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Motivated by the study of Gabriel dimension of a Grothendieck category, we intro-
duce the concept of atomical Grothendieck category, which has only two localizing
subcategories, and we give a classification of this type of Grothendieck categories.
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1. Introduction. Given a Grothendieck category �, we can associate with it

the lattice of all localizing categories of � and denote it by Tors(�). We will

show (Theorem 3.3) that if � has Gabriel dimension, then the lattice Tors(�)
is semi-Artinian. Moreover, the Gabriel dimension of � is exactly the Loewy

length of this lattice. Example 3.4 proves that the converse statement does

not hold. (Therefore, the properties of the lattice Tors(�) do not determine

the properties of the category �.) These facts suggest introducing the con-

cept of atomical Grothendieck category. Precisely, � will be called atomical if

the lattice Tors(�) has only two elements, that is, � has only two localizing

subcategories, namely, {0} and �. The classification of atomical Grothendieck

categories is given in Section 4.

2. Preliminaries. Throughout this paper, � will denote a Grothendieck cat-

egory, that is, an abelian category with a generator, such that colimits exist

and direct limits are exact.

It is well known that in a Grothendieck category each object X has an injec-

tive hull, denoted in the sequel by E(X).
If � is a category, then by a subcategory � of � we will always mean a full

subcategory of �.
A subcategory � of � is called closed (or hereditary pretorsion class) if it is

closed with respect to kernels, cokernels, and direct sums.

By σ[X] we denote the full subcategory of � whose objects are subobjects

of X-generated objects. These objects are said to be subgenerated by X, and

X is a subgenerator of σ[X]. This is the smallest closed full subcategory of �

containing X.

By definition, the objects of σ[X] form a closed subcategory in �. On the

other hand, every closed subcategory � in � is of the form σ[X] for some

object X; for example, for X equals the direct sum of all (nonisomorphic) cyclic

objects in �.
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Following Goldman [2], a functor τ : �→� is called a kernel functor if

(1) it is a subfunctor of the identity functor, that is, τ(M)⊆M and f :M →
M′ implies f(τ(M))⊆ τ(M′);

(2) N ⊆M implies τ(N)=N∩τ(M).
The trivial kernel functors 0 and∞ are defined by setting 0(X)= 0, and∞(X)=
X, for every object X ∈�.

For any kernel functor τ , X is called a τ-torsion module if τ(X) = X, and

a τ-torsion-free module if τ(X) = 0. The collection of �τ of all the τ-torsion

module is a closed subcategory of �. Conversely, for any closed subcategory

�, there exists a unique kernel functor τ such that �=�τ .

Lemma 2.1. Let G be a generator of � and � a closed subcategory. Then

�= σ[⊕{G/X |G/X ∈�}]. (2.1)

Corollary 2.2. The closed subcategories (and hence, the kernel functors)

form a set.

Proposition 2.3. The set of all closed subcategories of � is a complete lat-

tice. For a family {Xλ}Λ of objects of �,

∨

Λ
σ
[
Xλ
]= σ[⊕ΛXλ

]
,

∧

Λ
σ
[
Xλ
]=

⋂

Λ
σ
[
Xλ
]
.

(2.2)

Remark 2.4. (1) (cf. [4]). For a coalgebra C , the lattice of all closed subcate-

gories of the category of comodules over C is anti-isomorphic to the lattice of

subcoalgebras of C .

(2) The Serre subcategories of � (i.e., the subcategories � of � satisfying

that for any exact sequence from �,

0 �→X′′ �→X �→X′ �→ 0, (2.3)

whereX is in � if and only ifX′ andX′′ are in �) do not form a set. For example,

we consider the Grothendieck category � of vector spaces over a division ring.

For any cardinal α, the subcategory of all vector spaces of dimension less than

or equal to α is a Serre subcategory. Thus, the Serre subcategories of � are not

a set.

We now recall the notion of semi-Artinian lattice. Let L be an upper contin-

uous and modular lattice. An atom of L is a nonzero element a∈ L such that

whenever b ∈ L and b < a, then b = 0, that is, the interval [0,a] has exactly

two elements, 0 and a. If a,b ∈ L and x <y , then the interval [x,y] is simple

if y is an atom in the sublattice [x,y] of L. The lattice is called semiatomic if

1 is a joint of atoms, and L is called semi-Artinian if for every x ∈ L, x ≠ 1, the

sublattice [x,1] of L contains an atom.
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The (ascending) Loewy series of L,

s0(L) < s1(L) < ···< sλ(L)(L), (2.4)

is defined recursively as follows: s0(L) = 0, s1(L) is the socle Soc(L) of L (i.e.,

the join of all atoms of L), and if the elements sβ(L) of L have been defined

for all ordinals β < α, then sα(L) =
∨
β<α sβ(L) if α is a limit ordinal and sα =

Soc([sγ(L),1]) if α= γ+1.

The Loewy length λ(L) of L is the least ordinal such that sλ(L)= sλ+1(L).

3. Gabriel dimension and localizing subcategories. A subcategory � ⊆ �

is a localizing subcategory if it is closed under subobjects, quotient objects,

extensions, and coproducts. If � ⊆ � is an arbitrary subcategory, we denote

by �(�) the smallest localizing subcategory containing �.

Examples 3.1. (i) An object A ∈ � is singular if there exists a short exact

sequence

0 �→A′′ �→A′ �→A �→ 0, (3.1)

where the monomorphism is essential.

In any Grothendieck category, we can always consider the Goldie localizing

subcategory, denoted by �, as the smallest localizing subcategory containing

the singular objects.

(ii) We can associate to any injective object E ∈� a localizing subcategory

�E =
{
A∈� |Hom�(A,E)= 0

}
. (3.2)

This localizing subcategory is said to be cogenerated by E.

(iii) For a projective object P ∈�, we can define

�P =
{
A∈� |Hom�(P,A)= 0

}
. (3.3)

It is clear that �P is a localizing subcategory closed under direct product.

(iv) If S is a simple object in �, we denote by �S the smallest localizing

subcategory containing S. In fact,

�S = {M ∈� |N ⊂M, M/N contains a simple object isomorphic to S}.
(3.4)

The objects in this localizing subcategory are called S-primary.

Let � be a localizing subcategory. The corresponding torsion functor or

idempotent kernel functor is denoted by

t� : � �→�. (3.5)

This functor assigns to an object A ∈ � the maximal subobject t�(A) ⊆ A
in �. An object X ∈ � is �-torsion-free (resp., �-torsion) if t�(X) = 0 (resp.,
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t�(X) = X). Let H1t� denote the first higher derived functor of the left exact

functor t�. A �-torsion-free object E ∈� is �-closed if H1t� = 0.

If � is a localizing subcategory of �, we can consider the quotient category

�/�. We denote by T� : �→�/� the canonical functor and by S� : �/� →�

the right adjoint functor of T�.

It is well known that the category �/� is equivalent to the full subcategory

of � of �-closed objects.

It is well known that � has a set of localizing subcategories Tors(�). Given

a family of localizing subcategories (�i)i∈I , we define the meet by
∧
i∈I �i =⋂

i∈I �i, and the join by
∨
i∈I �i, as the smallest localizing subcategory contain-

ing the union of the �i. Notice that Tors(�) is not a sublattice of the lattice of

all closed subcategories of �. It is also known that this set is a frame (i.e., it is

a complete lattice L such that a∧(∨X)=∨{a∧x | x ∈X} for each element a
and subset X of L). Frames are also known as local lattices, complete Heyting

algebras, or complete Brouwerian lattices. The lattice of closed subcategories

is not a frame in general.

We need the following preliminary result.

Proposition 3.2. Let � be a Grothendieck category and let � ⊆� be a lo-

calizing subcategory. There exists a bijective correspondence between the local-

izing subcategories of �/� and the localizing subcategories � of � containing

�. Moreover, Tors(�/�) is a subframe of Tors(�)

Proof. Let T : �→�/� be the canonical functor. Consider �, a localizing

subcategory of � containing �, then T(�) = {Z ∈ �/� | Z 
 T(X), X ∈ �} is

a localizing subcategory of �/�. In fact, it is clear that T(�) is closed under

subobjects, quotients, and direct sums. It remains to show that T(�) is closed

under extensions. First, we observe that T(�)= {Z ∈�/� | S(Z)∈�}. To see

this, consider the exact sequence

0 �→ Kerf �→X �→ ST(X)
 S(Z) �→ Cokerf �→ 0, (3.6)

where Kerf , Cokerf ∈�. Therefore, Kerf , Cokerf ∈�, and X ∈� if and only

if S(Z)∈�. Now if

0 �→ Z′ �→ Z �→ Z′′ �→ 0 (3.7)

is an exact sequence in �/�, with Z′,Z′′ ∈ T(�), we apply the functor S to

obtain

0 �→ S(Z′) �→ S(Z) �→ S(Z′′). (3.8)

Thus, S(Z)∈� and Z ∈ T(�).
Let � be a localizing subcategory in �/�. we define T−1�= {X ∈� | T(X)∈

�}. Since T is an exact functor which commutes with direct sums, then T−1(�)
is a localizing subcategory which contains �. It is not difficult to see that these
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two operations establish a bijection between the localizing subcategories of

�/� and the localizing subcategories � of � containing �.

We now recall the notion of Gabriel dimension of a Grothendieck category

�. For any ordinal α, we will denote by �α the localizing subcategory defined

in the following way: �0 is the zero subcategory; �1 is the smallest localizing

subcategory containing all simple objects; if α = β+1, an object X of � will

be contained in �α if and only if Tβ(X) ∈ Ob(�/�β)1, where Tβ : � → �/�β
is the canonical functor; and if α is a limit ordinal, then �α is the localizing

subcategory generated by all localizing subcategories �β, with β≤α.

It is clear that if α≤α′, then �α ⊆�α′ . Hence, there exists an ordinal τ such

that �τ =�α for any ordinal α≥ τ . We define �τ =∪αCα.

The set of localizing subcategories �α is called the Gabriel filtration of �.

We say that an object X of � has Gabriel dimension if X is in �τ . Then the

smallest ordinal α verifying X in �α is called the Gabriel dimension of X.

We say that � has Gabriel dimension if �=�τ or, equivalently, any object of

� has Gabriel dimension. We are now ready for the main result of this section.

Theorem 3.3. Let � be Grothendieck category. If � has Gabriel dimension

α, then Tors(�) is a semi-Artinian lattice with Loewy length α.

Proof. We will show this result by transfinite induction. If G-dim� = 1,

then �=�1, the localizing subcategory generated by the simple objects of �.

Hence, �=∨�S .

Now, we assume that the result is true for any Grothendieck category of

Gabriel dimension β <α. If α= γ+1 is not a limit ordinal, then any object X ∈
� belongs to �α or, equivalently, Tγ(X) ∈ (�/�γ)1. Now, �γ = sγ(Tors(�γ)).
If X ∈ � satisfies that Tγ(X) is a simple object in �/�γ , then (�/�γ)Tγ(X) is

an atom in Tors(�/�γ). By Proposition 3.2, T−1
γ ((�/�γ)Tγ(X)) is an atom in

[�γ,�]. We will see that � = ∨T−1
γ (�/�γ)Tγ(X). Let A∈� and consider A →

A′ → 0, with A′ ≠ 0. Applying the functor Tγ , we obtain Tγ(A)→ Tγ(A′)→ 0.

If T(A′) = 0, the proof is finished; otherwise Tγ(A′) contains a simple ob-

ject Tγ(X). Therefore, we have K → X → A′ and A′ contains X/K which is in

T−1
γ (�/�γ)Tγ(X). If α is a limit ordinal �=⋃β<α�β, then �=∨β<α�β.

The next example shows that the converse of Theorem 3.3 is not true.

Example 3.4. Let R be a commutative nondiscrete valuation domain of

Krull dimension 1, with maximal ideal M . Then

(i) M2 =M ,

(ii) if x ∈M , then
⋂
n≥0Rxn = 0,

(iii) Tors(R-Mod) has four elements:

{0} ⊆ (R-Mod)R/M ⊆�⊆ R-Mod, (3.9)

where � is the usual torsion theory in a domain and (R-Mod)R/M is a

semisimple category,
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(iv) the quotient category R-Mod/(R-Mod)R/M has no simple objects,

(v) R-Mod has no Gabriel dimension.

Proof. (i) Take x ∈M . Since the valuation is not discrete, we can find an

element y ∈ M such that v(y2) = 2v(y) < v(x). Hence, x ∈ (y2) ⊆ M2 and

M =M2.

(ii) Let 	 =⋂n≥0Rxn. We claim that 	 is a prime ideal. Let a,b ∈ R with a �∈ 	

and b �∈ 	. Hence, there exist n and m such that a �∈ Rxn and b �∈ Rxm. Thus,

Rxn ⊂ Ra and Rxm ⊂ Rb. Then Rxn+m ⊂ Rxnb ⊂ Rab and ab �∈ 	. Therefore,

	 = 0.

(iii) Let � be a localizing subcategory properly containing (R-Mod)R/M and

let I be a nonzero ideal. We take J �M withR/J ∈�. Thus, there existx ∈M\J.

By (ii),
⋂
n≥0Rxn = 0, and it follows that Rxn ⊆ I for some n and R/I ∈�.

(iv) Any simple object of R-Mod/(R-Mod)R/M is given by an (R-Mod)R/M -

critical ideal, but this kind of ideals is prime. This prime is 0. So the cocritical

module is isomorphic to R. Therefore, R/I is semisimple for every nonzero

ideal I of R—a contradiction.

(v) The proof follows from (iv).

4. Atomical Grothendieck categories. We have proved in Theorem 3.3 that

if a Grothendieck category has Gabriel dimension, then the lattice of localiz-

ing subcategories is semi-Artinian. Example 3.4 shows that the converse is not

true. This fact suggests the study of Grothendieck categories � with the prop-

erty that the category � is an atom in the lattice Tors(�), that is, � has only

two localizing subcategories {0} and �.

Definition 4.1. A Grothendieck category � is called atomical if it has only

two localizing subcategories, namely, {0} and �.

A maximal localizing category � is a maximal element of Tors(�)−�. By

Proposition 3.2, � is a maximal localizing category of � if and only if �/� is

an atomical Grothendieck category.

Recall that an object C in � is called a cogenerator if for each nonzero

morphism f :X → Y in �, there exists a morphism g : Y → C such that gf ≠ 0.

This is equivalent to the existence of a monomorphism A→ CI for some index

set I, for every object A ∈ �. It is clear that an injective object E of � is a

cogenerator if and only if for each nonzero objectA∈�, there exists a nonzero

morphism f :A→ E.

Proposition 4.2. If � is a Grothendieck category, then � is an atomical

category if and only if every nonzero injective object of � is a cogenerator.

Moreover, if the category has enough projectives, then � is an atomical cat-

egory if and only if every nonzero projective object of � is a generator.

Proof. Assume that � is atomical, then any nonzero injective object co-

generates a nonzero torsion-free class. Hence, this torsion-free class must be



ATOMICAL GROTHENDIECK CATEGORIES 4507

the whole category and this injective is a cogenerator. Since any localizing

subcategory of � is cogenerated by an injective object, the converse is clear.

It is clear that for an atomical Grothendieck category �, we have that the

Goldie torsion theory has to be either {0} or �. In the first case, we say that

� is a nonsingular Grothendieck category and we characterize this type of

simple Grothendieck categories. Recall that a Grothendieck category � is called

spectral if any short exact sequence splits and a spectral Grothendieck category

is called discrete if every object is semisimple.

Proposition 4.3. Let � be a Grothendieck category. The category � is non-

singular atomical if and only if � is a spectral category which is equivalent to

R-Mod/�, where R is a regular prime self-injective ring and � is the Goldie lo-

calizing subcategory. Moreover, � contains a simple object if and only if R is

isomorphic to the ring of all linear transformations of a left vector space over a

division ring.

Proof. Suppose � is nonsingular and atomical. Since � is nonsingular,

then � = 0. Hence, X ⊆′ E(X) with E(X)/X singular, a matter which implies

that X = E(X) and any object is injective. Thus, � is a spectral Grothendieck

category.

Let U be a generator of � and R = Hom�(U,U), by the Gabriel-Oberst the-

orem [5, Chapter XII, Theorem 1.3] � is equivalent to R-Mod/�, where R is a

regular self-injective ring and � is the Goldie’s localizing subcategory. Since

R-Mod/� is atomical, then � is maximal. Hence, by [1, Theorem 2.2], 0= t�(R)
is a prime ideal.

Conversely, assume that R is a prime self-injective regular ring. Since R is

prime, then it is nonsingular. Thus, t�(R) = 0 is a prime ideal, where � is a

maximal localizing subcategory by [1, Theorem 2.2]. Therefore, R-Mod/� is

an atomical Grothendieck category.

Assume that � contains a simple object, then � coincides with the localizing

subcategory generated by this simple object. Hence, as an object in R-Mod/�,

R contains a simple object. Therefore, there exists a �-cocritical left ideal C of

R. If C is not simple as a left R-module, then we can find a finitely generated

left ideal I ≠ 0 contained in C . Since R is regular, there exists a left ideal J such

that I⊕J = R. Thus, C = I⊕(J∩C), which is a contradiction since I is essential

in C . Therefore, C is a simple left ideal and Soc(R)≠ 0. By [3, Theorem 9.12], R
is the ring of all linear transformations of any left vector space over a division

ring.

Conversely, if R is the ring of all linear transformations of any left vector

space over a division ring, then Soc(R) is not zero. Any simple left ideal will

produce a simple object in the quotient category.

We will now consider the case where the Goldie torsion theory coincides with

the whole category. When the Grothendieck category contains simple objects,
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we have the following characterization. Recall that a Grothendieck category �

is called semi-Artinian if every nonzero object of � contains a simple object.

Proposition 4.4. Let � be a singular Grothendieck category. If � is atomi-

cal, and it has simple objects, then � is a semi-Artinian Grothendieck category

with a unique isomorphic class of simple objects.

Proof. Since � is atomical, the localizing subcategory generated by a sim-

ple object coincides with category �. Hence, the result follows.

Proposition 4.5. Let � be a locally finitely generated Grothendieck cate-

gory. Then � is atomical if and only if any object of � is S-primary, and � is

semisimple or singular.

We now specialize our discussion to the module category R-Mod. In this

case, we have the following result.

Proposition 4.6. R-Mod is an atomical category if and only if the ring R is

local right perfect.

Proof. If R is local right perfect, then R-Mod is clearly atomical. Con-

versely, if R-Mod is atomical and R is nonsingular, then the Goldie torsion

theory is trivial. Hence, any module is injective and R is semisimple. Since

there is only an isomorphic class of simple modules, R is simple Artinian. We

only need to consider the case when R is singular. But then R-Mod= (R-Mod)S
for some simple left R-module S and there is only an isomorphic class of

left simple R-modules. Thus, R is semi-Artinian and J = ann(S). We will see

that R/J is a simple Artinian ring. In fact, consider Soc(R/J) = A/J ≠ 0. If

A ≠ R, then A ⊆ M for some maximal left ideal M . Therefore, A(R/M) = 0

and A⊆ ann(S)= J, a contradiction. Hence, A= R and R/J is simple Artinian.

Since R is semi-Artinian, J is T -nilpotent. Since R/J is simple Artinian and J
is T -nilpotent, then R is a local right perfect ring.

Now, we consider the case of closed subcategories of R-Mod.

Corollary 4.7. Let M be a left R-module. Then σ[M] is an atomical cat-

egory if and only if either M is semisimple or M is S-primary with S a simple

singular left R-module.

Finally, we present an example of a singular atomical Grothendieck category

without simple objects.

Example 4.8. We consider the same ring as in Example 3.4. Then the quo-

tient category �/(R-Mod)(R/M) is an atomical singular Grothendieck category

without simple objects.

Proof. We have proved that R-Mod/(R-Mod)(R/M) has no simple objects,

then �/(R-Mod)(R/M) has no simple objects. We also know from Example 3.4

that this category is atomical. We will denote by T : � → �/(R-Mod)(R/M) the
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canonical functor. Let 0 ≠ I ⊂ M be an ideal of R such that I ≠ M . It is clear

that R/I ∈ �, and R/I ∉ (R-Mod)(R/M). Let J/I be the torsion part of R/I ∈
(R-Mod)(R/M). Since M2 =M , then J ⊂M and J ≠M . By the exact sequence

0 �→ J/I �→ R/I �→ R/J �→ 0, (4.1)

it follows that T(R/I)� T(R/J). Since R is a valuation ring, we have that R/J is

a uniform (coirreducible) R-module, so T(R/J) is still uniform in the quotient

category. Denote X = T(R/J) � T(R/I). Then X is uniform and contains no

simple objects (because the category does not have nonzero simple objects).

Then we can consider Y as a nonzero subobject of X such that Y ≠ X. It is

clear that X/Y belongs to the Goldie torsion theory (of the quotient category)

and X/Y ≠ 0. As the quotient category is an atomical category, it must be the

same as the Goldie torsion theory.
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