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First, we prove a necessary and sufficient condition for global in time existence of all solu-
tions of an ordinary differential equation (ODE). It is a condition of one-sided estimate type
that is formulated in terms of so-called proper functions on extended phase space. A gener-
alization of this idea to stochastic differential equations (SDE) and parabolic equations (PE)
allows us to prove similar necessary and sufficient conditions for global in time existence
of solutions of special sorts: L1-complete solutions of SDE (this means that they belong to
a certain functional space of L1 type) and the so-called complete Feller evolution families
giving solutions of PE. The general case of equations on noncompact smooth manifolds is
under consideration.
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1. Introduction. In this note, we consider some questions connected with global in

time existence of solutions of various differential equations (ordinary, stochastic, and

parabolic). The main goal is to obtain necessary and sufficient conditions.

At the moment, plenty of sufficient conditions for global existence of solutions can

be found in the literature. We would like to point out the so-called conditions with

one-sided estimates for ordinary differential equations (ODE), similar conditions with

Lyapunov functions for parabolic equations (PE), and a certain very general condition

of the same nature from [1] for stochastic differential equations (SDE). Recall that this

sort of conditions deals with estimates on the derivative of a certain function v(x)with

respect to the right-hand side of the equation or with respect to the corresponding

generator, where (say, in Euclidean space) v(x) → ∞ as x → ∞ (a particular case of

proper function, see below).

It is shown in this note that after some modification and transition to extended phase

space, conditions of this sort become necessary and sufficient or close to them. We deal

with the general case of equations on finite-dimensional manifolds.

Notice that a necessary and sufficient condition for global existence of solutions of

ODE on manifolds of two-sided sort (dealing with estimates on the norm of the right-

hand side), based on a similar idea of passing to extended phase space, was obtained

in [3] (see also [4, Section 1]).

In Section 2 of this note, we consider the case of ODE. In Theorem 2.4, we show that all

solutions of an ODE are well posed globally if and only if there exists a proper function

on the extended phase space whose derivative with respect to the natural (space-time)

extension of the right-hand side is uniformly bounded in absolute value.
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Analogous approach to SDE allows us to obtain a necessary and sufficient condition

for global existence of solutions of a special type. Namely, those solutions are global and

there exists a certain proper function such that having substituted the solution into the

function, we obtain an integrable random variable (i.e., its expectation is finite). Thus

the solution belongs to a functional space of L1 type. In previous publications [5, 6],

we call this property L1-completeness of the stochastic flow (see the exact definitions

below). Notice that a proper function is not specified a priori. A solution may not be

L1-complete with respect to the norm in the Euclidean space or with respect to the

distance in a complete Riemannian manifold (particular cases of proper functions), but

it may be L1-complete with respect to some other proper function.

This sort of solutions is useful since the completeness and integrability properties

are important for applications.

Recall that for a broad class of PE, the standard construction of a corresponding SDE

is well known so that generalized solutions of a Cauchy problem for the PE are obtained

via Feller evolution families (semigroups), generated by the SDE, if its solutions are

global. If a solution of the SDE is L1-complete, we call the Feller evolution family a

complete one.

In Theorem 3.6, we obtain a necessary and sufficient condition for an SDE to have

L1-complete flow and so for the existence of a complete Feller evolution family giving

special generalized solutions of the Cauchy problem for corresponding PE. This con-

dition is formulated in terms of the existence of a certain proper function u on the

extended phase space with properties analogous to those from Theorem 2.4 for the

ODE (see above). In particular, the values of the space-time generator of the SDE on u
are uniformly bounded.

In the proof of sufficiency, we start from some u on the extended phase space satis-

fying the conditions of Theorem 3.6, and construct a certain proper function v on the

phase space giving the L1-completeness of the flow. In the proof of necessity, we start

from some v on the phase space giving the L1-completeness, and construct a certain

u on the extended phase space satisfying the conditions of Theorem 3.6.

2. The case of ordinary differential equations. Let M be a smooth manifold with

dimension n<∞.

Consider a certain smooth jointly in t ∈R,m∈M vector field X =X(t,m) on M . Its

coordinate representation in a chart with respect to local coordinates (q1, . . . ,qn) takes

the form X =X1(∂/∂q1)+···+Xn(∂/∂qn). The vector field X can also be considered as

the first-order differential operator on C1-functions on M . For a function f , the value

of the above operator is given as Xf = X1(∂f/∂q1)+···+Xn(∂f/∂qn). The function

Xf is also called the derivative of f along vector field X.

Definition 2.1. A curve m(t) on M is called an integral curve of X if at any t, the

vector Xm(t) is equal to the derivative ṁ(t).

Thus, the integral curves of X are defined by the ODE

ṁ(t)=X(t,m(t)). (2.1)
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Let γ(t) be an integral curve of X such that γ(0) =m. It is well known that Xf is

represented in terms of γ(t) as follows: Xf(m)= (d/dt)f(γ(t))|t=0.

Definition 2.2. A vector field X is called complete if all its integral curves are well

posed for t ∈ (−∞,+∞).
Denote bym(s) :M →M , s ∈R, the flow of X. For any pointm∈M and time instant

t, the orbit m(s)(t,m)=mt,m(s) of the flow is the solution of the equation

ṁt,m(s)=X
(
s,mt,m(s)

)
(2.2)

with the initial condition

mt,m(t)=m. (2.3)

Consider the extended phase spaceM+ =R×M with the natural projectionπ+ :M+ →
M , π+(t,m) =m. Introduce the vector field X+ on M+ given at the point (t,m) ∈M+

as X+(t,m) = (1,X(t,m)). It is clear that its coordinate representation is given in the

form X+ = ∂/∂t+X1(∂/∂q1)+···+Xn(∂/∂qn). Hence, the corresponding differential

operator on the space of C1-smooth functions on M+ takes the form ∂/∂t+X.

Definition 2.3. A function f on a topological space X is called proper if the preim-

age of any relatively compact set in R is a relatively compact set in X.

Recall that in any finite-dimensional space (in particular, in R), a set is relatively

compact if and only if it is bounded.

Examples of a proper function vT are the norm in an Euclidean space (if M =Rn) or

the distance function on a complete Riemannian manifold (if it is smooth).

In what follows, we will mainly deal with proper functions on smooth manifolds.

Theorem 2.4. A smooth vector fieldX on a finite-dimensional manifoldM is complete

if and only if there exists a smooth proper function ϕ :M+ → R such that the absolute

value of the derivative |X+ϕ| of ϕ along X+ is uniformly bounded, that is, |X+ϕ| =
(|∂/∂t+X)ϕ| ≤ C at any (t,m)∈M+ for a certain constant C > 0 that does not depend

on (t,m).

Proof

Sufficiency. Consider the flow m+(s) :M+ →M+, s ∈ R, with the orbits m+(s)(t,
m)=m+

(t,m)(s) being the solutions of the equation

ṁ+
(t,m)(s)=X+

(
m+
(t,m)(s)

)
(2.4)

with initial conditions

m+
(t,m)(t)= (t,m). (2.5)

Consider the derivative X+ϕ of ϕ along X+. At (t,m)∈M+, we get the equality

X+ϕ(t,m)= d
ds
ϕ
(
m+
(t,m)(s)

)∣∣∣
s=t (2.6)
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(see above) and under the hypothesis of our theorem,
∣∣∣∣ ddsϕ

(
m+
(t,m)(s)

)∣∣∣
s=t

∣∣∣∣≤ C. (2.7)

Represent the values of ϕ along the orbit m+
(t,m)(s) as follows:

ϕ
(
m+
(t,x)(s)

)
−ϕ(t,m)=

∫ s
0

d
dτ
ϕ
(
m+
(t,m)(τ)

)
dτ. (2.8)

From the last equality and from inequality (2.7), we evidently obtain that if s belongs

to a finite interval, the values ϕ(m+
(t,x)(s)) are bounded in R. Then, since ϕ is proper,

this means that the set m+
(t,m)(s) is relatively compact in M+.

Recall that by the classical solution existence theorem, the domain of any solution of

ODE is an open interval in R. In particular, for s > 0, the solution of the above Cauchy

problem is well posed for s ∈ [t,ε). If ε > 0 is finite, then the corresponding values of

the solution belong to a relatively compact set in M , and so the solution is well posed

for s ∈ [t,ε]. The same arguments are valid also for s < 0. Thus, the domain is both

open and closed, and so it coincides with the entire real line (−∞,∞).
Taking into account the construction of the vector field X+, we can represent the

integral curves m+
(t,m)(s) in the form m+

(t,m)(s) = (s,mt,m(s)). Hence from the global

existence of integral curves of X+, we obviously obtain the global existence of integral

curves of X. So, the vector field X is complete.
Necessity. Let the vector field X be complete. Thus, all orbits mt,m(s) of the flow

m(s) are well posed on the entire real line. Specify a certain countable locally finite

cover �= {Vi}i∈N ofM , where all Vi are open and relatively compact. Such a cover does

exist because any manifold is paracompact by definition and the finite-dimensional

manifold M is locally compact. Introduce the functions ψi :M →R by the formula

ψi(m)=

i if m∈ Vi,

0 if m ∉ Vi.
(2.9)

Denote by {φi}∞i=1 the smooth partition of unity subordinated to the above cover and

define the functionψ onM of the formψ(m)=∑∞
i=1ψi(m)φi(m). It is clear thatψ(m)

is smooth and proper by the construction. The construction of the function ψ(m) is

taken from [7].

Introduce the functionΦ :M+ →R as follows. For any point (t,m)∈M+, setΦ(t,m)=
ψ(mt,m(0)). By the construction, the function Φ is constant along any orbit of the flow

m+(s). Indeed, for m+(s)(t,m) = (s,mt,m(s)), the equality ms,mt,m(s)(0) = mt,m(0)
holds.

Consider the functionϕ :M+ →R,ϕ(t,m)= Φ(t,m)+t. Obviously,ϕ is smooth and

proper. Consider X+ϕ. By the construction of the vector field X+ and of the function

ϕ, we get

X+ϕ =X+(Φ(t,m))+X+t = 0+1= 1. (2.10)

Thus, we have proven the necessity part of our theorem for C = 1. This completes

the proof.
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3. The case of stochastic differential and parabolic equations. In this section, we

introduce the notion of L1-completeness of a stochastic flow and the corresponding no-

tion of a complete Feller evolution family and prove necessary and sufficient conditions

for L1-completeness of the flow and so for the existence of complete Feller evolution

families. For this, we combine the ideas of a necessary and sufficient condition for

completeness of a vector field from Section 2 and Elworthy’s sufficient condition for

completeness of a stochastic flow from [1, item IX.6A].

LetM be a finite-dimensional manifold. Consider a stochastic dynamical system (SDS)

onM (see [1]) with the generator �(t,x) that is an elliptic (but not necessarily strongly

elliptic) operator on the space of smooth enough functions on M . In local coordinates,

the SDS is described in terms of a SDE with smooth coefficients in Itô or in Stratonovich

form. Since the coefficients are smooth, we can pass from Stratonovich to Itô equation

and vice versa.

Denote by ξ(s) :M →M the stochastic flow of the above-mentioned SDS. For any point

x ∈M and time instant t ≥ 0, the orbit ξt,x(s) of this flow is the unique solution of the

above equation with initial conditions ξt,x(t)= x. As the coefficients of the equation are

smooth, this is a strong solution and so a Markov diffusion process given on a certain

random time interval. Below, we denote the probability space, where the flow is defined,

by (Ω,�,P) and suppose that it is complete. We also deal with separable realizations

of all processes.

Specify T ∈ (0,∞).
Definition 3.1. The flow ξ(s) is complete on [0,T ] if ξt,x(s) exists for any couple

(t,x) and for all s ∈ [t,T].
Definition 3.2. The flow ξ(s) is complete if it is complete on any interval [0,T ]⊂R.

Consider the space of bounded measurable functions on M with the norm ‖f‖ =
supx∈M |f(x)|. If the flow ξ(t) is complete, it is possible to construct on this space the

evolution family S(t,s) (the semigroup, if � is autonomous) defined by the formula

[
S(t,s)f

]
(x)= Ef (ξt,x(s)), (3.1)

where E is the mathematical expectation.

Definition 3.3. An evolution family is called a Feller one if for any t ≥ 0, s ≥ t, the

operators S(t,s) are contracting and send any continuous bounded positive function

into a continuous bounded positive one.

It is a well-known fact that if the flow ξ(s) is complete, (3.1) is a Feller evolution

family. Notice, in addition, that in this case, evidently S(t,s)1= 1 for all 0≤ t ≤ s <∞.

Consider the following Cauchy problem for the parabolic PDE on M :

∂u
∂s

=�u, (3.2)

u(0,x)=u0(x). (3.3)
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If the Feller evolution family (3.1) exists (i.e., the flow ξ(s) is complete), the function

u(s,x)= [S(0,s)u0
]
(x)= Eu0

(
ξ0,x(s)

)
(3.4)

is a generalized solution of (3.3) (see, e.g., [1, 8]). If it is smooth enough, it is a classical

solution of (3.3).

On the other hand, starting from the Cauchy problem (3.3) with � from a broad

class of operators, one can construct an SDS whose stochastic flow, if it is complete,

determines generalized solutions (3.4) of (3.3). We refer the reader, for example, to [8]

for details.

Thus, if we find conditions for the existence of the Feller evolution family, this will

give us conditions for global existence of solutions of a SDE, describing the trajectories

ξt,x(s), and of generalized solutions of the Cauchy problem (3.3).

Definition 3.4. If the flow ξ(s) is complete so that formula (3.1) is well posed, we

say that the operator � generates the Feller evolution family S(t,s).

Below, we will find necessary and sufficient conditions for � to generate a Feller

evolution family of some special sort, called complete Feller evolution family. This

corresponds to a special type of completeness of the flow ξ(s), called L1-completeness.

Definition 3.5. The flow ξ(s) is called L1-complete and, respectively, the evolution

family S(t,s)s≥t≥0 is called a complete Feller one if

(i) the flow ξ(s) is complete and so the operators S(t,s) from (3.1) form a Feller

evolution family on the space of bounded continuous functions on the manifold

M ;

and for any 0< T <∞,

(ii) there exists a smooth proper positive function vT :M →R+ such that S(t,T)vT

is well posed, that is, EvT (ξt,x(T))= [S(t,T)vT ](x) <∞ for allx ∈M , t ∈ [0,T ];
(iii) for any K > 0, there exists a compact set CK,T ⊂ M , depending on K and T ,

such that from the inequality EvT (ξt,x(T))= [S(t,T)vT ](x) < K, it follows that

x ∈ CK,T ;

(iv) the map (t,x)� EvT (ξt,x(T))=[S(t,T)vT ](x) isC1-smooth in t andC2-smooth

in x.

In the cases of the norm in a Euclidean space and the distance function on a complete

Riemannian manifold (as it is mentioned in Section 2, they are proper functions), the

variable ξt,x(T) satisfying Definition 3.5(ii) belongs to the ordinary functional space L1.

Notice that a flow may not be L1-complete with respect to the norm and the distance, but

may be L1-complete with respect to some other proper function. We emphasize that a

flow is L1-complete if there exists at least one proper function satisfying Definition 3.5.

See a more detailed discussion in [5, 6].

Consider the direct products M̃ = [0,∞)×M andMT = [0,T ]×M . Let πT :MT →M be

the natural projection, πT(t,x) = x. On the manifold M̃ , consider diffusion processes

η(t,x)(s) = (s,ξt,x(s)) satisfying the conditions η(t,x)(t) = (t,x). These processes have

the same infinitesimal operator that on the space of smooth functions onMT coincides
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with �T defined by the formula

�T = ∂
∂t
+�. (3.5)

It is obvious that if ξt,x(s) exists for all initial data t, x and for all s ∈ [t,∞), η(t,x)(s)
also exists for s ∈ [t,∞) and for all initial points (t,x)∈MT . Then the Feller evolution

family

[
S̃(t,s)g

]
(t,x)= Eg(η(t,x)(s)), s ≥ t ≥ 0, (3.6)

on the space of continuous bounded functions on M̃ is well posed. Notice that S̃(t,s)
for t ≤ s ≤ T is well posed for the functions g :MT →R.

Theorem 3.6. The flow ξ(s) is L1-complete and so the operator � generates a com-

plete Feller evolution family S(t,s)s≥t≥0 on M if and only if for any 0 ≤ T < ∞, there

exists a smooth proper positive function uT :MT →R+ such that at any (t,x)∈MT , the

following conditions are satisfied:

(1) �TuT ≤ CT , where CT is a certain positive constant depending on T ;

(2) [S̃(t,T)uT ](t,x)= EuT (η(t,x)(T)) <∞ and

∣∣[S̃(t,T)uT ](t,x)−uT(t,x)∣∣<C1, (3.7)

where C1 > 0 is a certain constant depending on T ;

(3) the function [S̃(t,T)uT ](t,x) is C1-smooth in t and C2-smooth in x.

Proof

Sufficiency. Assume that there exists a smooth proper positive function uT(t,x)
on MT such that �T

(t,x)uT ≤ C for all points of MT . Then, from the theorem from [1,

item IX.6A], it follows that for any 0 ≤ T <∞, the process η(t,x)(s) = (s,ξt,x(s)) exists

for all initial points (t,x) ∈ MT and all s ∈ [t,T]. Since it is valid for any 0 ≤ T < ∞,

this means that the flow ξ(s) is complete. Then there exists the Feller evolution family

S(t,s)s≥t≥0, acting on the space of continuous bounded functions onM by the formula

[S(t,s)f ](x)= Ef(ξt,x(s)).
Consider the function

vT (x)=uT(T ,x). (3.8)

By the construction, it is obviously smooth and positive. We show that it is proper. Con-

sider an arbitrary compactD ⊂R+. One can easily see that (vT )−1(D)⊂πT((uT )−1)(D).
Then, from the properness of uT and from the continuity of the map πT , it follows that

the set πT((uT )−1)(D) is compact.

Lemma 3.7. The relation [S(t,T)vT ](x) = [S̃(t,T)uT ](t,x) holds for any t ∈ [0,T ]
and x ∈M .
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Proof of Lemma 3.7. Consider [S(t,T)vT ](x). Taking into account the construc-

tion of S(t,T) and the equality vT =uT(T ,x), we get

[
S(t,T)vT

]
(x)= EvT (ξt,x(T))= EuT (T ,ξt,x(T)). (3.9)

On the other hand, from the construction of the diffusion process η(t,x)(s)= (s,ξt,x(s)),
it follows that

EuT
(
T ,ξt,x(T)

)= EuT (η(t,x)(T)), (3.10)

and by the definition of S̃(t,T), we get

EuT
(
η(t,x)(T)

)= [S̃(t,T)uT ](t,x). (3.11)

From Lemma 3.7 and from condition (3) of Theorem 3.6, we immediately obtain

that the map (t,x) � [S(t,T)vT ](x) is C1 in t and C2 in x. Hence, condition (iv) of

Definition 3.5 is fulfilled.

We show that [S(t,T)vT ](x) is bounded. From condition (2) of Theorem 3.6 and

from Lemma 3.7, we get |[S(t,T)vT ](x)−uT(t,x)|<C1. This means that

−C1+uT(t,x) <
[
S(t,T)vT

]
(x) < C1+uT(t,x). (3.12)

Hence, [S(t,T)vT ](x) <∞.

Suppose that [S(t,T)vT ](x) < K. Then, from Lemma 3.7, we get EuT (η(t,x)(T)) < K.

Taking into account condition (2), we see that

∣∣EuT (η(t,x)(T))−uT(t,x)∣∣<C1, (3.13)

that is,

−C1+EuT
(
η(t,x)(T)

)
<uT(t,x) < C1+EuT

(
η(t,x)(T)

)
. (3.14)

Recall that the function uT is positive, hence

0<uT(t,x) < C1+K. (3.15)

Thus, the values uT(t,x) belong to the compact [0,C1 + K] ⊂ R+, and if [S(t,
T)vT ](x) < K, x ∈ πT((uT )−1([0,C1 +K])), while the last set is compact since uT

is proper and the map πT is continuous.

So, conditions (i), (ii), (iii), and (iv) of Definition 3.5 are satisfied, that is, S(t,s)s≥t≥0

is a complete Feller evolution family and ξ(s) is L1-complete.

Necessity. Let ξ(s) be L1-complete and so S(t,s)s≥t≥0 a complete Feller evolution

family. For any 0≤ T <∞, denote by vT :M →R+ the smooth proper positive function

from Definition 3.5. Construct the function uT :MT →R by the formula

uT(t,x)= [S(t,T)vT ](x)= EvT (ξt,x(T)). (3.16)
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This function is C1-smooth in t and C2-smooth in x by condition (iv) of Definition 3.5.

It is also obvious that the function uT(t,x) is positive.

We show that �TuT = 0. To prove this, we modify some technical approaches of [2,

Chapter VIII].

Consider the sets W̃n = (vT )−1([0,n]), n ∈ N. Since the function vT is proper, the

sets W̃n are compact. Moreover, it is easy to see that the family of compacts W̃n forms

a cover of the manifold M such that W̃n ⊂ W̃n+1 for any n. For x ∈ W̃n, denote by τ̃n
the first exit time of ξt,x(s) from W̃n.

Consider

EuT
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))= EuT (η(t,x)((t+∆t)∧ τ̃n)), (3.17)

where, according to usual notations of the probability theory, (a∧b)ω =min(aω,bω),
ω ∈ Ω. From the construction of η(t,x)(s), it follows that if τ̃n is the first exit time of

ξt,x(s) from the compact W̃n, τ̃n is also the first exit time of η(t,x)(s) from the compact

[0,T ]×W̃n on the manifold MT .

Since the processes are considered up to the first exit times from compacts, we may

use the Itô formula and the fact that in this case, the expectation of Itô integral on the

interval [t,(t+∆t)∧ τ̃n] equals zero. Thus, we obtain

EuT
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))

=uT(t,x)+E
∫ (t+∆t)∧τ̃n
t

�TuT
(
η(t,x)(s)

)
ds.

(3.18)

Notice that EuT ((t+∆t)∧τ̃n,ξt,x((t+∆t)∧τ̃n))=uT(t,x). Indeed, by the construc-

tion of the function uT ,

EuT
(
(t+∆t)∧ τ̃n,ξt,x

(
(t+∆t)∧ τ̃n

))
= E(EvT (ξ(t+∆t)∧τ̃n,ξt,x((t+∆t)∧τ̃n)(T)))
= E(EvT (ξt,x(T)))= EvT (ξt,x(T))=uT(t,x).

(3.19)

Then, from (3.18), we get

0= EuT ((t+∆t)∧ τ̃n,ξt,x((t+∆t)∧ τ̃n))−uT(t,x)
= E

∫ (t+∆t)∧τ̃n
t

�TuT
(
η(t,x)(s)

)
ds.

(3.20)

Multiply both sides of (3.20) by 1/∆t and find the limit as ∆t→ 0. We obtain

0= lim
∆t→0

1
∆t
E
∫ (t+∆t)∧τ̃n
t

�TuT
(
η(t,x)(s)

)
ds. (3.21)

Taking into account (3.5), one can easily transform the last equality to the form

lim
∆t→0

1
∆t
E
∫ (t+∆t)∧τ̃n
t

[
∂uT

(
s,ξt,x(s)

)
∂s

+�uT
(
s,ξt,x(s)

)]
ds = 0. (3.22)
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The function uT and its derivatives are considered here on the compact set [0,T ]×
W̃n, and so they are bounded. Hence, we can apply Lebesgue’s theorem to get to the

limit under the mathematical expectation and also to obtain that there exists a value

s′ ∈ [t,(t+∆t)∧ τ̃n] such that

∫ (t+∆t)∧τ̃n
t

[
∂uT

(
s,ξt,x(s)

)
∂s

+�uT
(
s,ξt,x(s)

)]
ds

=
[
∂uT

(
s′,ξt,x(s′)

)
∂s

+�uT
(
s′,ξt,x(s′)

)](
(t+∆t)∧ τ̃n−t

)
.

(3.23)

One can easily see that

(t+∆t)∧ τ̃n−t =
(
(t+∆t)−t)∧(τ̃n−t)=∆t∧(τ̃n−t). (3.24)

As a result, we obtain

lim
∆t→0

1
∆t
E
(
∂uT

(
s′,ξt,x(s′)

)
∂s

+�uT
(
s′,ξt,x(s′)

)(
∆t∧(τ̃n−t))

)

= E lim
∆t→0

(
∂uT

(
s′,ξt,x(s′)

)
∂s

+�uT
(
s′,ξt,x(s′)

)∆t∧(τ̃n−t)
∆t

)
= 0.

(3.25)

Notice that here τ̃n−t > 0 a.s. by the definition of the first exit time. Also, τ̃n−t is

bounded and does not depend on ∆t. So,

lim
∆t→0

τ̃n−t
∆t

=∞. (3.26)

From the last equality, it obviously follows that

lim
∆t→0

1
∆t
(
∆t∧(τ̃n−t))= 1∧ lim

∆t→∞
τ̃n−t
∆t

= 1. (3.27)

Since s′ ∈ [t,(t+∆t)∧ τ̃n] and since we can apply the Lebesgue’s theorem, s′ → t
when ∆t→ 0.

Thus, equality (3.25) takes the form

∂uT
(
t,ξt,x(t)

)
∂t

+�uT
(
t,ξt,x(t)

)= 0. (3.28)

This means that

�TuT (t,x)= 0. (3.29)

Lemma 3.8. The function uT on MT is proper.

Proof of Lemma 3.8. Suppose that uT is not proper. Then there exists a sequence

(tk,xk) ∈MT such that 0 < uT(tk,xk) < K for all k, where 0 < K <∞ is a certain real

number, and vT (xk)→∞ as k→∞. Since vT is proper, this means that xk leaves any

specified compact in M . But, if 0 < uT(tk,xk) < K, by the construction of the function

uT , we get [S(tk,T)vT ](xk) < K, and so by condition (iii) of Definition 3.5, xk must

belong to a certain compact CK,T .
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Lemma 3.9. For any t ∈ [0,T ], x ∈ M , the equality EuT (η(t,x)(T)) = EvT (ξt,x(T))
takes place.

Proof of Lemma 3.9. Recall that η(t,x)(s)= (s,ξt,x(s)), and so

EuT
(
η(t,x)(T)

)= EuT (T ,ξt,x(T)). (3.30)

By the construction of uT ,

EuT
(
T ,ξt,x(T)

)= E(EvT (ξT,ξt,x(T)(T))). (3.31)

Taking into account the properties of the mathematical expectation and the evolution

property of ξt,x(s), we obtain

E
(
EvT

(
ξT,ξt,x(T)(T)

))= EvT (ξt,x(T)). (3.32)

From the construction of S(t,s) and S̃(t,s), it follows that

[
S̃(t,T)uT

]
(t,x)= EuT (η(t,x)(T))= EvT (ξt,x(T))= [S(t,T)vT ](x)=uT(t,x).

(3.33)

Then, from (iv) of Definition 3.5, we derive that [S̃(t,T)uT ](t,x) is C1-smooth in t and

C2-smooth in x. Condition (3) is fulfilled.

Notice, in addition, that |[S̃(t,T)uT ](t,x)−uT(t,x)| = 0, that is, it is less than any

positive constant. This means that Condition (2) is fulfilled.

This completes the proof of necessity and of Theorem 3.6

Remark 3.10. The similarity between the assertions of Theorems 2.4 and 3.6 be-

comes more clear if one passes from the Cauchy problem (3.3) to the corresponding

abstract Cauchy problem, that is, to the first-order ODE in the Banach space. Then the

assertion of Theorem 3.6 is very close to the reformulation of Theorem 2.4 for solutions

of the abstract Cauchy problem (i.e., for generalized solutions of (3.3)).

Corollary 3.11. The flow ξ(s) is L1-complete, and so the operator � generates the

complete Feller evolution family S(t,s)s≥t≥0 on M if and only if for any 0≤ T <∞, there

exists a smooth positive proper function uT :MT →R+ such that at any point (t,x)∈MT ,

the following conditions are satisfied:

(1) �TuT ≤ CT , where CT ≥ 0 is a certain constant depending on T ;

(2)
[
S̃(t,T)uT

]
(t,x)= EuT (η(t,x)(T)) <∞ and

[
S̃(t,T)uT

]
(t,x)=uT(t,x); (3.34)

(3) the function [S̃(t,T)uT ](t,x) is C1-smooth in t and C2-smooth in x.

Proof. Notice that in the proof of necessity in Theorem 3.6, we first proved the

equality [S̃(t,T)uT ](t,x)=uT(t,x), that is, condition (2) of Corollary 3.11, from which

we derived that condition (2) of Theorem 3.6 was satisfied. Thus, we only need to modify

the proof of sufficiency under the assumption that condition (2) of Theorem 3.6 is

replaced by that of Corollary 3.11.
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The proof that the Feller evolution family S(t,s) on the space of continuous bounded

functions on M exists is absolutely the same as for the conditions of Theorem 3.6.

We construct vT (x)=uT(T ,x) and show that [S(t,T)vT ](x) is bounded. From con-

dition (2) of the corollary and from Lemma 3.7, we obtain [S̃(t,T)uT ](t,x)−uT(t,x)=
[S(t,T)vT ](x)−uT(t,x)= 0. Hence

[
S(t,T)vT

]
(x)=uT(t,x). (3.35)

Thus, [S(t,T)vT ](x) <∞.

From equality (3.35), it also follows that the map (t,x)� [S(t,T)vT ](x) is smooth.

Suppose that [S(t,T)vT ](x) < K. Then, from (3.35), since uT is positive, we get

0 < uT(t,x) < K. Thus, the values uT(t,x) belong to the compact set [0,K] ⊂ R+.

Hence, from [S(t,T)vT ](x) < K, it follows that x ∈ πT((uT )−1([0,K])), while the last

set is compact since uT is proper and πT is continuous.

So, conditions (i), (ii), (iii), and (iv) of Definition 3.5 are satisfied. Hence, ξ(s) is L1-

complete and S(t,s)s≥t≥0 is a complete Feller evolution family.
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