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A numerical algorithm, based on a decomposition technique, is presented for solving a class
of nonlinear integral equations. The scheme is shown to be highly accurate, and only few
terms are required to obtain accurate computable solutions.
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1. Introduction. Adomian polynomial algorithm has been extensively used to solve

linear and nonlinear problems arising in many interesting applications (see, e.g., [1,

2, 4, 5]). The algorithm (a decomposition method) assumes a series solution for the

unknown quantity. It has been shown [3] that the series converges fast, and with only

few terms, this series approximates the exact solution with a fairly reasonable error. In

this note, we will adapt the algorithm and a modification version of the algorithm due

to Wazwaz [7] to the solution of the nonlinear Volterra-Fredholm integral equations

arising in the modeling of many applications [8]:

y(x)= f(x)+λ1

∫ x
a
K1(x,t)g1

(
y(t)

)
dt+λ2

∫ b
a
K2(x,t)g2

(
y(t)

)
dt, (1.1)

and analyze the solution. In (1.1), where K1(x,t) and K2(x,t) are referred to as the

kernel, g1 and g2 are nonlinear functions of y , and f(x) a given function, g, K, and f
are known functions, and λ1 and λ2 are parameters.

The balance of this note is as follows. In Section 2, we describe the general algorithm

as it applies to the solution of integral equations of the form (1.1). In Section 3, we

adapt the algorithm to some problems.

2. Analysis. In this section, we first describe the algorithm of the decomposition

method as it applies to a general nonlinear equation of the form

y = f +N(y), (2.1)

or

y−N(y)= f , (2.2)

where N is a nonlinear operator on a Hilbert space H and f is a known element of H.

We assume that for a given f , a unique solution u of (2.2) exists.
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The standard decomposition method assumes a series solution for u given by

y =
∞∑
n=0

yn =y0+y1+y2+··· , (2.3)

and the nonlinear operator N can be decomposed into

N(y)=
∞∑
n=0

An, (2.4)

where the An’s are Adomian’s polynomials of y0, . . . ,yn given by

An = 1
n!

dn

dλn


N


 ∞∑
i=0

λiyi





λ=0

, n= 0,1, . . . . (2.5)

Substituting (2.3) and (2.4) into the functional equation (2.2) yields

∞∑
n=0

yn−
∞∑
n=0

An = f . (2.6)

If the series in (2.6) is convergent, then (2.6) holds upon setting

y0 = f ,
y1 =A0

(
y0
)
,

y2 =A1
(
y0,y1

)
,

...

yn =An−1
(
y0,y1, . . . ,yn−1

)
,

...

(2.7)

Thus, one can recursively determine every term of the series
∑∞
n=0yn. The convergence

of this series has been established (see [2]). The two hypotheses necessary for proving

convergence of the decomposition method as given in [2] are as follows.

Condition 2.1. The nonlinear functional equation (2.2) has a series solution∑∞
n=0yn such that

∑∞
n=0(1+ε)n|yn|<∞, where ε > 0 may be very small.

Condition 2.2. The nonlinear operator N(y) can be developed in series N(y) =∑∞
n=0αnyn.

These hypotheses, for proving convergence, are generally satisfied in physical prob-

lems.

The modified Adomian method [7] may be roughly described as a reassignment of

the initial approximants y0 and y1. In particular, if f is split into two functions, say,
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f = f1+f2, then we may rewrite (2.7) as

y0 = f1,

y1 = f2+A0
(
y0
)
,

y2 =A1
(
y0,y1

)
,

...

(2.8)

The choice of how to assign y0 and y1 is experimental, yet it leads to less computation

and does accelerate the convergence.

We now describe the application of the decomposition method to an integral equation

of the form (1.1). For the sake of simplicity, we will present the method for integral

equations of the form

y(x)= f(x)+
∫ b
a
K(x,t)g

(
y(t)

)
dt. (2.9)

The adaption for the method to (1.1) is immediate.

Assuming that g(y) is analytic (and thus satisfying Condition 2.2), we can write

g(u)=
∞∑
k=0

Ak
(
y0,y1, . . . ,yk

)
, (2.10)

where Ak are the specially generated Adomian polynomials which can be constructed

by the following procedures.

Assume that the Taylor expansion of g(y) around y0 exists and is determined by

g(y)= g(y0
)+g(1)(y0

)(
y−y0

)+ 1
2!
g(2)

(
y0
)(
y−y0

)2+··· . (2.11)

Substituting the difference y−y0 from (2.3) into (2.11), we get

g(y)= g(y0
)+g(1)(y0

)(
y1+y2+···

)

+ 1
2!
g(2)

(
y0
)(
y1+y2+···

)2+··· .
(2.12)

After expanding, this results in

g(y)= g(y0
)+g(1)(y0

)(
y1+y2+···

)

+ 1
2!
g(2)

(
y0
)(
y2

1 +2y1y2+2y1y3+y2
2 +2y2y3+y2

3 +···
)

+ 1
3!
g(3)

(
y0
)(
y3

1 +3y2
1y2+3y2

1y3+3y1y2
2 +3y1y2

3 +···
)

+··· .

(2.13)

Adomian polynomials are obtained by reordering and rearranging the terms given in

(2.13). Indeed, to determine the Adomian polynomial, one needs to determine the order

of each term in (2.13) which actually depends on both the subscripts and the exponents

of the yn’s. To be more specific, we define the order of the component ymk to be mk,
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and ymk y
n
j to be mk+nj. Then the Adomian’s polynomial A0 depends upon y0 with

order 0, A1 depends upon y0 and y1 with order 1, and so forth. Therefore, rearranging

the terms in the expansion equation (2.13) according to the order, we will have An as

follows:

A0 = g
(
y0
)
,

A1 =y1g(1)
(
y0
)
,

A2 =y2g(1)
(
y0
)+ y

2
1

2!
g(2)

(
y0
)
,

A3 =y3g(1)
(
y0
)+y1y2g(2)

(
y0
)+ y

3
1

3!
g(3)

(
y0
)
,

...

(2.14)

Once the An are determined by (2.14), one can recurrently determine the terms yn of

the series from (2.7), and hence the solution y . It is easy to verify that when N(y) is

g(y), formula (2.5) yields the same result as in (2.14).

For a detailed description of the decomposition method, we refer the reader to [1, 2,

6].

Substituting (2.3) and (2.10) into (1.1), we have

y0+y1+y2+··· = f(x)+
∫ b
a
K(x,t)

(
A0+A1+A2+···

)
dt. (2.15)

If the series is convergent, then we can determine each term of the series
∑∞
n=0yn

recursively:

y0 = f(x),

y1 =
∫ b
a
K(x,t)A0

(
y0
)
dt,

y2 =
∫ b
a
K(x,t)A1

(
y0,y1

)
dt,

...

yn =
∫ b
a
K(x,t)An−1

(
y0,y1, . . . ,yn−1

)
dt,

...

(2.16)

The algorithm in (2.16) determines the yi’s and hence the solution y can be de-

termined by (2.3). The decomposition method can be applied to solve problems in

higher dimensions (see [2]). We will also apply the modified decomposition by writ-

ing f = f1+f2 with appropriate choice for y0 and y1.
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Table 3.1

x 0 0.2 0.4 0.6 0.8 1.0

Error 0 0 10−10 5×10−9 8.85×10−8 1.41×10−7

3. The solution of integral equations. In this section, we apply the algorithms de-

scribed in Section 2 to some problems of integral equations. Most of the problems

discussed were solved using Taylor-type method in [8]. The decomposition method is

an alternative method for solving these equations. Whenever appropriate, we will note

the comparison.

Problem 3.1. We apply the standard decomposition method

y(x)=−15
56
x8+ 13

14
x7− 11

10
x6+ 9

20
x5+x2−x+

∫ x
0
(x+t)y3(t)dt. (3.1)

Let y0(x)=−(15/56)x8+(13/14)x7−(11/10)x6+(9/20)x5+x2−x, then

y1(x)=
∫ x

0
(x+t)y3

0 (t)dt,

y2(x)=
∫ x

0
(x+t)3y2

0 (t)y1(t)dt,

y3(x)=
∫ x

0
(x+t)[3y2

0 (t)y2(t)+3y0(t)y1(t)
]
dt,

y4(x)=
∫ x

0
(x+t)[3y2

0 (t)y3(t)+6y0(t)y1(t)y2(t)+y3
1 (t)

]
dt,

...

(3.2)

y(x) is approximated by using only five terms of decomposition polynomials:

y(x)≈y0(x)+y1(x)+y2(x)+y3(x)+y4(x). (3.3)

The exact solution of the integral equation is y(x) = x2−x. Comparing the approxi-

mate solution from the decomposition method with the exact solution of the integral

equation at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, we find the errors displayed in Table 3.1.

Figure 3.1 shows the approximate and analytic solutions of the equation. The solid

curve represents the approximate solution, while the rhombuses represent the analytic

solution. It is obvious from the figure that the approximation is very good, although we

used only four terms of decomposition polynomials.

Problem 3.2. We apply the standard decomposition method

y(x)= ex− 1
3
e3x+ 1

3
+
∫ x

0

[
y(t)

]3dt. (3.4)
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Figure 3.1. Decomposition method versus analytic solution for y(x) =
−(15/56)x8+(13/14)x7−(11/10)x6+(9/20)x5+x2−x+∫x0 (x+t)y3(t)dt.

Let y0(x)= ex , then

y1(x)=−1
3
e3x+ 1

3
+
∫ x

0
y3

0 (t)dt,

y2(x)=
∫ x

0
3y2

0 (t)y1(t)dt,

y3(x)=
∫ x

0

[
3y2

0 (t)y2(t)+3y0(t)y2
1 (t)

]
dt,

y4(t)=
∫ x

0

[
3y2

0 (t)y3(t)+6y0(t)y1(t)y2(t)+y3
1 (t)

]
dt,

y5(x)=
∫ x

0

[
y2

0 (t)y4(t)+3y0(t)y2
2 (t)+3y2

1 (t)y2(t)+6y0(t)y1(t)y3(t)
]
dt,

y6(x)=
∫ x

0

[
3y2

1 (t)y3(t)+3y2
0 (t)y5(t)+3y1(t)y2

2 (t)+6y0(t)y2(t)y3(t)

+6y0(t)y1(t)y4(t)
]
dt,

y7(x)=
∫ x

0

[
6y0(t)y2(t)y4(t)+6y1(t)y2(t)y3(t)+6y0(t)y1(t)y5(t)

+3y2
0 (t)y6(t)+3y0(t)y2

3 (t)+3y2
1 (t)y4(t)+y3

2 (t)
]
dt,

y8(x)=
∫ x

0

[
6y0(t)y1(t)y6(t)+3y2

0 (t)y7(t)+6y0(t)y3(t)y4(t)

+3y2
1 (t)y5(t)+3y1(t)y2

3 (t)+3y2
2 (t)y3(t)+6y0(t)y2(t)y5(t)

]
dt,

...

(3.5)

y(x) is approximated by using nine terms of decomposition polynomials:

y(x)≈y0(t)+y1(t)+y2(t)+y3(t)+y4(t)

+y5(t)+y6(t)+y7(t)+y8(t).
(3.6)
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Table 3.2

x 0 0.2 0.4 0.6 0.8 1.0

Error 0 7.1×10−11 3.3×10−10 2.5×10−9 2.3×10−8 3.8×10−7

4

3

2

Y

1

0

−1

0.2 0.4 0.6
X

0.8 1

Figure 3.2. Decomposition method versus analytic solution for y(x)= ex−
(1/3)e3x+1/3+∫x0 [y(t)]3dt.

A comparison of the approximate solution from the decomposition method with the

exact solution y(x) = ex of the integral equation at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0
yields the errors displayed in Table 3.2.

We can see also from Figure 3.2 that the approximation is very good. The solid curve,

which represents the approximate solution almost coincides with the analytic solution

(rhombuses curve).

Problem 3.3. We apply the modified decomposition method

y(x)= x−x sinx cosx+ 3
4
x2+ 1

4
sin2x−

∫ x
0
(x−t)y(t)dt−

∫ x
0
(x+t)[y(t)]2dt.

(3.7)

Let y0(x)= x, then

y1(x)=−x sinx cosx+ 3
4
x2+ 1

4
sin2x−

∫ x
0
(x−t)y0(t)dt

−
∫ x

0
(x+t)[y0(t)

]2dt,

y2(x)=−
∫ x

0
(x−t)y1(t)dt−

∫ x
0
(x+t)[2y0(t)y1(t)

]
dt,

y3(x)=−
∫ x

0
(x−t)y2(t)dt−

∫ x
0
(x+t)[2y0(t)y2(t)+y2

1 (t)
]
dt,
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Table 3.3

x 0 0.2 0.4 0.6 0.8 1.0

Error 2.4×10−7 1.8×10−5 1.8×10−5 3.2×10−5 6.4×10−5 4.6×10−3
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Figure 3.3. Decomposition method versus analytic solution for y(x) = x−
x sinx cosx+(3/4)x2+(1/4)sin2x−∫x0 (x−t)y(t)dt−

∫x
0 (x+t)[y(t)]2dt.

y4(t)=−
∫ x

0
(x−t)y3(t)dt−

∫ x
0
(x+t)[2y0(t)y3(t)+2y1(t)y2(t)

]
dt,

y5(x)=−
∫ x

0
(x−t)y4(t)dt

−
∫ x

0
(x+t)[2y0(t)y4(t)+2y1(t)y3(t)+y2

2 (t)
]
dt,

y6(x)=−
∫ x

0
(x−t)y5(t)dt

−
∫ x

0
(x+t)[2y0(t)y5(t)+2y1(t)y4(t)+2y2(t)y3(t)

]
dt,

...

(3.8)

y(x) is approximated by using seven terms of decomposition polynomials:

y(x)≈y0(t)+y1(t)+y2(t)+y3(t)+y4(t)+y5(t)+y6(t). (3.9)

A comparison of the approximate solution from the decomposition method with the

exact solution y(x)= sinx of the integral equation at x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0
yields the errors displayed in Table 3.3.

We can see also from Figure 3.3 that the approximation is very good.
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In this note, we presented decomposition method as an alternate method to other

approximate methods to integral equations. In the above problems, the method yields

accurate computable solutions with good approximation using only few terms.
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