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We give a practical criterion characterizing the monogenicity of the integral clo-
sure of a Dedekind ring R, based on results on the resultant Res(P,Pi) of the min-
imal polynomial P of a primitive integral element and of its irreducible factors Pi
modulo prime ideals of R. We obtain a generalization and an improvement of the
Dedekind criterion (Cohen, 1996) and we give some applications in the case where
R is a discrete valuation ring or the ring of integers of a number field, generalizing
some well-known classical results.
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1. Introduction. Let K be an algebraic number field and let OK be its ring of

integers. If OK = Z[θ] for some number θ in OK , we say that OK has a power

basis or OK is monogenic. The question of the existence of a power basis was

originally examined by Dedekind [5]. Several number theorists were interested

in and attracted by this problem (see [7, 8, 9]) and noticed the advantages

of working with monogenic number fields. Indeed, for a monogenic number

field K, in addition to the ease of discriminant computations, the factorization

of a prime p in K/Q can be found most easily (see [4, Theorem 4.8.13, page

199]). The main result of this paper is Theorem 2.5 which characterizes the

monogenicity of the integral closure of a Dedekind ring. More precisely, let R
be a Dedekind domain, K its quotient field, L a finite separable extension of

degree n of K, α a primitive element of L integral over K, P(X) = Irrd(α,K),
m a maximal ideal of R, and OL the integral closure of R in L. Assume that

P̄ (X)=∏r
i=1 P̄

ei
i (X) in (R/m)[X] with ei ≥ 2, and let Pi(X)∈ R[X] be a monic

lifting of P̄i(X) for 1≤ i≤ r . Then we prove that OL = R[α] if and only if, for

every maximal idealm of R and i∈ {1, . . . ,r}, vm(Res(Pi,P))= deg(Pi), where

vm is the m-adic discrete valuation associated to m. This leads to a necessary

and sufficient condition for a simple extension R[α] of a Dedekind ring R to be

Dedekind. At the end, we give two illustrations of this criterion. In the second

example, we give the converse which was not known yet.

2. Monogenicity over a Dedekind ring. Throughout this paper R is an in-

tegral domain, K its quotient field, L is a finite separable extension of degree

n of K, α is a primitive element of L integral over R, P(X) = Irrd(α,K), m is
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a maximal ideal of R, and OL is the integral closure of R in L. Let f and g be

two polynomials over R; the resultant of f and g will be denoted by Res(f ,g)
(see [11]).

Definition 2.1. IfOL = R[θ] for some number θ ∈OL, thenOL has a power

basis or OL is monogenic.

Proposition 2.2. Let R be an integrally closed ring and let α be an integral

element over R. Then (R[α])p = Rp[α] for every prime ideal p of R. In partic-

ular, OL = R[α] if and only if Rp[α] is integrally closed for every prime ideal p
of R if and only if R[α] is integrally closed.

Proof. We obtain the result from the isomorphism R[α] � R[X]/〈P(X)〉,
the properties of an integrally closed ring and its integral closure, and the

properties of a multiplicative closed subset of a ring R, notably, S−1(R[X]) =
(S−1R)[X] (see [1]).

Definition 2.3. Let R be a discrete valuation ring (DVR), p =πR its maxi-

mal ideal, and α an integral element over R. Let P be the minimal polynomial

of α, and P̄ (X) =∏r
i=1 P̄

ei
i (X) the decomposition of P̄ into irreducible factors

in (R/p)[X]. Set

f(X)=
r∏

i=1

Pi(X)∈ R[X],

h(X)=
r∏

i=1

Pei−1
i (X)∈ R[X],

T(X)= P(X)−
∏r
i=1P

ei
i (X)

π
∈ R[X],

(2.1)

where Pi(X) ∈ R[X] is a monic lifting of P̄i(X), for 1 ≤ i ≤ r . We will say that

R[α] isp-maximal if (f̄ , T̄ , h̄)= 1 in (R/p)[X] (where (·,·) denotes the greatest

common divisor (gcd)). If R is a Dedekind ring and p is a prime ideal of R, then

we say that R[α] is p-maximal if Rp[α] is pRp-maximal.

Remarks 2.4. (1) If π is uniramified in R[α], that is, ei = 1 for all i, then

h̄= 1̄ and therefore R[α] is p-maximal.

(2) Let π be ramified in R[α], that is, there is at least one i such that

ei ≥ 2. Let S = {i ∈ {1, . . . ,r} | ei ≥ 2} and f1(X) =
∏
i∈S Pi(X) ∈ R[X]. Then

(f̄1, T̄ ) = (T̄ , f̄ , h̄) in (R/p)[X] since f̄1 = (f̄ , h̄). In particular, if every ei ≥ 2,

then (f̄ , T̄ )= (T̄ , f̄ , h̄), because f̄ divides h̄ in this case.

(3) Definition 2.3 is independent of the choice of the monic lifting of the P̄i.
More precisely, let

P̄ (X)=
r∏

i=1

P̄ eii (X)=
r∏

i=1

Q̄ei
i (X) with P̄i(X)= Q̄i(X) for 1≤ i≤ r in (R/p)[X].

(2.2)
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Set

g(X)=
r∏

i=1

Qi(X)∈ R[X], k(X)=
r∏

i=1

Qei−1
i (X)∈ R[X]

U(X)=π−1


P(X)−

r∏

i=1

Qei
i (X)


∈ R[X].

(2.3)

Then (f̄ , T̄ , h̄)= 1 in (R/p)[X] if and only if (ḡ, Ū , k̄)= 1 in (R/p)[X]. Indeed,

we may assume that R is a DVR and p = πR. Let V1 = (g− f)/π and V2 =
(k−h)/π . Then πT =πU+gk−fh. Replacing g by πV1+f and k by πV2+h,

we find that T̄ = Ū + V̄1h̄+ V̄2f̄ and therefore (T̄ , f̄ , h̄) = (Ū, f̄ , h̄) = (Ū, ḡ, k̄)
since f̄ = ḡ and h̄= k̄.

Theorem 2.5. Let R be a Dedekind ring. Let P be the minimal polynomial of

α, and assume that for every prime ideal p of R, the decomposition of P̄ into

irreducible factors in (R/p)[X] verifies:

P̄ (X)=
r∏

i=1

P̄ eii (X)∈ (R/p)[X] (2.4)

with ei ≥ 2 for i= 1, . . . ,r and Pi(X)∈ R[X] be a monic lifting of the irreducible

factor P̄i for i = 1, . . . ,r . Then OL = R[α] if only if vp(Res(Pi,P)) = deg(Pi)
for every prime ideal p of R and for every i = 1, . . . ,r , where vp is the p-adic

discrete valuation associated to p.

For the proof we need the following two lemmas.

Lemma 2.6. Let p = uR+vR be a maximal ideal of a commutative ring R.

Then pRp = vRp if and only if there exist a,b ∈ R such that u= au2+bv .

Proof. IfpRp = vRp , then there exist s ∈ R and t ∈ R−p such that tu= vs.
Since p is maximal in R, so there exists t′ ∈ R such that tt′ −1 ∈ p. Hence

u−utt′ = u−vst′ ∈ p2 and there exist a,b ∈ R such that u = au2 + bv .

Conversely, u2R+vR ⊆ vR +p2 ⊆ p. If there exist a,b ∈ R such that u =
au2+bv , then p = u2R+vR and therefore vR+p2 = p. Localizing at p and

applying Nakayama’s lemma, we find that pRp = vRp .

Lemma 2.7. Let R be a commutative integral domain, let K be its quotient

field, and consider P,g,h,T ∈ R[X]. If g is monic and P = gh + πT , then

Res(g,P) = πdeg(g)Res(g,T). In particular, if m = πR is a maximal ideal of

R and if P̄ (X) =∏r
i=1 P̄

ei
i (X) is the decomposition of P̄ into irreducible factors

in (R/m)[X], with Pi(X) ∈ R[X] a monic lifting of P̄i(X) for 1 ≤ i ≤ r , and

T(X)=π−1(P(X)−∏r
i=1P

ei
i (X))∈ R[X], then

Res
(
Pi,P

)=πdeg(Pi)Res
(
Pi,T

)
(2.5)
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and (P̄i, T̄ )= 1 in (R/m)[X] if and only if

Res
(
Pi,T

)= Res
(
Pi,P

)

πdeg(Pi)
∈ R−m. (2.6)

Proof. Let x1, . . . ,xm be the roots of g in the algebraic closure K̄ of K. It

is then easy to see (see [11]) that Res(g,P)=∏m
i=1P(xi)=πdeg(g)Res(g,T) be-

cause P(xi) = πT(xi). The second result follows from Res(P̄i, P̄ ) = Res(Pi,P)
and [2, Corollary 2, page 73].

Proof of Theorem 2.5. By Proposition 2.2, we may assume that R is a

DVR. Let p be a prime ideal of R and (OL)(p) the integral closure of Rp in L.

Let P̄ (X)=Πri=1P̄
ei
i (X) in (Rp/pRp)[X] with ei ≥ 2 and Pi(X)∈ Rp[X] a monic

lifting of P̄i(X) for 1≤ i≤ r . Let

T(X)= P(X)−Π
r
i=1P

ei
i (X)

π
∈ Rp[X] (2.7)

with πRp = pRp .

(a) We prove that if (P̄i, T̄ ) = 1 in (Rp/pRp)[X] for every i = 1, . . . ,r , then

(OL)(p) = Rp[α]=A. Indeed, P̄ (X)=Πri=1P̄
ei
i (X) in (Rp/pRp)[X] andRp is a lo-

cal ring, so by [14, Lemma 4, page 29] (see also [3]) the ideals �i =πA+Pi(α)A
(i = 1, . . . ,r ) are the only maximal ideals of A, so A is integrally closed if and

only if ��i is integrally closed for every i = 1, . . . ,r . More generally, we prove

that every ��i is a DVR. Since Rp is Noetherian, so Rp[α] � Rp[X]/〈P(X)〉
is Noetherian, hence ��i is Noetherian since ��i is a local integral domain

with maximal ideal �i��i . It remains to show that �i��i is principal. In-

deed, (P̄i, T̄ ) = 1 in (Rp/pRp)[X], hence there exist polynomials U1,U2,U3 ∈
Rp[X] such that 1 = U1(X)Pi(X)+ U2(X)T(X)+πU3(X). Now P(α) = 0 =
Πrj=1P

ej
j (α)+πT(α), hence Πrj=1P

ej
j (α)=−πT(α), so

π =πU1(α)Pi(α)+π2U3(α)−Πrj=1P
ej
j (α)U2(α)

=π2U3(α)+Pi(α)U4(α)
(2.8)

with U4 = πU1 − Pei−1
i (

∏r
j=1, j≠i P

ej
j )U2 ∈ Rp[X]. It follows from Lemma 2.6

that �i��i = Pi(α)��i , in other words, �i��i is principal. We conclude that

��i is a DVR and therefore an integrally closed ring, and (OL)(p) = Rp[α].
(b) We will now prove that (P̄i, T̄ )= 1 in (Rp/pRp)[X] for every i= 1, . . . ,r if

(OL)(p) = Rp[α]. We first show that the ring ��i is a DVR, for every i. Indeed,

Rp is a Dedekind ring and L is a finite extension of K, and it follows from [10,

Theorem 6.1, page 23] that (OL)(p) = Rp[α] = A is a Dedekind ring, so ��i is

a DVR. Let us show next that T(α) is a unit in every ��i . Indeed, ��i is a DVR

and so its maximal ideal �i��i = π��i +Pi(α)��i is principal. Let λ ∈ ��i

be a generator of �i��i . Then there exist u,v ∈ ��i such that λ = πu+
Pi(α)v ∈ �i��i − (�i��i )

2. Now Rp is a DVR, P = Irrd(α,Rp), P̄ = Πrj=1P̄
ej
j
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in (Rp/πRp)[X], πRp ∈ SpecRp , and (OL)(p) = Rp[α] = A is the integral clo-

sure of Rp in L=K(α) with K = Fr(Rp), and we find that πA=Πrj=1�
ej
j . Hence

π ∈ �i
2 because ei ≥ 2. Now λ 	∈ (�i��i )

2, hence Pi(α) ∉ (�i��i )
2, because

λ=uπ+Pi(α)v . It then follows that Pi(α) is a generator of �i��i = Pi(α)��i

since π��i = (�i��i )
ei = Peii (α)��i , and π = Piei(α)ε1 with ε1 ∈ U(��i ).

We now show that Pj(α) ∈ U(��i ) for every j ≠ i. Indeed, if Pj(α) ∈ �i��i ,

then there exists ai ∈ �i and bi ∈ A −�i such that Pj(α) = ai/bi. Then

ai = Pj(α)bi ∈ �i. Now, �i is a prime ideal of A, hence Pj(α) ∈ �i. As �j =
πA+Pj(α)A, so �j ⊆�i. The ideal �j is a maximal ideal of A, so �i =�j . This

is impossible because the �i are distinct, and it follows that Pj(α) ∈ U(��i )
for every j ≠ i. Thus there exists ε2 ∈ U(��i ) such that

∏r
j=1, j≠i P

ej
j (α) = ε2.

Since
∏r
j=1P

ej
j (α) = −πT(α), π = Peii (α)ε1, and

∏r
j=1, j≠i P

ej
j (α) = ε2, then

T(α) = −ε2ε−1
1 ∈ U(��i ). So T(α) ∈ U(��i ) for every i, and T(α) ∈ U(A);

otherwise, Krull’s theorem implies the existence of a maximal ideal �i of A

such that T(α) ∈�i, and T(α) ∈�i��i =��i −U(��i ), which is impossible.

We conclude that T(α) is a unit inRp[α], and, by [2, Corollary 1, page 73], there

exist U1,V1 ∈ Rp[X] such that 1=U1(X)P(X)+V1(X)T(X). Consequently 1̄=
Ū1(X)P̄(X)+ V̄1(X)T̄ (X) in (Rp/πRp)[X], which is principal. Hence (P̄ , T̄ ) =
1 in (Rp/πRp)[X] since P̄ = ∏r

i=1 P̄
ei
i in (Rp/πRp)[X] then (P̄i, T̄ ) = 1 in

(Rp/πRp)[X] for every i. Our result now follows from Proposition 2.2 and

Lemma 2.7.

Remarks 2.8. (1) Let π be ramified in R[α], S = {i ∈ {1, . . . ,r} | ei ≥ 2},
and f1(X)=

∏
i∈S Pi(X)∈ R[X]. It follows from Lemma 2.7 that the following

statements are equivalent:

(i) (f̄1, T̄ )= 1 in (R/p)[X];
(ii) vp(Res(f1,P))= deg(f1);

(iii) for every i∈ S, we have vp(Res(Pi,P))= deg(Pi), where vp is the p-adic

discrete valuation associated to p.

(2) It follows from the above equivalence and Remark 2.4(2) and (3) that the

condition in Theorem 2.5 is independent of the choice of the monic lifting of P̄i.
More precisely, if ei ≥ 2 for every i, and if we take another monic liftingQi of P̄i,
then vp(Res(Pi,P))= deg(Pi) for all i= 1, . . . ,r if and only if vp(Res(Qi,P))=
deg(Qi) for all i= 1, . . . ,r .

(3) Theorem 2.5 states that, under the assumption that ei ≥ 2 for every i,
OL = R[α] if and only if R[α] is p-maximal for every prime ideal p of R.

Corollary 2.9. Under the assumptions of Theorem 2.5, if OL = R[α], then,

for every prime ideal p of R, Rp[α] is principal and �i = Pi(α)Rp[α] for every i.

Proof. Indeed, a Dedekind ring having only a finite number of prime ideals

is principal. To prove the second statement, take x ∈ A such that �i = xA.

Then �i��i = x��i = Pi(α)��i , hence Pi(α) = xε with ε ∈ U(��i ). Then

ε ∈U(A), so �i = Pi(α)A.
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Definition 2.10. Let R be a DVR with maximal ideal m = πR, with f ,g ∈
R[X] monic polynomials. Then f is called an Eisenstein polynomial relative

to g if there exists T ∈ R[X] and an integer e ≥ 1 such that f = ge+πT and

(ḡ, T̄ )= 1 in (R/πR)[X].

Remark 2.11. As in the classical Eisenstein’s criterion, we have a crite-

rion for the irreducibility of an Eisenstein polynomial relative to g, called

the Schönemann criterion, see [12, page 273]; if f = ge + πT is an Eisen-

stein polynomial relative to g such that ḡ ∈ (R/m)[X] is irreducible and

deg(T) < edeg(g), then f is irreducible in K[X].

Corollary 2.12. Let R be a DVR with maximal ideal m = πR. If P̄ = ḡe in

(R/m)[X]with e≥ 2, thenOL = R[α] if and only if P is an Eisenstein polynomial

relative to g.

Proof. We obtain the result using Theorem 2.5, Definition 2.10, and Lemma

2.7.

Remark 2.13. Corollary 2.12 generalizes [14, Propositions 15 and 17]; it

integrates the two results in one statement and provides the converse.

3. Monogenicity over the ring of integers. Let K =Q(α) be a number field

of degree n, P(X) ∈ Z[X] a minimal polynomial of α, OK the ring of integers

of K, and p a prime number.

Proposition 3.1. Let K =Q(α) be a number field and P the minimal poly-

nomial of α. Then OK = Z[α] if and only if for every prime number p such that

p2 divides Disc(P), the prime number p does not divide Ind(α).

Proof. We obtain the result from the fact that OK = Z[α] if and only if

Ind(α)= 1, and Disc(P)= (Ind(α))2dK (see [6], [4, page 166]).

Proposition 3.2. Let P̄ (X)=∏r
i=1 P̄

ei
i (X) be the factorization of P(X)mod-

ulo p in Fp[X], and put f(X) =∏r
i=1Pi(X) with Pi(X) ∈ Z[X] a monic lifting

of P̄i(X) and ei ≥ 2 for all i. Let h(X) ∈ Z[X] be a monic lifting of P̄ (X)/f̄ (X)
and T(X) = (f (X)h(X)−P(X))/p ∈ Z[X]. Then the following statements are

equivalent:

(i) p does not divide Ind(α)= [OK : Z[α]];
(ii) (f̄ , T̄ )= 1 in Fp[X];

(iii) vp(Res(f ,P))= deg(f );
(iv) vp(Res(Pi,P))= deg(Pi), for every i∈ {1, . . . ,r}.

Proof. (i)�(ii). Let (OK)(p) be the integral closure of Z(p) inK. We first show

that p does not divide Ind(α) if and only if (OK)(p) = Z(p)[α]. By the finiteness

theorem [13, page 48], (OK)(p) = ⊕n−1
i=0 Z(p)xi, and, because Z(p) is principal,

αi =∑n−1
j=0 aijxj with aij ∈ Z(p), and therefore [(OK)(p) : Z(p)[α]]= |det(aij)|.
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On the other hand, Ind(α) = [OK : Z[α]] = [(OK)(p) : (Z[α])(p)] = [(OK)(p) :

Z(p)[α]], hence (OK)(p) = Z(p)[α] if and only if p does not divide Ind(α) if and

only if Ind(α) ∈ ∪(Z(p)) = Z(p)−pZ(p). Hence by the proof of Theorem 2.5, p
does not divide Ind(α) if and only if (P̄i, T̄ )= 1 in Fp[X] for every i= 1,2, . . . ,r
(in other words, if and only if (f̄ , T̄ )= 1 in Fp[X]).

(ii)�(iii). By [2, Corollary 2, page 73], (f̄ , T̄ ) = 1 in Fp[X] if and only if

Res(f̄ , T̄ ) = Res(f ,T) ≠ 0̄ in Fp if and only if Res(f ,T) ∈ Z−pZ. On the other

hand,

Res(f ,T)= (−1)deg(f )

pdeg(f ) Res(f ,P). (3.1)

(ii)�(iv). We have (f̄ , T̄ ) = 1 in Fp[X] if and only if Res(f ,T) ∈ Z−pZ. On

the other hand, Res(f ,T)=∏r
i=1 Res(Pi,T) and

Res
(
Pi,T

)= (−1)deg(Pi)

pdeg(Pi)
Res

(
Pi,P

)
. (3.2)

Theorem 3.3. Let K = Q(α) be a number field of degree n, P(X) ∈ Z[X]
a monic minimal polynomial of α, and OK the ring of integers of K. Assume

P̄ (X) =∏r
i=1 P̄

ei
i (X) in Fp[X], for every prime number p such that p2 divides

Disc(P), with Pi(X) ∈ Z[X] a monic lifting of P̄i(X) and ei ≥ 2 for 1 ≤ i ≤ r .

Then OK = Z[α] if and only if for every prime number p, such that p2 divides

Disc(P), vp(Res(Pi,P))= deg(Pi) for 1≤ i≤ r .

Proof. It suffices to apply Propositions 3.1 and 3.2, and Theorem 2.5.

Remark 3.4. Proposition 3.2 provides a complement to the Dedekind cri-

terion (see [4, page 305]). Indeed, in Fp[X], we have (f̄ , T̄ )= (f̄ , T̄ , h̄) since all

ei ≥ 2.

We finish this section giving other conditions equivalent to p not being a

divisor of Ind(α).

Proposition 3.5. The following statements are equivalent:

(i) p does not divide Ind(α)= [OK : Z[α]];
(ii) Z[α]+pOK =OK ;

(iii) Z[α]∩pOK = pZ[α].
Proof. (ii)�(iii). Consider the following map of Fp-vector spaces:

j : Z[α]/pZ[α] �→OK/pOK, j
(
x+pZ[α])= x+pOK. (3.3)

As OK and Z[α] are two free groups of the same rank n, Z[α]/pZ[α] and

OK/pOK are two Fp-vector spaces of the same dimension n and injectivity

of j is equivalent to surjectivity of j. Moreover, j is one-to-one if and only if

Z[α]∩pOk = pZ[α] and j is onto if and only if Z[α]+pOK =OK .
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(i)�(iii). If p does not divide Ind(α) and pZ[α] ⊂ Z[α]∩pOK , then there

exists x ∈OK such that x ∉ Z[α] and px ∈ Z[α], so the order of the subgroup

generated by x+Z[α] of the finite group OK/Z[α] is equal to p, and, by La-

grange’s theorem, p divides Ind(α), which is the order of the group OK/Z[α],
and this is impossible.

Conversely, assume that Z[α]∩pOK = pZ[α] andp divides Ind(α). Cauchy’s

theorem implies that there exists an element of order p in OK/Z[α]; in other

words, there exists x ∈ OK such that x ∉ Z[α] and px ∈ Z[α]. Then px ∈
Z[α]∩pOK = pZ[α], hence x ∈ Z[α], which is impossible.

4. Applications

4.1. Monogenicity of cyclotomic fields

Proposition 4.1. Let n≥ 3 be an integer, ξn a primitive nth root of unity,

K =Q(ξn), andφn(X) thenth cyclotomic polynomial overQ. ThenOK = Z[ξn].
Proof. We know from [15] that

φn(X)=
∏

1≤i≤n
i∧n=1

(
X−ξin

)= Irrd
(
ξn,Q

)
,

Disc
(
φn
)= (−1)ϕ(n)/2

nϕ(n)∏
p|npϕ(n)/(p−1) = (−1)ϕ(n)/2

s∏

i=1

pϕ(n)(ri−1/(pi−1))
i ,

(4.1)

where ϕ(n) is the Euler ϕ-function and

n=
s∏

i=1

prii = prii mi with mi =
s∏

j=1, j≠i
p
rj
j . (4.2)

Let q be a prime number such that q2 divides Disc(φn). Then there exists i∈
{1, . . . ,s} such that q = pi. We have φ̄n(X) = (φ̄mi(X))

ϕ(p
ri
i ) (modpi), where

ϕ(prii )≥ 2, and

Res
(
φmi,φn

)= (−1)ϕ(mi)ϕ(n)Res
(
φn,φmi

)= Res
(
φn,φmi

)= pϕ(mi)
i ,

(4.3)

and we obtain that vpi(Res(φn,φmi))= deg(φmi(X)).
Now the result follows immediately from Theorem 3.3 and Proposition 3.2.

4.2. Monogenicity of the field K =Q(α), with α a root of P(X)=Xp−a
Proposition 4.2. Let α be a root of the irreducible polynomial P(X)=Xp−

a, where a is a squarefree integer and p is a prime number.
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(i) If p divides a, then OK = Z[α] if and only if a is squarefree.

(ii) If p does not divide a, then OK = Z[α] if and only if a is squarefree and

vp(ap−1−1)= 1.

Proof. We have P(X)=Xp−a= Irrd(α,Q) and

Disc(P)= (−1)p((p−1)/2)NK/Q
(
P ′(α)

)= (−1)(3p
2−p−2)/2p(ap)p−1. (4.4)

If p is odd, the only prime numbers q such that q2 divides Disc(P) are p and

the prime divisors of a. If p = 2, then 2 is the only prime number q such that

q2 divides Disc(P).
Let q be a prime number such that q2 divides Disc(P). We have two cases:

(1) if q does not divide a, then P̄ (X)= g(X)p in Fp[X], with g(X)= X−a,

and then Res(g,P)= P(a)= ap−a;

(2) if q divides a, then P̄ (X) = g(X)p in Fq[X], with g(X) = X and then

Res(g,P)= P(0)=−a.

In both cases, the result is deduced from Theorem 3.3.
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