphism.

It only remains to prove (3). We have already seen that P is a direct summand

of ⊕n≥0Kn, that is, P⊕T =⊕n≥0Kn for some representation T of A∞, and it is

clear that ⊕n≥0Kn satisfies (3), so we are done since inverse limits commute

with finite direct sums.

Proposition 3.3. Let P ≡ ··· → Pn fn�������������������������������→ Pn−1 → ··· → P1
f1��������������������������→ P0 be a repre-

sentation of A∞ and suppose that

(1) Pn is a projective R-module for every n;

(2) fn is a splitting monomorphism for every n;

(3) there exists a set of epimorphisms {αn : Pn−1 → Pn | n ≥ 1} such that

αn◦fn = idPn for every n∈N and that for any x ∈ Pn there is a natural

integer k≥ 1 with αn+k ◦···◦αn+1(x)= 0.

Then P is a projective representation.

Proof. Let Kn and ϕ : ⊕n≥0Kn → P be the representations of A∞ and the

epimorphism of representations given in Proposition 3.2. By the previous com-

ments, each Kn is projective and so is ⊕n≥0Kn. Therefore, if we prove that P
is a direct summand of ⊕n≥0Kn, we will have that P is also projective.

We want to define a morphism w : P →⊕n≥0Kn so that ϕ◦w = idP . For any

xn ∈ Pn, we define

wn
(
xn
)= ( . . . ,αn+jαn+j−1 ···αn+1

(
xn
)

−fn+j+1αn+j+1αn+jαn+j−1 ···αn+1
(
xn
)
, . . . ,αn+1

(
xn
)

−fn+2αn+2αn+1
(
xn
)
,xn−fn+1αn+1

(
xn
))

(3.12)

for each j ≥ 0. Notice that wn is well defined by condition (3).
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With this definition, it is an easy computation to check that λn◦wn =wn−1◦
fn and that ϕn ◦wn(xn) = xn for all xn ∈ Pn, for all n ∈ N, so we are done.

Using Propositions 3.2 and 3.3 and the comments given in Section 2, we

immediately obtain the following result.

Proposition 3.4. Let P be a representation of A∞. Then P is finitely gener-

ated projective if and only if there exists an n∈N such that

(1) Pk = 0 for every k >n;

(2) Pk is a finitely generated projective module for every k with 0≤ k≤n;

(3) fk : Pk→ Pk−1 is a split monomorphism for every k∈N.

We finish this section with an example showing that, in general, not every

representation of A∞ has a projective cover. This will raise the interest in the

problem of the existence of flat covers for all representations of A∞ (which

will be treated in Section 5) as well as the characterization of rings for which

every representation by modules of A∞ has a projective cover.

Example 3.5. Let R be a ring and consider the representation

T ≡ ··· �→ R id
��������������������������→ R id

��������������������������→ R (3.13)

of A∞, and for n∈N, the subrepresentation

Tn ≡ ··· �→ 0 �→ R id
��������������������������→ ··· id

��������������������������→ R (3.14)

with first R in nth position. It is clear that, for any n0 ∈ N, there exists an

epimorphism ⊕n≥n0Tn→ T which of course is a projective precover of T (each

Tn is a projective representation of A∞). Suppose T has a projective cover

S (S ≡ ··· → Sn+1
gn+1����������������������������������������������������������������������������������→ Sn ··· → S1

g1�����������������������������→ S0). Then S is a direct summand of

⊕n≥n0Tn, and so gn is an isomorphism for all n, 0 ≤ n ≤ n0, and all n0 ∈ N,

which contradicts the hypotheses of Proposition 3.2. Therefore, T does not

have a projective cover.

4. Flat representations. Since the category of representations by modules

of a quiver has enough projectives, we can define flat representations of A∞ as

direct limits of projective representations. Furthermore, it is easy to see that we

can assume that a flat representation is a direct limit of finitely generated and

projective representations which have been characterized in Proposition 3.4.

This section is therefore devoted to characterizing flat representations of A∞.

This turns out to be very useful in proving that the pair (�,�⊥) (where � is the

class of all flat representations of A∞) is cogenerated by a set, as was noticed

in [6], where the same result was proved for rooted quivers.
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In [6, Proposition 3.4] it is stated that, for any quiver Q, if a representation

F is flat, then F(v) is a flat module for every vertex v of Q and that the homo-

morphism ⊕t(a)=vF(i(a))→ F(v) is a pure monomorphism for all vertices v
of Q, where t(a) and i(a) denote the terminal and initial vertices of the arrow

a. Furthermore, it was also proved in [6, Theorem 3.7] that these conditions

are sufficient for a representation to be flat provided that Q is rooted. Now we

prove that this characterization also holds for a nonrooted quiver A∞.

Proposition 4.1. A representation F of the quiver A∞ is flat if and only if

the following statements hold:

(1) Fv is a flat module for every vertex v of A∞;

(2) the homomorphism fj+1 : Fj+1→ Fj is a pure injection for every j ∈N.

Proof. As we have seen above, the conditions are necessary. We prove that

they are also sufficient. For every n ∈ N, we define the subrepresentation Fn

of F given by

Fn ≡ ···0 �→ 0 �→ Fn fn����������������������������������������→ Fn−1 �→ ··· �→ F2
f2�����������������������������������→ F1

f1�����������������������������������→ F0. (4.1)

It is clear that F = lim�����������������������������������→n∈NF
n, so if Fn is a flat representation for any n ∈ N,

then F is also a flat representation of A∞. But it is easy to see that Fn is a flat

representation of A∞ if and only if

Fn
fn����������������������������������������→ Fn−1 �→ ··· �→ F2

f2�����������������������������������→ F1
f1�����������������������������������→ F0 (4.2)

is a flat representation of the rooted quiver vn → vn−1 → ··· → v1 → v0. By

hypothesis, Fj is a flat module for every j ≤n and the homomorphisms fj are

pure injections for every j ∈ {1, . . . ,n}, so [6, Theorem 3.7] gives us that (4.2)

is a flat representation for all n∈N, and we are done.

Throughout the rest of this paper, the class of all flat representations of A∞
will be denoted by the symbol �.

As an immediate consequence of the previous results, we have the following

proposition.

Proposition 4.2. Let F be a flat representation of A∞ and G a subrepresen-

tation of F in such a way that F/G is flat. Then G is also a flat representation

of A∞.

5. Flat covers and cotorsion envelopes. We will now prove the existence

of a flat cover and a cotorsion envelope for every representation of A∞. This

will be deduced from the fact that the pair of classes of flat representations

and cotorsion representations of A∞, (�,�⊥) is cogenerated by a set.
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Definition 5.1. The cardinality |X| of an arbitrary representation X of A∞
is defined as

|X| =
∣∣∣∣∣
∐
v∈V

X(v)

∣∣∣∣∣, (5.1)

where V denotes the set of all vertices of A∞.

Theorem 5.2. The pair of classes (�,�⊥) in the category of representations

of A∞ is cogenerated by a set.

Proof. Let

F ≡ ··· �→ Fn+1
fn+1���������������������������������������������������������������������������������������→ Fn fn����������������������������������������→ Fn−1 �→ ··· �→ F1

f1�����������������������������������→ F0 (5.2)

be a flat representation of A∞. Let x be any element of F (suppose that x ∈ Fn)

and suppose |R| = ℵ. We know by [3, Lemma 1] that there exists a pure submod-

ule S(1)n of Fn with x ∈ S(1)n such that |S(1)n | ≤ ℵ. We define S(1)m = fm+1(S
(1)
m+1)

for all m ≤ n−1 and S(1)k as the inverse image of S(1)k−1 by means of fk for all

k≥n+1. It is then clear that |S(1)l | ≤ ℵ for all l∈N since fl is a monomorphism

for all l∈N.

We consider the subrepresentation

S(1) ≡ ··· �→ S(1)n+1

f (1)n+1�������������������������������������������������������������������������������→ S(1)n
f (1)n���������������������������������������������������������������→ S(1)n−1 �→ ··· �→ S(1)1

f (1)1���������������������������������������������������������������→ S(1)0 (5.3)

of F , where the homomorphism f (1)k is the restriction of fk for every k ∈ N.

We observe that the quotient F/S(1) is such that the homomorphism

f (1)n+1 :
Fn+1

S(1)n+1

�→ Fn
S(1)n

(5.4)

is indeed a monomorphism.

Now |S(1)n | ≤ ℵ, so we also have that

∣∣∣∣∣
S(1)n

Im
(
fn+1

)∩S(1)n
∣∣∣∣∣≤ ℵ. (5.5)

Then, again using [3, Lemma 1], we find a pure submodule T/ Im(fn+1) of

Fn/ Im(fn+1) such that

Im
(
fn+1

)+S(1)n
Im
(
fn+1

) ⊆ T
Im
(
fn+1

) (5.6)
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and |T/ Im(fn+1)| ≤ ℵ. Now we may choose S(2)n such that S(1)n ⊆ S(2)n ⊆ Fn with

Im
(
fn+1

)+S(2)n
Im
(
fn+1

) = T
Im
(
fn+1

) (5.7)

and also |S(2)n | ≤ ℵ.

Therefore, we have that Fn/(Im(fn+1)+ S(2)n ) is a flat module, and then,

(Im(fn+1)+S(2)n )/S(2)n is a pure submodule of Fn/S
(2)
n .

Let S(2)m = fm+1(S
(2)
m+1) for all m ≤ n−1 and S(2)k the inverse image of S(2)k−1

for every k ≥ n+1. Again we have that |S(2)l | ≤ ℵ for all l ∈ N. Consider the

subrepresentation

S(2) ≡ ··· �→ S(2)n+1

f (2)n+1�������������������������������������������������������������������������������→ S(2)n
f (2)n���������������������������������������������������������������→ S(2)n−1 �→ ··· �→ S(2)1

f (2)1���������������������������������������������������������������→ S(2)0 (5.8)

of F (which contains S(1) as a subrepresentation), where f (2)k is the restriction

of fk for every k∈N. Then

f (2)n+1 :
Fn+1

S(2)n+1

�→ Fn
S(2)n

(5.9)

is a pure homomorphism.

We now embed S(2)n+1 into a pure submodule S(3)n+1 of Fn+1 with |S(3)n+1| ≤ ℵ. We

defineGn = fn+1(S
(3)
n+1) and, for every k <n, we denote the module fk+1(S

(3)
k+1+

Gk+1) by Gk and the module S(2)k +Gk by S(3)k . For every k > n+1, let S(3)k be

the inverse image of S(3)k−1. Consider the representation

S(3) ≡ ··· �→ S(3)n+2

f (3)n+2�������������������������������������������������������������������������������→ S(3)n+1

f (3)n+1�������������������������������������������������������������������������������→ S(3)n �→ ··· �→ S(3)1

f (3)1���������������������������������������������������������������→ S(3)0 . (5.10)

Then

f (3)n+2 :
Fn+2

S(3)n+2

�→ Fn+1

S(3)n+1

(5.11)

is an injection by the same argument as in the case S(1), S(3)n+1 is a pure sub-

module of Fn+1, and, by the same argument we used for constructing S(2) from

S(1), we get a representation S(4) such that |S(4)| ≤ ℵ and

f (4)n+2 :
Fn+2

S(4)n+2

�→ Fn+1

S(4)n+1

(5.12)

is a pure homomorphism.

We now turn over and embed S(4)n into a pure submodule S(5)n of Fn, with

|S(5)n | ≤ ℵ, and construct representations S(5) and S(6) as before, with |S(5)| ≤ ℵ,

|S(6)| ≤ ℵ,

f (5)n+1 :
Fn+1

S(5)n+1

�→ Fn
S(5)n

(5.13)
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a monomorphism, and

f (6)n+1 :
Fn+1

S(6)n+1

�→ Fn
S(6)n

(5.14)

a pure homomorphism.

Then embed S(6)n−1 into a pure submodule S(7)n−1 of Fn−1 and find the repre-

sentations S(7) and S(8) as before.

Turn over again and embed S(8)n into a pure submodule S(9)n of Fn with |S(9)n | ≤
ℵ and find the corresponding representations S(9) and S(10) as above. Then

embed S(10)
n+1 into a pure S(11)

n+1 of Fn+1 with |S(11)
n+1| ≤ ℵ and construct S(11) and

S(12). Repeat this argument of S(12)
n+2, finding S(13) and S(14). Then, turn over

again and continue this zigzag procedure.

We have then found a chain of subrepresentations {S(n) |n∈N} of F . So if

S(1) is the direct limit S(1) = lim�����������������������������������→S
(n) (which is a well-ordered direct union),

we have that |S(1)| ≤ ℵ, S(1)n is pure in Fn for all n∈N, and

fn :
Fn
S(1)n

�→ Fn−1

S(1)n−1
(5.15)

is a pure injection for every n−1 ∈ N because the system of representations

satisfying these properties is cofinal for every n ∈ N. Then F/S(1) is a flat

representation by Proposition 4.1.

Since F/S(1) is flat, we can choose any element y ∈ F/S(1) and repeat the

previous argument, obtaining a subrepresentation S(2)/S(1) of F/S(1) such

that |S(2)/S(1)| ≤ ℵ, y ∈ S(2)k/S(1)k (if we suppose that y ∈ Fk/S(2)k), and

F/S(2) is a flat representation.

Proceeding by (transfinite) induction, we can find for every successor or-

dinal number α a subrepresentation S(α) of F such that F/S(α) is flat and

|S(α)| ≤ ℵ, while if β is a limit ordinal, we define S(β)= lim�����������������������������������→α<β S(α) (note that

if β is a limit ordinal, then F/S(β)= F/(lim�����������������������������������→S(α))
 lim�����������������������������������→F/S(α), but F/S(α) is

flat for every α < β by construction, so F/S(β) is also flat). It is now imme-

diate that there exists an ordinal number µ such that F is the direct union of

the chain of subrepresentations {S(α) | α < µ} (which is a continuous chain

by construction). But F/S(1) is flat, so by Proposition 4.2, S(1) is a flat repre-

sentation, and by construction, for any ordinal α+1 < µ, the representations

F/S(α) and (F/S(α))/(S(α+1)/S(α)) are flat, so S(α+1)/S(α) is also flat.

Then, by [4, Lemma 1], we get that if Z is a set of representatives of flat rep-

resentations S such that |S| ≤ ℵ, then a representation C is cotorsion if and

only if C ∈ Z⊥, that is, the cotorsion theory (�,�⊥) is cogenerated by the set Z .

Theorem 5.3. Every representation of A∞ has a flat cover and a cotorsion

envelope.
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Proof. The class � is closed under extensions and arbitrary direct limits,

so every representation of A∞ has a cotorsion envelope by [1, Corollary 2.11].

Furthermore, � contains all projective representations of A∞, so by [1, Corol-

lary 2.12], every representation of A∞ has a flat cover.
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