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The native mathematical language of trigonometry is combinatorial. Two inter-
related combinatorial symmetric functions underlie trigonometry. We use their
characteristics to derive identities for the trigonometric functions of multiple dis-
tinct angles. When applied to the sum of an infinite number of infinitesimal angles,
these identities lead to the power series expansions of the trigonometric func-
tions. When applied to the interior angles of a polygon, they lead to two general
constraints satisfied by the corresponding tangents. In the case of multiple equal
angles, they reduce to the Bernoulli identities. For the case of two distinct angles,
they reduce to the Ptolemy identity. They can also be used to derive the De Moivre-
Cotes identity. The above results combined provide an appropriate mathematical
combinatorial language and formalism for trigonometry and more generally poly-
gonometry. This latter is the structural language of molecular organization, and is
omnipresent in the natural phenomena of molecular physics, chemistry, and biol-
ogy. Polygonometry is as important in the study of moderately complex structures,
as trigonometry has historically been in the study of simple structures.

2000 Mathematics Subject Classification: 51M10, 05A10, 05E05.

1. Introduction. Trigonometry plays an important role in classical, quan-

tum, and relativistic physics, mainly via the rotation group, Lorentz group,

Fourier series, and Fourier transform. As the complexity of the physical struc-

tures studied increases, the need for the trigonometry of general polygons,

or polygonometry, emerges. Polygonometry is omnipresent in the natural phe-

nomena of molecular physics, molecular chemistry, and molecular biology [5].

It is the structural language of molecular organization. It is as important in the

study of moderately complex discrete structures, as trigonometry has histor-

ically been in the study of simple structures. In solid state physics, we avoid

having to deal with general polygonometry by postulating symmetry. This, in

most cases, reduces the problem to one of regular polygons, which are a regular

superposition of isosceles triangles. On the other hand, in molecular biology,

the lack of symmetry is often an essential feature on which the proper func-

tioning and survival of the organism depend. In such cases, postulating sym-

metry means postulating away the problem. We still manage to avoid general

polygonometry either by approaching the problem statistically, or by doing nu-

merical simulations. But ultimately, our profound understanding of biological

structures requires a detailed analytic understanding at several length scales

simultaneously, and this drives the need for polygonometry.
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This paper is organized as follows. In Section 2, we put the subject of tri-

gonometry in perspective from the point of view of its historical origins, math-

ematical language, successive generalizations, hierarchy of complexity, un-

derlying combinatorial structure, fundamental identities, and formalism. In

Section 3.1, we introduce the symmetric functions Tnm(x1,x2,x3, . . . ,xn) and

Unm(x1,x2,x3, . . . ,xn;y1,y2,y3, . . . ,yn) as well as some of their more impor-

tant characteristics. These functions provide the basic mathematical language

of polygonometry. In Section 3.2, we use these functions to derive polygono-

metric identities for the trigonometric functions of multiple distinct angles,

and show that, in the special case of equal angles, they reduce to the Bernoulli

identities. In Section 3.3, we make three applications of the polygonometric

identities: to derive the De Moivre-Cotes identity, the power series expansions

of the trigonometric functions, and two constraints on the tangents of the in-

terior angles of a polygon. In Section 4, we show how the polygonometric iden-

tities provide a new ab initio scaling approach to trigonometry. Mathematical

proofs are left to the appendices. So is the compendium of useful identities.

2. Trigonometry in perspective

2.1. Historical origins. Trigonometry, being intimately related to astron-

omy, is a very old discipline of applied mathematics that was known to the

ancient Egyptian and Babylonian astronomers of the second or third millen-

nium B.C. [1, 24]. Officially, it is usually dated back to the earliest recorded table

of cords by Hipparchus of Nicaea in the second century B.C. [1, 3, 18, 23], or

possibly further back to Apollonius of Perga in the third century B.C. [26, 27].

Many generalizations of traditional plane trigonometry have been developed.

They range from the spherical trigonometry of Nenelaus, which goes back to

the first century A.D. [3], to trigonometry on SU(3) [6], which is one among a

number of relatively recent developments [9, 11, 13, 14, 20, 25].

The original language of trigonometry was geometrical, and trigonometric

functions were defined in terms of the arcs and chords of a circle. Following

the introduction of logarithms by John Napier in 1614 [17], the expressions

for the sine and cosine functions in terms of the exponentials were discovered

by Jean Bernoulli (1702), Roger Cotes (1714), Abraham De Moivre (1722), and

Leonhard Euler (1748) [17, 18, 24]. This established the role of the exponen-

tial function in trigonometry and opened the way to its generalization to the

hyperbolic trigonometry of Vincenzo Riccati (1757), Johann H. Lambert, and

William Wallace [17, 23, 24]. In this paper, we demonstrate that, beyond the

exponential function, the structure of trigonometry is combinatorial and this

again opens the way to more generalizations of trigonometry.

The Greek origin of the word trigonometry refers to the science of mea-

suring (“metron”) triangles (“trigonon”) [18], and this has generally been the

primary traditional concern of the subject [12]. Since any polygon can be de-

composed into triangles, then we can consider polygonometry as a special case
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of trigonometry. On the other hand, a triangle is a special case of a polygon,

and hence we can just as justifiably consider trigonometry as a special case

of polygonometry. It is this second perspective that we adopt here, and it has

considerable consequences for the formulation of the subject.

In as far as the number of independent angles is concerned, trigonometry

can be structured hierarchically into three subtrigonometries: the trigonom-

etry of equilateral triangles with no independent angles; the trigonometry of

isosceles triangles with one independent angle; and the trigonometry of gen-

eral triangles with two independent angles. The number of independent angles

in each subtrigonometry defines its rank. So the trigonometry of general tri-

angles is of rank two.

Regular planar polygons can be studied by subdividing them into isosceles

triangles and hence they belong to a trigonometry of rank one. On the other

hand, a general planar polygon of p-sides has p−1 independent angles, and

belongs to a trigonometry of rank p− 1, which we refer to as polygonome-

try. From this perspective, trigonometry becomes only the tip of the iceberg

in the vast domain of polygonometry. Since, as will be demonstrated in this

paper, the underlying mathematical structure of polygonometry is combina-

torial, then the same is true for trigonometry. This combinatorial character of

trigonometry has historically been mistaken for symmetry and is only evident

in retrospect from the general perspective of polygonometry.

2.2. Combinatorial structure. The combinatorial structure of polygonom-

etry manifests itself in the expressions for the hyperbolic trigonometric func-

tions of multiple distinct angles. These are

sinh
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

n∏
j=1

sinh�j θj cosh1−�j θj,

(2.1a)

cosh
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

n∏
j=1

sinh�j θj cosh1−�j θj, (2.1b)

tanh
(
θ1+θ2+···+θn

)=
∑�(n−1)/2�
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

∏n
j=1 tanh�j θj

∑�n/2�
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

∏n
j=1 tanh�j θj

. (2.1c)

The proof of these identities is one of the main purposes of this paper. Their

circular counterparts are obtained by making repeated use of the identities

sinhiθ = isinθ, coshiθ = cosθ, and tanhiθ = itanθ.

The above combinatorial identities set the foundations for general poly-

gonometry. In this paper, we give a simple, but at the same time general, rig-

orous, and explicit derivation of them by making use of the characteristics
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of the symmetric functions Tnm and Unm, which are introduced here as the ba-

sic functions of trigonometry and polygonometry. The proof is independent

of Ptolemy’s and De Moivre’s identities, and actually constitutes an alterna-

tive proof of these latter identities. The present approach via the symmetric

functions Tnm and Unm, provides a self-contained, autonomous foundation for

trigonometry.

Within the very restricted traditional scope of trigonometry, the above poly-

gonometric identities reduce to the formulas for the sine and cosine of the sum

of two angles. These latter are known since the time of Ptolemy of Alexandria

[1] in the second century A.D. They were also possibly known three centuries

earlier to Hipparchus of Nicaea [18]. It was not till the end of the sixteenth

century that mathematics went beyond the case n = 2, but only in the spe-

cial case of multiple equal angles. This was accomplished in 1591 by François

Viète who discovered the expressions for sin(nθ) and cos(nθ) in terms of

powers of sinθ and cosθ up to n= 10, using a recursive method [18, 24]. The

formulas, valid for all values of n, for the circular functions of multiple equal

angles, were found a little over a century later, in 1702, by Jakob Bernoulli

[18, 24]. Their hyperbolic counterparts were elaborated starting in the middle

of the eighteenth century by Vincenzo Riccati, Johann H. Lambert, and William

Wallace [17, 23, 24].

It was E. W. Hobson, towards the end of the nineteenth century, in 1891,

who seems to have been the first to go beyond n = 2 for the case of multiple

distinct angles [12]. Hobson gave two proofs for the expressions of the circu-

lar functions of multiple distinct angles. The first proof, using mathematical

induction, relies on Ptolemy’s identity, while the second proof, using exponen-

tials, is based on De Moivre’s identity. Hobson’s book [12] entitled A Treatise

on Plane and Advanced Trigonometry and republished by Dover in 1957, was

re-edited seven times between 1891 and 1928. In as far as advanced trigonom-

etry is concerned, Hobson’s book dominated the first third of the twentieth

century.

The second third of the twentieth century was dominated by the book of

Durell and Robson [8], entitled Advanced Trigonometry and re-edited 14 times

in between 1930 and 1959. Durell and Robson devote one paragraph to the

circular functions of multiple distinct angles. The paragraph is hidden in the

section on De Moivre’s theorem and its applications. Their proof is based on

De Moivre’s identity and is similar to the second proof of Hobson. They treat

the identities for the sine and cosine functions as intermediate steps in the

derivation of the identity for the tangent, and only this latter is identified with

an equation number.

The last third of the twentieth century was dominated by the Advanced

Trigonometry book of Miller and Walsh [19], published in 1962 and reprinted

in 1977, the only English-language advanced trigonometry book still in print.

Surprisingly, these authors do not mention the circular functions of multiple



THE COMBINATORIAL STRUCTURE OF TRIGONOMETRY 479

Table 2.1. Proofs of the polygonometric identities.

Year Author Ref. Angles Type Proof

150 Ptolemy 1 2 Distinct Geometrical

1591 François Viète 18 ≤ 10 Multiple Recursive

1702 Jakob Bernoulli 24 and 18 n Multiple Inductive

1891 E. W. Hobson 12 n Distinct Inductive

1891 E. W. Hobson 12 n Distinct De Moivre-Cotes

2001 Present work n Distinct Symmetric Fuctions

distinct angles at all. Rather, they restrict their attention exclusively to the case

of multiple equal angles. Trigonometric functions of multiple distinct angles

(whether circular or hyperbolic) are also totally absent from handbooks and

compendiums of mathematical formulae [2, 10, 21, 22]. A summary of the

above historical sketch of the different methods of deriving polygonometric

identities is given in Table 2.1.

2.3. Rosetta stone of trigonometry. Three striking facts emerge from the

previous discussion concerning the identities for the trigonometric functions

of multiple distinct angles: (i) their circular counterparts were discovered to-

wards the end of the nineteenth century; (ii) in theory, this should have opened

up the domain of general polygonometry, underlined the combinatorial char-

acter of trigonometry, and contributed to structural molecular biology; (iii)

in practice, the circular counterparts of the polygonometric identities had an

ephemeral existence, and did neither significantly integrate the cumulative

mass of mathematics, nor open up the domain of polygonometry, nor bring

attention to the surprising combinatorial character of trigonometry. This is a

very puzzling situation. It is like discovering the Rosetta stone [18], and then

losing it, without deciphering heliography.

A possible explanation may be found, at least partially, in the following ob-

servations. First, we note that the proof of Hobson is implicit. That is the reader

has to fill in many steps mentally, and it is precisely in these implicit steps that

the combinatorial character of the proof is hidden. Furthermore, the combi-

natorial character of the result was not underlined either, since Hobson did

not elaborate on the notation, nor did he give any explicit symbolic definition

of it. Second, Hobson was mainly concerned with triangles. According to the

first sentence of his book [12], “The primary object of the science of Plane

Trigonometry is to develop a method of solving triangles.” Third, at the end of

the nineteenth and the beginning of the twentieth century, structural molecu-

lar biology was still many decades ahead. So, it may be that the absence of an

appropriate language and an appropriate formalism, in conjunction with the

absence of the driving impetus of applications, may have contributed to the
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ephemeral existence of the circular counterparts of the above identities, thus,

relegating to oblivion their message and potential.

3. Polygonometry

3.1. The symmetric functions Tnm andUnm. The symmetric functions Tnm(xj ;
j ∈ Nn) and Unm(xj,yj ;j ∈ Nn) are defined over a set of partitions according

to

Tnm
(
xj ;j ∈Nn

)= ∑
�1+�2+···+�n=m

�j∈{0,1}

n∏
j=1

x
�j
j , m≤n, (3.1a)

Unm
(
xj,yj ;j ∈Nn

)= ∑
�1+�2+···+�n=m

�j∈{0,1}

n∏
j=1

x
�j
j y

1−�j
j , m≤n, (3.1b)

where Tnm(xj ;j ∈Nn) is the elementary symmetric function, and Unm(xj,yj ;
j ∈Nn) will be referred to as the associated elementary symmetric function.

The sums in (3.1a) and (3.1b) are taken over all partitions of m into n parts

{�1,�2,�3, . . . ,�n} subject to the constraint �j ∈ {0,1}. The variable n is a pos-

itive integer and the variable m is a nonnegative integer. Nn = {1,2, . . . ,n} is,

as usual, the set whose elements are the first n positive integers. For m> n,

Tnm =Unm = 0. It is easy to see that these functions are related by

Tnm
(
x1,x2, . . . ,xn

)=Unm(x1,x2, . . . ,xn;1,1, . . . ,1
)
, (3.2a)

Unm
(
xj,yj ;j ∈Nn

)=



n∏
j=1

yj


Tnm


xj
yj

;j ∈Nn

 (3.2b)

and that they obey the scaling laws,

Tnm
(
axj ;j ∈Nn

)≡ amTnm(xj ;j ∈Nn), (3.3a)

Unm
(
axj,byj ;j ∈Nn

)= ambn−mUnm(xj,yj ;j ∈Nn). (3.3b)

They also obey the recursion relations (see Appendix A),

Tnm
(
x1,x2, . . . ,xn

)= Tn−1
m

(
x1,x2, . . . ,xn−1

)+xnTn−1
m−1

(
x1,x2, . . . ,xn−1

)
, (3.4)

Unm
(
xj,yj ;j ∈Nn

)=ynUn−1
m

(
xj,yj ;j ∈Nn−1

)+xnUn−1
m−1

(
xj,yj ;j ∈Nn−1

)
,

(3.5)

the subsidiary conditions,

Unm>n
(
xj,yj ;j ∈Nn

)= Tnm>n(xj ;j ∈Nn)= 0, (3.6)
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and have as limiting cases:

Tn0
(
xj ;j ∈Nn

)= 1, (3.7a)

Un0
(
xj,yj ;j ∈Nn

)= n∏
j=1

yj, (3.7b)

Unn
(
xj,yj ;j ∈Nn

)= Tnn (xj ;j ∈Nn)=
n∏
j=1

xj. (3.8)

The above recursion relations and limiting cases lead to the following addi-

tional recursion relations:

xnTn−1
n−1

(
x1,x2, . . . ,xn−1

)= Tnn (x1,x2, . . . ,xn
)
, (3.9a)

xnUn−1
n−1

(
xj,yj ;j ∈Nn−1

)=Unn (xj,yj ;j ∈Nn), (3.9b)

ynUn−1
0

(
xj,yj ;j ∈Nn−1

)=Un0 (xj,yj ;j ∈Nn). (3.10)

The most important property of the Tnm and Unm functions, as far as the present

work is concerned, is that they satisfy the following “closure” relations:

n∏
j=1

(
xj+1

)= n∑
m=0

Tnm
(
xj ;j ∈Nn

)
, (3.11a)

n∏
j=1

(
xj+yj

)= n∑
m=0

Unm
(
xj,yj ;j ∈Nn

)= n∑
m=0

Unm
(
yj,xj ;j ∈Nn

)
. (3.11b)

The above closure relations can be easily obtained from the generating equa-

tion for the elementary symmetric function Tnm [16], combined with (3.2b) re-

lating Tnm and Unm. Alternatively, they can be derived directly as in Appendix B.

Finally, following standard combinatorial analysis [7], when all the n variables

are identical, the Tnm and Unm functions collapse to

Tnm(x,x, . . . ,x)=
(
n
m

)
xm, (3.12)

Unm(x,x, . . . ,x;y,y,. . . ,y)=
(
n
m

)
xmyn−m. (3.13)

From the binomial theorem, these collapsed expressions obey the relations

n∑
m=0

Tnm(x,x, . . . ,x)= (1+x)n, (3.14a)

n∑
m=0

Unm(x,x, . . . ,x;y,y,. . . ,y)= (x+y)n, (3.14b)

which are special cases of the closure relations (3.11). Relations (3.11), as well

as their special case (3.14), form the alphabet of polygonometry, and conse-

quently of trigonometry.
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3.2. The polygonometric identities. The proof of the hyperbolic polygono-

metric identities (identities for the hyperbolic functions of multiple distinct

angles in terms of the hyperbolic functions of the individual angles) as given

by (2.1), is essentially based on the closure relations (3.11a) and (3.11b). In ad-

dition, we also need the scaling laws (3.3a) and (3.3b), and, for now at least, we

use the defining relation

e±θ = coshθ±sinhθ. (3.15)

A scaling type definition of the trigonometric functions is introduced in Section

4, and from it (3.15) can be derived. Note also that an inductive proof of the

polygonometric identities necessarily depends on the Ptolemy identity (case

of two distinct angles). The proof given here does not and, as such, provides

an independent proof of Ptolemy’s identity.

Appendices C (Sine functions), D (Cosine functions), E (Tangent functions),

and F (Cotangent functions) provide a systematic grouping of polygonometric

identities, which are for the most part unavailable in the literature. We believe

that they will be more useful and easily applied, if they are systematically

grouped together in appendices rather than introduced in the main body of the

paper as they arise. Hence, we will refer to them, as needed, by their Appendix

number.

3.2.1. The sine

Theorem 3.1. The hyperbolic sine of multiple distinct angles is given by

sinh
(
θ1+θ2+···+θn

)= n∑
m=0
m odd

Unm
(
sinhθj,coshθj ;j ∈Nn

)
. (3.16)

Proof. From the defining equation (3.15), we have

2sinh
(
θ1+θ2+···+θn

)= e(θ1+θ2+···+θn)−e−(θ1+θ2+···+θn) =
n∏
j=1

eθj −
n∏
j=1

e−θj

=
n∏
j=1

(
coshθj+sinhθj

)− n∏
j=1

(
coshθj−sinhθj

)
.

(3.17)

Due to the closure relation (3.11b), this is equivalent to

2sinh
(
θ1+θ2+···+θn

)= n∑
m=0

Unm
(
sinhθj,coshθj ;j ∈Nn

)

−
n∑

m=0

Unm
(−sinhθj,coshθj ;j ∈Nn

) (3.18)
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and making use of the scaling law (3.3b), we have

sinh
(
θ1+θ2+···+θn

)

=
n∑

m=0

1
2

[
1−(−1)m

]
Unm

(
sinhθj,coshθj ;j ∈Nn

)
,

(3.19)

which is equivalent to (3.16). This completes the proof of the theorem.

The circular sine of multiple distinct angles can be obtained from the cor-

responding hyperbolic sine by making repeated use of the relations sinhiθ =
isinθ and coshiθ = cosθ as well as the scaling law (3.3b) to obtain (C.9) of

Appendix C. When all the angles are equal, then, due to (3.13), the identities for

the circular and hyperbolic sines reduce, respectively, to the Bernoulli identity

(C.14) for sin(nθ) [11, 18] and to its hyperbolic counterpart (C.6) for sinh(nθ).

3.2.2. The cosine. The hyperbolic cosine of multiple distinct angles is given

by

cosh
(
θ1+θ2+···+θn

)= n∑
m=0
m even

Unm
(
sinhθj,coshθj ;j ∈Nn

)
. (3.20)

The strategy of proof is identical to that used above in the case of the hyper-

bolic sine, and the same is true for the circular cosine, which can again be

obtained from the corresponding hyperbolic cosine by making repeated use

of the relations sinhiθ = isinθ and coshiθ = cosθ as well as the scaling law

(3.3b) to obtain identity (D.9) of Appendix D. When all the angles are equal,

then, due to (3.13), the identities for the circular and hyperbolic cosines re-

duce, respectively, to the Bernoulli identity (D.14) for cos(nθ) [8, 19] and to

its hyperbolic counterpart (D.6) for cosh(nθ).

3.2.3. The tangent. The hyperbolic tangent of multiple distinct angles is

given by

tanh
(
θ1+θ2+···+θn

)=
∑n

m=0
m odd

Tnm
(
tanhθj ;j ∈Nn

)
∑n

m=0
m even

Tnm
(
tanhθj ;j ∈Nn

) . (3.21)

Even though this expression can be proved directly by a proof similar to that

used above for the hyperbolic sine function, it is much simpler to obtain it from

(3.16) and (3.20) by making use of (3.2b) relating the Tnm and Unm functionals.

Similarly, the circular tangent of multiple distinct angles can be obtained

from the above equation (3.21) by making repeated use of the identity tanhiθ =
itanθ as well as the scaling law (3.3a). Alternatively, it can be obtained from the

identities for the circular sine and circular cosine by making use, once again,
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of (3.2b) relating Tnm and Unm. The resulting identity for the circular tangent

of multiple distinct angles is given by (E.5) of Appendix E. When all the angles

are equal, then, due to (3.12), the identities for the circular and hyperbolic

tangents reduce, respectively, to identity (E.8) for tan(nθ) and to its hyperbolic

counterpart (E.4) for tanh(nθ).

3.2.4. The cotangent. Due to the structure of identity (3.21), as a numerator

divided by a denominator, the hyperbolic cotangent of multiple distinct angles

is easily obtained as

coth
(
θ1+θ2+···+θn

)=
∑n

m=0
m even

Tnm
(
coth−1θj ; j ∈Nn

)
∑n

m=0
m odd

Tnm
(
coth−1θj ;j ∈Nn

) . (3.22)

Similarly, the circular cotangent of multiple distinct angles (F.5) is obtained

from (E.5). Alternatively, the circular cotangent of multiple distinct angles (F.5)

can be obtained from the hyperbolic cotangent (3.22) by repeated use of the

identity cothiθ = −icotθ, and the scaling law (3.3a). When all the angles are

equal, then, due to (3.12), the identities for the circular and hyperbolic cotan-

gents reduce, respectively, to identity (F.8) for cot(nθ) and to its hyperbolic

counterpart (F.4) for coth(nθ). Note that the numerator and denominator of

(F.4) and (F.8) have been multiplied by cothnθ and cotnθ, respectively.

Equations (3.16), (3.20), (3.21), and (3.22) as well as their circular counter-

parts and limiting cases can be written more explicitly in a number of conve-

nient ways. A compendium is given in Appendices C, D, E, and F, respectively.

3.3. The applications

3.3.1. De Moivre-Cotes identity. There are a number of ways of obtaining

the De Moivre-Cotes identity [18, 19] as well as its hyperbolic counterpart.

The derivation presented here is based on the polygonometric identities, the

binomial theorem, and the fact that the sine and cosine functions are eigen-

functions of the parity operator. Starting with (C.6) and (D.6) for the hyperbolic

sine and cosine, we have

cosh(nθ)+sinh(nθ)=
n∑

m=0
m even

(
n
m

)
sinhmθcoshn−mθ

+
n∑

m=0
m odd

(
n
m

)
sinhmθcoshn−mθ

=
n∑

m=0

(
n
m

)
sinhmθcoshn−mθ

= (coshθ+sinhθ)n.

(3.23)
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Similarly, from (C.14) and (D.14) for the circular sine and cosine, respectively,

we have

cos(nθ)+isin(nθ)=
n∑

m=0
m even

im
(
n
m

)
sinmθcosn−mθ

+i
n∑

m=0
m odd

im−1

(
n
m

)
sinmθcosn−mθ

=
n∑

m=0

im
(
n
m

)
sinmθcosn−mθ = (cosθ+isinθ)n.

(3.24)

3.3.2. Power series expansion of the trigonometric functions. The poly-

gonometric identities, in the special case of multiple equal angles, can be used

to generate the power series of the sine and cosine functions. The procedure

is the same in both cases, and so it is sufficient to make the demonstration for

only one of them. For the hyperbolic sine, for example, (C.6) for sinh(nθ) can

be rewritten as

sinhθ =
n∑

m=0
m odd

(
n
m

)
sinhm

(
θ
n

)
coshn−m

(
θ
n

)
. (3.25)

In the limit as n→∞, sinh(θ/n)→ θ/n, and cosh(θ/n)→ 1. More precisely,

we have the scaling limits

lim
n→∞sinh

(
sinh

(
θ
n

))
�→ sinh

(
θ
n

)
, lim

n→∞cosh
(

sinh
(
θ
n

))
�→ 1. (3.26)

Within the context of a self-consistent scaling type definition of the trigo-

nometric functions, these limiting equations become the defining equations

of the trigonometry. Plugging θ/n for sinh(θ/n) and 1 for cosh(θ/n), and let-

ting n→∞, we obtain (this derivation can be made rigorous but we omit the

details here)

sinhθ = lim
n→∞

n∑
m=0
m odd

(
n
m

)
θm

nm
. (3.27)

To evaluate the limit, we use the identity

lim
n→∞

(
n
m

)
1
nm

= 1
m!

, (3.28)

thus, reducing (3.27) to

sinhθ =
∞∑
m=0
m odd

θm

m!
=

∞∑
k=0

θ2k+1

(2k+1)!
, (3.29)
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which is the power series expansion or sinhθ. The derivation for coshθ is

similar, and from the power series expansions of sinhθ and coshθ, we can

obtain the power series of the other trigonometric functions.

3.3.3. Constraints on the interior angles of a polygon. Let the interior an-

gles of a p-sided polygon be {θ1,θ2, . . . ,θp}. The sum of these angles is given

by [3]

θ1+θ2+···+θp = (p−2)π, (3.30)

and consequently,

sin
(
θ1+θ2+···+θp

)= 0, (3.31a)

cos
(
θ1+θ2+···+θp

)= (−1)p. (3.31b)

Combining (C.13) of Appendix C, and (D.13) of Appendix D with the above

equations (3.31), we see that the interior angles of a p-sided polygon obey the

following relations:

�(p−1)/2�∑
k=0

(−1)k
∑

�1+�2+···+�p=2k+1
�j∈{0,1}

p∏
j=1

tan�j θj = 0, (3.32a)

�p/2�∑
k=0

(−1)k+p
∑

�1+�2+···+�p=2k
�j∈{0,1}

p∏
j=1

tan�j θj =
p∏
j=1

secθj. (3.32b)

For a triangle, the above equations reduce to

3∑
j=1

tanθj =
3∏
j=1

tanθj,

∑
�1+�2+�3=2
�j∈{0,1}

3∏
j=1

tan�j θj = 1+
3∏
j=1

secθj,
(3.33)

or explicitly,

tanθ1+tanθ2+tanθ3 = tanθ1 tanθ2 tanθ3, (3.34)

cotθ1+cotθ2+cotθ3 = cotθ1 cotθ2 cotθ3+cscθ1 cscθ2 cscθ3. (3.35)

Equation (3.34) is the well-known constraint on the tangents of the angles of

a triangle. Its equivalent for a quadrilateral works out to

tanθ1+tanθ2+tanθ3+tanθ4

cotθ1+cotθ2+cotθ3+cotθ4
= tanθ1 tanθ2 tanθ3 tanθ4. (3.36)

Beyond the cases of the triangle and the quadrilateral, (3.32) can be worked

out as needed for any value of p.
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4. Scaling approach to trigonometry. The derivation in Section 3.3.2 of the

power series expansions for the trigonometric functions, when combined with

the trigonometric identities (2.1) opens the way to a completely new approach

to trigonometry. Equation (2.1) can now be looked upon as the defining equa-

tions of a whole class of sine, cosine, and tangent type functions, respectively.

The defining equation being a scaling type equation, whereby the function of

the whole is related (by a combinatorial expression) to the same function of

its components. That is,

f
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

n∏
j=1

[
f
(
θj
)]�j [g(θj)]1−�j ,

(4.1a)

g
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

n∏
j=1

[
f
(
θj
)]�j [g(θj)]1−�j ; (4.1b)

the usual hyperbolic sine and cosine functions are then selected by the auxil-

iary conditions

lim
θ→0

f(θ)
θ

�→ 1, lim
θ→0

g(θ) �→ 1. (4.2)

More precisely, they are selected by the scaling limits

lim
θ→0

f
(
f(θ)

)
f(θ)

�→ 1, lim
θ→0

g
(
f(θ)

)
�→ 1. (4.3)

These auxiliary conditions lead, via the multiple equal angle special case of

the above identities (4.1), to unique power series expansions of the trigono-

metric functions, thus completely defining them. Relation (3.15) between the

trigonometric functions and the exponential function is then easily recovered,

as well as Ptolmey’s theorem which is a special case of (4.1a). We thus have

a new, scaling-type combinatorial approach to trigonometry which opens the

way to a new class of generalized trigonometries obtained by varying the lim-

iting conditions appearing in (4.3).

5. Conclusion. Polygonometry finds its natural mathematical language in

the symmetric functions Tnm and Unm as defined by (3.1a) and (3.1b). These are

combinatorial expressions defined over partitions. Their most important char-

acteristics, in as far as polygonometry is concerned, are the scaling laws (3.3a)

and (3.3b), and the closure relations (3.11a) and (3.11b). These functions pro-

vide a simple expression as well as a simple, explicit, and elegant derivation

of the Polygonometric identities (trigonometric functions of multiple distinct

angles in terms of the trigonometric functions of the individual angles). These



488 ADEL F. ANTIPPA

latter identities, in turn, provide a complete self-coherent structure for general

polygonometry, permitting among other things the derivation of the Ptolemy

identity, the De Moivre-Cotes identity, the Bernoulli identities, and power se-

ries expansions for the trigonometric functions. They also provide the tools

to handle general polygons, which are expected to play an important role in

detailed analytic structural molecular modeling, and in moderately complex

discrete structures in general.

Appendices

A. Recursion relations

Theorem A.1. The symmetric functions Unm(xj,yj ;j ∈Nn) and Tnm(xj ;j ∈
Nn) obey the recursion relations

Unm
(
xj,yj ;j ∈Nn

)=ynUn−1
m

(
xj,yj ;j ∈Nn−1

)+xnUn−1
m−1

(
xj,yj ;j ∈Nn−1

)
,

(A.1)

Tnm
(
xj ;j ∈Nn

)= Tn−1
m

(
xj ;j ∈Nn−1

)+xnTn−1
m−1

(
xj ;j ∈Nn−1

)
. (A.2)

Proof. The functions Unm(xj,yj ;j ∈Nn) are defined by

Unm
(
xj,yj ;j ∈Nn

)= ∑
�1+�2+···+�n=m

�j∈(0,1)

n∏
j=1

x
�j
j y

1−�j
j . (A.3)

Since �n ∈ {0,1}, then �n can either take the value 0 or the value 1. Thus, the

above sum can be separated into two parts, one in which �n is held fixed at

the value 0 and the other in which �n is held fixed at the value 1:

Unm
(
xj,yj ;j ∈Nn

)= ∑
�1+�2+···+�n=m
�j∈(0,1) for j �=n

�n=0

n∏
j=1

x
�j
j y

1−�j
j

+
∑

�1+�2+···+�n=m
�j∈(0,1) for j �=n

�n=1

n∏
j=1

x
�j
j y

1−�j
j .

(A.4)

Applying the respective constraints on �n in each sum, we obtain

Unm
(
xj,yj ;j ∈Nn

)=yn ∑
�1+�2+···+�n−1=m

�j∈(0,1)

n−1∏
j=1

x
�j
j y

1−�j
j

+xn
∑

�1+�2+···+�n−1=m−1
�j∈(0,1)

n−1∏
j=1

x
�j
j y

1−�j
j

(A.5)
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which, due to definition (A.3), is equivalent to the recursion relation

Unm
(
xj,yj ;j ∈Nn

)=ynUn−1
m

(
xj,yj ;j ∈Nn−1

)
+xnUn−1

m−1

(
xj,yj ;j ∈Nn−1

)
.

(A.6)

This proves the recursion relation (A.1). The recursion relation (A.2) for Tnm
then follows by setting, in (A.6), yj = 1 for all j ∈Nn and making use of (3.2a).

B. Closure relations. We will first prove the closure relation (3.11b) for Unm.

The closure relation (3.11a) for Tnm then follows in a straightforward way due

to (3.2a).

Theorem B.1. The symmetric function Unm(xj, yj ;j ∈Nn) obeys the closure

relation:

n∏
j=1

(
xj+yj

)= n∑
m=0

Unm
(
xj,yj ;j ∈Nn

)
. (B.1)

Proof. The proof is carried out by mathematical induction on n. First, for

n= 1, (B.1) reduces to

(
x1+y1

)=U1
0

(
x1,y1

)+U1
1

(
x1,y1

)= x1+y1, (B.2)

where the last equality follows from (3.7b) and (3.8). Hence (B.1) is valid for

n= 1. Next, we assume the equation to be valid for n−1 and prove its validity

for n. We have

n∏
i=1

(
xi+yi

)=

n−1∏
i=1

(
xi+yi

)(xn+yn)

=

 n−1∑
m=0

Un−1
m

(
xj,yj ;j ∈Nn−1

)(xn+yn),
(B.3)

where the second equality follows from the induction hypothesis. To produce

a Unm term from the Un−1
m term appearing in (B.3) we only have at our disposal

the recursion relations (3.5), (3.9b). Thus we manipulate the above expression

(B.3) in order to produce summands that are in the form of the right-hand side

of these recursion relations. Starting with the result of (B.3), we perform the
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following manipulations:

n∏
i=1

(
xi+yi

)= n−1∑
m=0

xnUn−1
m

(
xj,yj ;j ∈Nn−1

)+ n−1∑
m=0

ynUn−1
m

(
xj,yj ;j ∈Nn−1

)

=
n∑

m=1

xnUn−1
m−1

(
xj,yj ;j ∈Nn−1

)+ n−1∑
m=0

ynUn−1
m

(
xj,yj ;j ∈Nn−1

)

=
n−1∑
m=1

[
xnUn−1

m−1

(
xj,yj ;j ∈Nn−1

)+ynUn−1
m

(
xj,yj ;j ∈Nn−1

)]

+xnUn−1
n−1

(
xj,yj ;j ∈Nn−1

)+ynUn−1
0

(
xj,yj ;j ∈Nn−1

)
,

(B.4)

and due to the recursion relations (3.5) and (3.9b), the above expression re-

duces to

n∏
i=1

(
xi+yi

)= n−1∑
m=1

Unm
(
xj,yj ;j ∈Nn

)

+Unn
(
xj,yj ;j ∈Nn

)+Un0 (xj,yj ;j ∈Nn),
(B.5)

which is equivalent to (B.1). Hence the proof by induction is completed and

(B.1) is true for all positive integer values of n.

C. Identities for sine functions

Hyperbolic sine. The hyperbolic sine of multiple distinct angles is given

by

sinh
(
θ1+θ2+···+θn

)= n∑
m=0
m odd

Unm
(
sinhθj,coshθj ;j ∈Nn

)
, (C.1)

sinh
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

Un2k+1

(
sinhθj,coshθj ;j ∈Nn

)
. (C.2)

Due to relation (3.2a) between Tnm and Unm, the above equations are equivalent

to

sinh
(
θ1+θ2+···+θn

)
∏n
j=1 coshθj

=
n∑

m=0
m odd

Tnm
(
tanhθj ;j ∈Nn

)

=
�(n−1)/2�∑
k=0

Tn2k+1

(
tanhθj ;j ∈Nn

) (C.3)



THE COMBINATORIAL STRUCTURE OF TRIGONOMETRY 491

and using definitions (3.1) for Tnm and Unm, (C.2) and (C.3) can be rewritten

explicitly as

sinh
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

n∏
j=1

sinh�j θj cosh1−�j θj,

(C.4)

sinh
(
θ1+θ2+···+θn

)
∏n
j=1 coshθj

=
�(n−1)/2�∑
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

n∏
j=1

tanh�j θj. (C.5)

When all the angles are equal, the above expressions reduce to

sinh(nθ)=
n∑

m=0
m odd

(
n
m

)
sinhmθcoshn−mθ, (C.6)

sinh(nθ)=
�(n−1)/2�∑
k=0

(
n

2k+1

)
sinh2k+1θcoshn−2k−1θ, (C.7)

sinh(nθ)
coshnθ

=
n∑

m=0
m odd

(
n
m

)
tanhmθ =

�(n−1)/2�∑
k=0

(
n

2k+1

)
tanh2k+1θ. (C.8)

Circular sine. The circular sine of multiple distinct angles is given by

sin
(
θ1+θ2+···+θn

)= n∑
m=0
m odd

im−1Unm
(
sinθj,cosθj ;j ∈Nn

)
, (C.9)

sin
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

(−1)kUn2k+1

(
sinθj,cosθj ;j ∈Nn

)
. (C.10)

Due to relation (3.2a) between Tnm and Unm, the above equations are equivalent

to

sin
(
θ1+θ2+···+θn

)
∏n
j=1 cosθj

=
n∑

m=0
m odd

im−1Tnm
(
tanθj ;j ∈Nn

)

=
�(n−1)/2�∑
k=0

(−1)kTn2k+1

(
tanθj ;j ∈Nn

) (C.11)
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and using definitions (3.1) for Tnm and Unm, (C.10) and (C.11) are rewritten ex-

plicitly as

sin
(
θ1+θ2+···+θn

)= �(n−1)/2�∑
k=0

(−1)k
∑

�1+�2+···+�n=2k+1
�j∈{0,1}

n∏
j=1

sin�j θj cos1−�j θj,

(C.12)

sin
(
θ1+θ2+···+θn

)
∏n
j=1 cosθj

=
�(n−1)/2�∑
k=0

(−1)k
∑

�1+�2+···+�n=2k+1
�j∈{0,1}

n∏
j=1

tan�j θj. (C.13)

When all the angles are equal, the above expressions reduce to

sin(nθ)=
n∑

m=0
m odd

im−1

(
n
m

)
sinmθcosn−mθ, (C.14)

sin(nθ)=
�(n−1)/2�∑
k=0

(−1)k
(

n
2k+1

)
sin2k+1θcosn−2k−1θ, (C.15)

sin(nθ)
cosnθ

=
n∑

m=0
m odd

im−1

(
n
m

)
tanmθ =

�(n−1)/2�∑
k=0

(−1)k
(

n
2k+1

)
tan2k+1θ. (C.16)

D. Identities for cosine functions

Hyperbolic cosine. The hyperbolic cosine of multiple distinct angles is

given by

cosh
(
θ1+θ2+···+θn

)= n∑
m=0
m even

Unm
(
sinhθj,coshθj ;j ∈Nn

)
, (D.1)

cosh
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

Un2k
(
sinhθj,coshθj ;j ∈Nn

)
. (D.2)

Due to relation (3.2a) between Tnm and Unm, the above equations are equivalent

to

cosh
(
θ1+θ2+···+θn

)
∏n
j=1 coshθj

=
n∑

m=0
m even

Tnm
(
tanhθj ;j ∈Nn

)

=
�n/2�∑
k=0

Tn2k
(
tanhθj ;j ∈Nn

)
,

(D.3)
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and using definitions (3.1) for Tnm and Unm, (D.2) and (D.3) are rewritten explic-

itly as

cosh
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

n∏
j=1

sinh�j θj cosh1−�j θj, (D.4)

cosh
(
θ1+θ2+···+θn

)
∏n
j=1 coshθj

=
�n/2�∑
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

n∏
j=1

tanh�j θj. (D.5)

When all the angles are equal, the above expressions reduce to

cosh(nθ)=
n∑

m=0
m even

(
n
m

)
sinhmθcoshn−mθ, (D.6)

cosh(nθ)=
�n/2�∑
k=0

(
n
2k

)
sinh2k θcoshn−2k θ, (D.7)

cosh(nθ)
coshnθ

=
n∑

m=0
m even

(
n
m

)
tanhmθ =

�n/2�∑
k=0


n

2k


tanh2k θ. (D.8)

Circular cosine. The circular cosine of multiple distinct angles is given

by

cos
(
θ1+θ2+···+θn

)= n∑
m=0
m even

imUnm
(
sinθj,cosθj ;j ∈Nn

)
, (D.9)

cos
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

(−1)kUn2k
(
sinθj,cosθj ;j ∈Nn

)
. (D.10)

Due to relation (3.2a) between Tnm and Unm, the above equations are equivalent

to

cos
(
θ1+θ2+···+θn

)
∏n
j=1 cosθj

=
n∑

m=0
m even

imTnm
(
tanθj ;j ∈Nn

)

=
�n/2�∑
k=0

(−1)kTn2k
(
tanθj ;j ∈Nn

)
,

(D.11)



494 ADEL F. ANTIPPA

and using definitions (3.1) for Tnm and Unm, (D.10) and (D.11) are rewritten ex-

plicitly as

cos
(
θ1+θ2+···+θn

)= �n/2�∑
k=0

(−1)k
∑

�1+�2+···+�n=2k
�j∈{0,1}

n∏
j=1

sin�j θj cos1−�j θj,

(D.12)

cos
(
θ1+θ2+···+θn

)
∏n
j=1 cosθj

=
�n/2�∑
k=0

(−1)k
∑

�1+�2+···+�n=2k
�j∈{0,1}

n∏
j=1

tan�j θj. (D.13)

When all the angles are equal, the above expressions reduce to

cos(nθ)=
n∑

m=0
m even

im
(
n
m

)
sinmθcosn−mθ, (D.14)

cos(nθ)=
�n/2�∑
k=0

(−1)k
(
n
2k

)
sin2k θcosn−2k θ, (D.15)

cos(nθ)
cosnθ

=
n∑

m=0
m even

im
(
n
m

)
tanmθ =

�n/2�∑
k=0

(−1)k
(
n
2k

)
tan2k θ. (D.16)

E. Identities for tangent functions

Hyperbolic tangent. The hyperbolic tangent of multiple distinct angles

is given by

tanh
(
θ1+θ2+···+θn

)=
∑n

m=0
m odd

Tnm
(
tanhθj ;j ∈Nn

)
∑n

m=0
m even

Tnm
(
tanhθj ;j ∈Nn

) , (E.1)

tanh
(
θ1+θ2+···+θn

)=
∑�(n−1)/2�
k=0 Tn2k+1

(
tanhθj ;j ∈Nn

)
∑�n/2�
k=0 Tn2k

(
tanhθj ;j ∈Nn

) , (E.2)

and using definition (3.1a) for Tnm, this is rewritten explicitly as

tanh
(
θ1+θ2+···+θn

)=
∑�(n−1)/2�
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

∏n
j=1 tanh�j θj

∑�n/2�
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

∏n
j=1 tanh�j θj

. (E.3)
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When all the angles are equal, the above expressions reduce to

tanh(nθ)=
∑n

m=0
m odd

(
n
m

)
tanhmθ

∑n
m=0
m even

(
n
m

)
tanhmθ

=
∑�(n−1)/2�
k=0

(
n

2k+1

)
tanh2k+1θ∑�n/2�

k=0

(
n
2k

)
tanh2k θ

. (E.4)

Circular tangent. The circular tangent of multiple distinct angles is

given by

tan
(
θ1+θ2+···+θn

)=
∑n

m=0
m odd

im−1Tnm
(
tanθj ;j ∈Nn

)
∑n

m=0
m even

imTnm
(
tanθj ;j ∈Nn

) , (E.5)

tan
(
θ1+θ2+···+θn

)=
∑�(n−1)/2�
k=0 (−1)kTn2k+1

(
tanθj ;j = 1,2, . . . ,n

)
∑�n/2�
k=0 (−1)kTn2k

(
tanθj ;j = 1,2, . . . ,n

) , (E.6)

and using definition (3.1a) for Tnm, this is rewritten explicitly as

tan
(
θ1+θ2+···+θn

)=
∑�(n−1)/2�
k=0 (−1)k

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

∏n
j=1 tan�j θj

∑�n/2�
k=0 (−1)k

∑
�1+�2+···+�n=2k

�j∈{0,1}

∏n
j=1 tan�j θj

.

(E.7)

When all the angles are equal, the above expressions reduce to

tan(nθ)=
∑n

m=0
m odd

im−1
(
n
m

)
tanmθ

∑n
m=0
m even

im
(
n
m

)
tanmθ

=
∑�(n−1)/2�
k=0 (−1)k

(
n

2k+1

)
tan2k+1θ∑�n/2�

k=0 (−1)k
(
n
2k

)
tan2k θ

. (E.8)

F. Identities for cotangent functions

Hyperbolic cotangent. The hyperbolic cotangent of multiple distinct

angles is given by

coth
(
θ1+θ2+···+θn

)=
∑n

m=0
m even

Tnm
(
coth−1θj ;j ∈Nn

)
∑n

m=0
m odd

Tnm
(
coth−1θj ;j ∈Nn

) , (F.1)

coth
(
θ1+θ2+···+θn

)=
∑�n/2�
k=0 Tn2k

(
coth−1θj ;j = 1,2, . . . ,n

)
∑�(n−1)/2�
k=0 Tn2k+1

(
coth−1θj ;j = 1,2, . . . ,n

) , (F.2)
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and using definition (3.1a) for Tnm, this is rewritten explicitly as

coth
(
θ1+θ2+···+θn

)=
∑�n/2�
k=0

∑
�1+�2+···+�n=2k

�j∈{0,1}

∏n
j=1 coth1−�j θj

∑�(n−1)/2�
k=0

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

∏n
j=1 coth1−�j θj

, (F.3)

where we have multiplied both the numerator and the denominator by the

product over j of cothθj .
When all the angles are equal, the above expressions reduce to

coth(nθ)=
∑n

m=0
m even

(
n
m

)
cothn−mθ

∑n
m=0
m odd

(
n
m

)
cothn−mθ

=
∑�n/2�
k=0

(
n
2k

)
cothn−2k θ∑�(n−1)/2�

k=0

(
n

2k+1

)
cothn−2k−1θ

. (F.4)

Circular cotangent. The circular cotangent of multiple distinct angles

is given by

cot
(
θ1+θ2+···+θn

)=
∑n

m=0
m even

imTnm
(
cot−1θj ;j ∈Nn

)
∑n

m=0
m odd

im−1Tnm
(
cot−1θj ;j ∈Nn

) , (F.5)

cot
(
θ1+θ2+···+θn

)=
∑�n/2�
k=0 (−1)kTn2k

(
cot−1θj ;j ∈Nn

)
∑�(n−1)/2�
k=0 (−1)kTn2k+1

(
cot−1θj ;j ∈Nn

) , (F.6)

and using definition (3.1a) for Tnm, this is rewritten explicitly as

cot
(
θ1+θ2+···+θn

)=
∑�n/2�
k=0 (−1)k

∑
�1+�2+···+�n=2k

�j∈{0,1}

∏n
j=1 cot1−�j θj

∑�(n−1)/2�
k=0 (−1)k

∑
�1+�2+···+�n=2k+1

�j∈{0,1}

∏n
j=1 cot1−�j θj

,

(F.7)

where, in the last expression, we have again multiplied the numerator and the

denominator by the product over j of cotθj . When all the angles are equal, the

above expressions reduce to

cot(nθ)=
∑n

m=0
m even

im
(
n
m

)
cotn−mθj∑n

m=0
m odd

im−1
(
n
m

)
cotn−mθj

=
∑�n/2�
k=0 (−1)k

(
n
2k

)
cotn−2k θ∑�(n−1)/2�

k=0 (−1)k
(

n
2k+1

)
cotn−2k−1θ

.

(F.8)
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G. De Moivre-Cotes type polygonometric identities. The present paper

has its origins in the relativistic problem of superposition of multiple collinear

velocities [4]. Soon after terminating that work, it was realized that the results

obtained are but the tip of the iceberg of a much more general problem, that

of the combinatorial structure of trigonometry as presented here. Recently,

Loewenthal and Robinson [15], commenting on the problem of superposition

of relativistic velocities, have pointed out the existence and usefulness of a

compact multiplicative De Moivre-Cotes type representation of the results.

These types of identities for the polygonometric functions, actually arise in

the intermediate steps of the derivation of Theorem 3.1. Even though, these

compact forms correspond to a partial reversal of the proofs of the identities

presented in Appendices C, D, E, and F, they are nonetheless of practical im-

portance, especially in performing numerical computations, and are presented

here for completeness. As a preliminary result, we need identities for the sym-

metric functions Tnm and Unm. These are derived from the closure relations.

Identities satisfied by the symmetric functions Tnm and Unm. Using

the scaling laws (3.3), we easily obtain

2
n∑

m=0
m even(odd)

Unm
(
xj,yj ;j ∈Nn

)

=
n∑

m=0

Unm
(
xj,yj ;j ∈Nn

)± n∑
m=0

Unm
(−xj,yj ;j ∈Nn),

(G.1)

and using (3.2), which relate the Tnm and Unm functions, we obtain

2
n∑

m=0
m even(odd)

Tnm
(
xj ;j ∈Nn

)= n∑
m=0

Tnm
(
xj ;j ∈Nn

)± n∑
m=0

Tnm
(−xj ;j ∈Nn). (G.2)

Then, making use of the closure relations (3.11) leads to

2
n∑

m=0
m even(odd)

Unm
(
xj,yj ;j ∈Nn

)= n∏
j=1

(
xj+yj

)± n∏
j=1

(−xj+yj), (G.3)

or equivalently,

2
n∑

m=0
m even(odd)

Unm
(
xj,yj ;j ∈Nn

)=



n∏
j=1

(
1+ xj

yj

)
±

n∏
j=1

(
1− xj

yj

)


n∏
j=1

yj, (G.4)

2
n∑

m=0
m even(odd)

Tnm
(
xj ;j ∈Nn

)= n∏
j=1

(
1+xj

)± n∏
j=1

(
1−xj

)
. (G.5)



498 ADEL F. ANTIPPA

Identities satisfied by the polygonometric functions. Applying

the above results to the polygonometric identities as given in Appendices C,

D, E, and F leads to the following hyperbolic polygonometric identities:

2sinh
(
θ1+θ2+···+θn

)= n∏
j=1

(
coshθj+sinhθj

)− n∏
j=1

(
coshθj−sinhθj

)
,

(G.6a)

2cosh
(
θ1+θ2+···+θn

)= n∏
j=1

(
coshθj+sinhθj

)+ n∏
j=1

(
coshθj−sinhθj

)
,

(G.6b)

tanh
(
θ1+θ2+···+θn

)=
∏n
j=1

(
1+tanhθj

)−∏n
j=1

(
1−tanhθj

)
∏n
j=1

(
1+tanhθj

)+∏n
j=1

(
1−tanhθj

) (G.6c)

and the following circular polygonometric identities:

2isin
(
θ1+θ2+···+θn

)= n∏
j=1

(
cosθj+isinθj

)− n∏
j=1

(
cosθj−isinθj

)
, (G.7a)

2cos
(
θ1+θ2+···+θn

)= n∏
j=1

(
cosθj+isinθj

)+ n∏
j=1

(
cosθj−isinθj

)
, (G.7b)

itan
(
θ1+θ2+···+θn

)=
∏n
j=1

(
1+itanθj

)−∏n
j=1

(
1−itanθj

)
∏n
j=1

(
1+itanθj

)+∏n
j=1

(
1−itanθj

) . (G.7c)

In the case of equal angles, the above identities reduce, respectively, to

2sinh(nθ)= (coshθ+sinhθ)n−(coshθ−sinhθ)n, (G.8a)

2cosh(nθ)= (coshθ+sinhθ)n+(coshθ−sinhθ)n, (G.8b)

tanh(nθ)= (1+tanhθ)n−(1−tanhθ)n

(1+tanhθ)n+(1−tanhθ)n
(G.8c)

and

2isin(nθ)= (cosθ+isinθ)n−(cosθ−isinθ)n, (G.9a)

2cos(nθ)= (cosθ+isinθ)n+(cosθ−isinθ)n, (G.9b)

itan(nθ)= (1+itanθ)n−(1−itanθ)n

(1+itanθ)n+(1−itanθ)n
. (G.9c)

Equations (G.8) and (G.9) can also be obtained, of course, directly from the

De Moivre-Cotes identity and the exponential representation of trigonometric

functions. Alternatively, they can be used to provide an independent proof of

the former identity.
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