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For submanifolds tangent to the structure vector field in cosymplectic space forms,
we establish a basic inequality between the main intrinsic invariants of the sub-
manifold, namely, its sectional curvature and scalar curvature on one side; and
its main extrinsic invariant, namely, squared mean curvature on the other side.
Some applications, including inequalities between the intrinsic invariant δM and
the squared mean curvature, are given. The equality cases are also discussed.
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1. Introduction. To find simple relationships between the main extrinsic in-

variants and the main intrinsic invariants of a submanifold is one of the natural

interests of the submanifold theory. Let M be an n-dimensional Riemannian

manifold. For each point p ∈M , let (infK)(p)= inf{K(π) : plane sections π ⊂
TpM}. Then, the well-defined intrinsic invariant δM of M introduced by Chen

[4] is

δM(p)= τ(p)−(infK)(p), (1.1)

where τ is the scalar curvature of M (see also [6]).

In [3], Chen established the following basic inequality involving the intrinsic

invariant δM and the squared mean curvature for n-dimensional submanifolds

M in a real space form R(c) of constant sectional curvature c:

δM ≤ n
2(n−2)

2(n−1)
‖H‖2+ 1

2
(n+1)(n−2)c. (1.2)

The above inequality is also true for anti-invariant submanifolds in complex

space forms M̃(4c) as remarked in [7]. In [5], he proved a general inequality

for an arbitrary submanifold of a dimension greater than 2 in a complex space

form. Applying this inequality, he showed that (1.2) is also valid for arbitrary

submanifolds in the complex hyperbolic space CHm(4c). He also established

the basic inequality for a submanifold in a complex projective space CPm.

A submanifold normal to the structure vector field ξ of a contact manifold is

anti-invariant. Thus, the C-totally real submanifolds in a Sasakian manifold are

anti-invariant as they are normal to ξ. An inequality similar to (1.2) for C-totally
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real submanifolds in a Sasakian space form M̃(c) of constant ϕ-sectional cur-

vature c is given in [8]. In [9], for submanifolds in a Sasakian space form M̃(c)
tangential to the structure vector field ξ, a basic inequality, along with some

applications, is presented.

There is another interesting class of almost contact metric manifolds,

namely, cosymplectic manifolds [10]. In this paper, submanifolds tangent to

the structure vector field ξ in cosymplectic space forms are studied. Section 2

contains the necessary details of submanifolds and cosymplectic space forms

for further use. In Section 3, for submanifolds tangent to the structure vector

field ξ in cosymplectic space forms, we establish a basic inequality between

the main intrinsic invariants, namely, its sectional curvature function K and its

scalar curvature function τ of the submanifold on the one side, and its main ex-

trinsic invariant, namely, its mean curvature function ‖H‖ on the other side. In

Section 4, we give some applications including inequalities between the intrin-

sic invariant δM and the extrinsic invariant ‖H‖. We also discuss the equality

cases.

2. Preliminaries. Let M̃ be a (2m+1)-dimensional almost contact manifold

[2] endowed with an almost contact structure (ϕ,ξ,η), that is, ϕ is a (1,1)
tensor field, ξ is a vector field, and η is 1-form such that

ϕ2 =−I+η⊗ξ, η(ξ)= 1. (2.1)

Then, ϕ(ξ)= 0 and η◦ϕ = 0.

Let g be a compatible Riemannian metric with (ϕ,ξ,η), that is, g(ϕX,ϕY)=
g(X,Y)− η(X)η(Y) or, equivalently, g(X,ϕY) = −g(ϕX,Y) and g(X,ξ) =
η(X) for all X,Y ∈ TM̃ . Then, M̃ becomes an almost contact metric manifold

equipped with an almost contact metric structure (ϕ,ξ,η,g). An almost con-

tact metric manifold is cosymplectic [2] if ∇̃Xϕ = 0, where ∇̃ is the Levi-Civita

connection of the Riemannian metric g. From the formula ∇̃Xϕ = 0, it follows

that ∇̃Xξ = 0.

A plane section σ in TpM̃ of an almost contact metric manifold M̃ is called

a ϕ-section if σ ⊥ ξ and ϕ(σ)= σ . The (2m+1)-dimensional almost contact

manifold M̃ is of the constant ϕ-sectional curvature if the sectional curvature

K̃(σ) does not depend on the choice of theϕ-section σ of TpM̃ and the choice

of a point p ∈ M̃ . A cosymplectic manifold M̃ is of the constant ϕ-sectional

curvature c if and only if its curvature tensor R̃ is of the form [10]

4R̃(X,Y ,Z,W)=c
{
g(X,W)g(Y ,Z)−g(X,Z)g(Y ,W)
+g(X,ϕW)g(Y ,ϕZ)−g(X,ϕZ)g(Y ,ϕW)
−2g(X,ϕY)g(Z,ϕW)

−g(X,W)η(Y)η(Z)+g(X,Z)η(Y)η(W)
−g(Y ,Z)η(X)η(W)+g(Y ,W)η(X)η(Z)

}
.

(2.2)
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Let M be an (n+ 1)-dimensional submanifold of a manifold M̃ equipped

with a Riemannian metric g. The Gauss and Weingarten formulae are given,

respectively, by

∇̃XY =∇XY +h(X,Y), ∇̃XN =−ANX+∇⊥XN, (2.3)

for all X,Y ∈ TM and N ∈ T⊥M , where ∇̃, ∇, and ∇⊥, respectively, are the

Riemannian, induced Riemannian, and induced normal connections in M̃ , M ,

and the normal bundle T⊥M of M , respectively, and h is the second funda-

mental form related to the shape operator A by g(h(X,Y),N)= g(ANX,Y).
Let {e1, . . . ,en+1} be an orthonormal basis of the tangent space TpM . The

mean curvature vector H(p) at p ∈M is

H(p)= 1
n+1

n+1∑
i=1

h
(
ei,ei

)
. (2.4)

The submanifold M is totally geodesic in M̃ if h= 0 and minimal if H = 0. We

put

hrij = g
(
h
(
ei,ej

)
,er

)
, ‖h‖2 =

n+1∑
i,j=1

g
(
h
(
ei,ej

)
,h
(
ei,ej

))
, (2.5)

where {en+2, . . . ,e2m+1} is an orthonormal basis of T⊥p M and r = n+ 2, . . . ,
2m+1.

3. A basic inequality. Let M be a submanifold of an almost contact metric

manifold. For X ∈ TM , let

ϕX = PX+FX, PX ∈ TM, FX ∈ T⊥M. (3.1)

Thus, P is an endomorphism of the tangent bundle of M and satisfies

g(X,PY)=−g(PX,Y), X,Y ∈ TM. (3.2)

For a plane section π ⊂ TpM at a point p ∈M ,

α(π)= g(e1,Pe2
)2, β(π)= (η(e1

))2+(η(e2
))2

(3.3)

are real numbers in the closed unit interval [0,1], which are independent of

the choice of the orthonormal basis {e1,e2} of π .

We recall the following lemma from [3].
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Lemma 3.1. If a1, . . . ,an+1,a are n+2 (n≥ 1) real numbers such that

(n+1∑
i=1

ai

)2

=n
(n+1∑
i=1

a2
i +a

)
, (3.4)

then 2a1a2 ≥ a, with equality holding if and only if a1+a2 = a3 = ··· = an+1.

Now, we prove the following theorem.

Theorem 3.2. LetM be an (n+1)-dimensional (n≥ 2) submanifold isomet-

rically immersed in a (2m+1)-dimensional cosymplectic space form M̃(c) such

that the structure vector field ξ is tangent toM . Then, for each point p ∈M and

each plane section π ⊂ TpM , we have

τ−K(π)≤ (n+1)2(n−1)
2n

‖H‖2

+ c
8

(
3‖P‖2−6α(π)+2β(π)+(n+1)(n−2)

)
.

(3.5)

The equality in (3.5) holds at p ∈M if and only if there exists an orthonormal

basis {e1, . . . ,en+1} of TpM and an orthonormal basis {en+2, . . . ,e2m+1} of T⊥p M
such that

(a) π = Span{e1,e2},
(b) the forms of the shape operators Ar ≡Aer , r =n+2, . . . ,2m+1, become

An+2 =

λ 0 0

0 µ 0

0 0 (λ+µ)In−1

 ,

Ar =

h
r
11 hr12 0

hr12 −hr11 0

0 0 0n−1

 , r =n+3, . . . ,2m+1.

(3.6)

Proof. In view of the Gauss equation and (2.2), the scalar curvature and

the mean curvature of M are related by

2τ = c
4

(
3‖P‖2+n(n−1)

)+(n+1)2‖H‖2−‖h‖2, (3.7)

where ‖P‖2 is given by

‖P‖2 =
n+1∑
i,j=1

g
(
ei,Pej

)2
(3.8)



A BASIC INEQUALITY FOR SUBMANIFOLDS . . . 543

for any local orthonormal basis {e1,e2, . . . ,en+1} for TpM . We introduce

ρ = 2τ− (n+1)2(n−1)
n

‖H‖2− c
4

(
3‖P‖2+n(n−1)

)
. (3.9)

From (3.7) and (3.9), we get

(n+1)2‖H‖2 =n(‖h‖2+ρ). (3.10)

Let p be a point of M and let π ⊂ TpM be a plane section at p. We choose

an orthonormal basis {e1,e2, . . . ,en+1} for TpM and {en+2, . . . ,e2m+1} for the

normal space T⊥p M at p such that π = Span{e1,e2} and the mean curvature

vector H(p) is parallel to en+2; then from (3.10), we get

(n+1∑
i=1

hn+2
ii

)2

=n
(n+1∑
i=1

(
hn+2
ii

)2+
∑
i�=j

(
hn+2
ij

)2+
2m+1∑
r=n+3

n+1∑
i,j=1

(
hrij

)2+ρ
)
. (3.11)

Using Lemma 3.1, from (3.11) we obtain

hn+2
11 hn+2

22 ≥ 1
2

{∑
i≠j

(
hn+2
ij

)2+
2m+1∑
r=n+3

n+1∑
i,j=1

(
hrij

)2+ρ
}
. (3.12)

From the Gauss equation and (2.2), we also have

K(π)= c
4

(
1+3α(π)−β(π))+hn+2

11 hn+2
22 −

(
hn+2

12

)2+
2m+1∑
r=n+3

(
hr11h

r
22−

(
hr12

)2
)
.

(3.13)

Thus, we have

K(π)≥ c
4

(
1+3α(π)−β(π))+ 1

2
ρ+

2m+1∑
r=n+2

∑
j>2

{(
hr1j

)2+
(
hr2j

)2
}

+ 1
2

∑
i�=j>2

(
hn+2
ij

)2+ 1
2

2m+1∑
r=n+3

∑
i,j>2

(
hrij

)2+ 1
2

2m+1∑
r=n+3

(
hr11+hr22

)2
,

(3.14)

or

K(π)≥ c
4

(
1+3α(π)−β(π))+ 1

2
ρ, (3.15)

which, in view of (3.9), yields (3.5).
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If the equality in (3.5) holds, then the inequalities given by (3.12) and (3.14)

become equalities. In this case, we have

hn+2
1j = 0, hn+2

2j = 0, hn+2
ij = 0, i≠ j > 2;

hr1j = hr2j = hrij = 0, r =n+3, . . . ,2m+1; i,j = 3, . . . ,n+1;

hn+3
11 +hn+3

22 = ··· = h2m+1
11 +h2m+1

22 = 0.

(3.16)

Furthermore, we may choose e1 and e2 so that hn+2
12 = 0. Moreover, by applying

Lemma 3.1, we also have

hn+2
11 +hn+2

22 = hn+2
33 = ··· = hn+2

n+1n+1. (3.17)

Thus, choosing a suitable orthonormal basis {e1, . . . ,e2m+1}, the shape operator

of M becomes of the form given by (3.6). The converse is straightforward.

4. Some applications. For the case c = 0, from (3.5) we have the following

pinching result.

Proposition 4.1. LetM be an (n+1)-dimensional (n > 1) submanifold iso-

metrically immersed in a (2m+1)-dimensional cosymplectic space form M̃(c)
with c = 0 such that ξ ∈ TM . Then,

δM ≤ (n+1)2(n−1)
2n

‖H‖2. (4.1)

A submanifold M of an almost contact metric manifold M̃ with ξ ∈ TM
is called a semi-invariant submanifold [1] of M̃ if TM = �⊕�⊥ ⊕{ξ}, where

� = TM ∩ϕ(TM) and �⊥ = TM ∩ϕ(T⊥M). In fact, the condition TM = �⊕
�⊥ ⊕{ξ} implies that the endomorphism P is an f -structure [12] on M with

rank(P) = dim(�). A semi-invariant submanifold of an almost contact met-

ric manifold becomes an invariant or anti-invariant submanifold according

as the anti-invariant distribution �⊥ is {0} or the invariant distribution � is

{0} [1, 12].

Now, we establish two inequalities in the following theorems, which are anal-

ogous to that of (1.2).

Theorem 4.2. LetM be an (n+1)-dimensional (n > 1) submanifold isomet-

rically immersed in a (2m+1)-dimensional cosymplectic space form M̃(c) such

that the structure vector field ξ is tangent to M . If c < 0, then

δM ≤ (n+1)2(n−1)
2n

‖H‖2+ 1
2
(n+1)(n−2)

c
4
. (4.2)
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The equality in (4.2) holds if and only if M is a semi-invariant submanifold with

dim(�)= 2.

Proof. Since c < 0, in order to estimate δM , we minimize 3‖P‖2−6α(π)+
2β(π) in (3.5). For an orthonormal basis {e1, . . . ,en+1} of TpM withπ = span{e1,
e2}, we write

‖P‖2−2α(π)=
n+1∑
i,j=3

g
(
ei,ϕej

)2+2
n+1∑
j=3

{
g
(
e1,ϕej

)2+g(e2,ϕej
)2
}
. (4.3)

Thus, we see that the minimum value of 3‖P‖2−6α(π)+2β(π) is zero pro-

vided π = span{e1,e2} is orthogonal to ξ and span{ϕej | j = 3, . . . ,n} is or-

thogonal to the tangent space TpM . Thus, we have (4.2) with equality case

holding if and only if M is semi-invariant such that dim(�) = 2 with β = 0.

Theorem 4.3. LetM be an (n+1)-dimensional (n > 1) submanifold isomet-

rically immersed in a (2m+1)-dimensional cosymplectic space form M̃(c) such

that ξ ∈ TM . If c > 0, then

δM ≤ (n+1)2(n−1)
2n

‖H‖2+ 1
2
n(n+2)

c
4
. (4.4)

The equality in (4.4) holds if and only if M is an invariant submanifold.

Proof. Since c > 0, in order to estimate δM , we maximize 3‖P‖2−6α(π)+
2β(π) in (3.5). We observe that the maximum of 3‖P‖2 − 6α(π)+ 2β(π) is

attained for ‖P‖2 = n, α(π) = 0, and β(π) = 1, that is, M is an invariant and

ξ ∈π . Thus, we obtain (4.4) with equality case if and only ifM is invariant with

β= 1.

In last, we prove the following theorem.

Theorem 4.4. If M is an (n+1)-dimensional (n > 1) submanifold isometri-

cally immersed in a (2m+1)-dimensional cosymplectic space form M̃(c) such

that c > 0, ξ ∈ TM and

δM = (n+1)2(n−1)
2n

‖H‖2+ 1
2
n(n+2)

c
4
, (4.5)

then M is a totally geodesic cosymplectic space form M(c).

Proof. In view of Theorem 4.3, M is an odd-dimensional invariant sub-

manifold of the cosymplectic space form M̃(c). For every point p ∈M , we can

choose an orthonormal basis {e1 = ξ,e2, . . . ,en+1} for TpM and {en+2, . . . ,e2m+1}
for T⊥p M such that Ar (r =n+2, . . . ,2m+1) take the form (3.6). Since M is an
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invariant submanifold of a cosymplectic manifold, therefore, it is minimal and

Arϕ+ϕAr = 0, r = n+2, . . . ,2m+1 [11]. Thus, all the shape operators take

the form

Ar =

cr dr 0

dr −cr 0

0 0 0n−1

 , r =n+2, . . . ,2m+1. (4.6)

Since Arϕe1 = 0, r =n+2, . . . ,2m+1, from Arϕ+ϕAr = 0, we getϕAre1 = 0.

Applying ϕ to this equation, we obtain Are1 = η(Are1)ξ = η(Are1)e1; thus,

dr = 0, r = n+2, . . . ,2m+1. This implies that Are2 = −cr e2. Applying ϕ to

both sides, in view of Arϕ+ϕAr = 0 we get Arϕe2 = crϕe2. Since ϕe2 is

orthogonal to ξ and e2 andϕ has a maximal rank, the principal curvature cr is

zero. Hence,M becomes totally geodesic. As in [12, Proposition 1.3, page 313],

it is easy to show thatM is a cosymplectic manifold of the constantϕ-sectional

curvature c.
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