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1. Introduction. In the so-called algebraic approach to quantum systems, one of the

basic problems to be solved consists in the rigorous definition of the algebraic dynam-

ics, that is, the time evolution of observables and/or states. For instance, in quantum

statistical mechanics or in quantum field theory, one tries to recover the dynamics by

performing a certain limit of the strictly local dynamics. However, this can be success-

fully done only for few models and under quite strong topological assumptions (see,

e.g., [22] and the references therein). In many physical models, the use of local observ-

ables corresponds, roughly speaking, to the introduction of some cutoff (and to its

successive removal) and this is in a sense a general and frequently used procedure; see

[8, 10, 21, 23] for conservative systems and [1, 9] for dissipative ones.

Introducing a cutoff means that in the description of some physical system, we know

a regularized Hamiltonian HL, where L is a certain parameter closely depending on the

nature of the system under consideration. The role of the commutator [HL,A], A being

an observable of the physical system (in a sense that will be made clearer in the follow-

ing), is crucial in the analysis of the dynamics of the system. We have discussed several

properties of this map in a recent paper, [14], focusing our attention mainly on the ex-

istence of the algebraic dynamics αt given a family of operators HL as above. Here, in a

certain sense, we reverse the point of view. We start with a (generalized) derivation δ and

we first consider the following problem: under which conditions is the map δ spatial

(i.e., implemented by a certain operator)? The spatiality of derivations is a very classical

problem when formulated in ∗-algebras and it has been extensively studied in the liter-

ature in a large variety of situations, mostly depending on the topological structure of

the ∗-algebras under consideration (C∗-algebras, von Neumann algebras, O∗-algebras,

etc.; see [2, 3, 15, 22]). In this paper, we consider a more general setup, turning our at-

tention to derivations taking their values in a quasi ∗-algebra. This choice is motivated

by possible applications to the physical situations described above. Indeed, if �0 de-

notes the ∗-algebra of local observables of the system, in order to perform the so-called

thermodynamical limits of certain local observables, one endows �0 with a locally con-

vex topology τ , conveniently chosen for this aim (the so-called physical topology). The
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completion � of �0[τ], where thermodynamical limits mostly live, may fail to be an

algebra, but it is in general a quasi ∗-algebra [3, 21, 24]. For these reasons, we start with

considering, given a quasi ∗-algebra (�,�0), a derivation δ defined in �0 taking its val-

ues in �, and investigate its spatiality. In particular, we consider the case where δ is

the limit of a net {δL} of spatial derivations of �0, and give conditions for its spatiality

and for the implementing operator to be the limit, in some sense, of the operators HL
implementing the {δL}’s.

The paper is organized as follows. In Section 2, we give the essential definitions of

the algebraic structures needed in the sequel. In Section 3, the possibility of extending δ
beyond �0, through a notion of τ-closability, is investigated. Section 4 is devoted to the

analysis of the spatiality of ∗-derivations which are induced by ∗-representations, and

of the spatiality of the limit of a net of spatial ∗-derivations. We also extend our results

to the situation where the ∗-representation, instead of living in Hilbert space, takes its

values in a quasi ∗-algebra of operators in rigged Hilbert space (qu∗-representation).

2. The mathematical framework. Let � be a linear space and �0 a ∗-algebra con-

tained in � as a subspace. We say that � is a quasi ∗-algebra with distinguished
∗-algebra �0 (or, simply, over �0) if

(i) the left multiplication ax and the right multiplication xa of an element a of

� and an element x of �0 which extend the multiplication of �0 are always

defined and bilinear;

(ii) x1(x2a)= (x1x2)a and x1(ax2)= (x1a)x2 for each x1,x2 ∈�0 and a∈�;

(iii) an involution ∗ which extends the involution of �0 is defined in � with the

property (ax)∗ = x∗a∗ and (xa)∗ = a∗x∗ for each x ∈�0 and a∈�.

A quasi ∗-algebra (�,�0) is said to have a unit I if there exists an element I∈�0 such

that aI = Ia = a, for all a ∈ �. In this paper, we will always assume that the quasi
∗-algebra under consideration has an identity.

Let �0[τ] be a locally convex ∗-algebra. Then the completion �0[τ] of �0[τ] is a

quasi ∗-algebra over �0 equipped with the following left and right multiplications: for

any x ∈�0 and a∈�,

ax ≡ lim
α
xαx, xa≡ lim

α
xxα, (2.1)

where {xα} is a net in �0 which converges to a with respect to the topology τ . Fur-

thermore, the left and right multiplications are separately continuous. A ∗-invariant

subspace � of �0[τ] containing �0 is said to be a (quasi-) ∗-subalgebra of �0[τ] if ax
and xa are in � for any x ∈�0 and a∈�. Then we have

x1
(
x2a

)= lim
α
x1
(
x2xα

)= lim
α

(
x1x2

)
xα =

(
x1x2

)
a (2.2)

and similarly,

(
ax1

)
x2 = a

(
x1x2

)
, x1

(
ax2

)= (x1a
)
x2, (2.3)
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for each x1,x2 ∈�0 and a∈�, which implies that � is a quasi ∗-algebra over �0, and

furthermore, �[τ] is a locally convex space containing �0 as dense subspace and the

right and left multiplications are separately continuous. Hence, � is said to be a locally

convex quasi ∗-algebra over �0.

If (�[τ],�0) is a locally convex quasi ∗-algebra, we indicate with {pα, α ∈ I} a di-

rected set of seminorms which defines τ .

In a series of papers [7, 11, 12, 13], we have considered a special class of quasi ∗-

algebras, called CQ∗-algebras, which arises as completions of C∗-algebras. They can

be introduced in the following way.

Let � be a right Banach module over the C∗-algebra �� with involution � and C∗-

norm ‖·‖�, and further with isometric involution ∗, such that �� ⊂�. Set �� = (��)∗.

We say that {�,∗,��,�} is a CQ∗-algebra if

(i) �� is dense in � with respect to its norm ‖·‖,
(ii) �0 :=��∩�� is dense in �� with respect to its norm ‖·‖�,

(iii) (ab)∗ = b∗a∗, for all a,b ∈�0,

(iv) ‖y‖� = supa∈�,‖a‖≤1‖ay‖, y ∈��.

Since ∗ is isometric, the space �� is itself, as it is easily seen, a C∗-algebra with

respect to the involution x� := (x∗)�∗ and the norm ‖x‖� := ‖x∗‖�.
A CQ∗-algebra is called proper if �� = ��. When also � = �, we indicate a proper

CQ∗-algebra with the notation (�,∗,�0), since ∗ is the only relevant involution and

�0 =�� =��.

An example ofCQ∗-algebra is provided by certain subspaces of �(�+1,�−1), �(�+1),
and �(�−1), the spaces of operators acting on a triplet (scale) of Hilbert spaces gen-

erated in a canonical way by an unbounded operator S ≥ 1. For details, see [3, 11, 12].

From a purely algebraic point of view, each CQ∗-algebra can be considered as an ex-

ample of partial ∗-algebra, [3, 4, 5], by which we mean a vector space � with involu-

tion a → a∗ (i.e., (a+λb)∗ = a∗ +λb∗; a = a∗∗) and a subset Γ ⊂ �×� such that (i)

(a,b) ∈ Γ implies (b∗,a∗) ∈ Γ ; (ii) (a,b), (a,c) ∈ Γ imply (a,b+λc) ∈ Γ ; and (iii) if

(a,b)∈ Γ , then there exists an element ab ∈� and for this multiplication (which is not

supposed to be associative) the following properties hold: if (a,b) ∈ Γ and (a,c) ∈ Γ ,
then ab+ac = a(b+c) and (ab)∗ = b∗a∗.

In the following, we also need the concept of ∗-representation.

Let � be a dense domain in Hilbert space �. As usual, we denote with �†(�) the

space of all closable operators A with domain � such that D(A∗)⊃� and both A and

A∗ leave � invariant. As it is known, � is a ∗-algebra with the usual operations A+B,

λA, AB, and the involution A† = A∗|�. Now let � be a locally convex quasi ∗-algebra

over �0 and πo a ∗-representation of �0, that is, a ∗-homomorphism from �0 into

the ∗-algebra �†(�), for some dense domain �. In general, extending πo beyond �0

will force us to abandon the invariance of the domain �. That is, for A ∈ �\�0, the

extended representative π(A) will only belong to �†(�,�) which is defined as the set

of all closable operators X in � such that D(X) = � and D(X∗) ⊃ � and it is a partial
∗-algebra (called partial O∗-algebra on �) with the usual operations X + Y , λX, the

involution X† =X∗|�, and the weak product X�Y ≡X†∗Y whenever Y�⊂D(X†∗) and

X†�⊂D(Y∗).
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It is also known that, defining on � a suitable (graph) topology, one can build up the

rigged Hilbert space �⊂�⊂�′, where �′ is the dual of � [18] and one has

�†(�)⊂�(�,�′), (2.4)

where �(�,�′) denotes the space of all continuous linear maps from � into �′. More-

over, under additional topological assumptions, the following inclusions hold: �†(�)⊂
�†(�,�)⊂�(�,�′). A more complete definition will be given in Section 4.

Let (�,�0) be a quasi ∗-algebra, �π a dense domain in a certain Hilbert space �π ,

and π a linear map from � into �†(�π ,�π) such that

(i) π(a∗)=π(a)† for all a∈�;

(ii) if a ∈ �, x ∈ �0, then π(a)� π(x) is well defined and π(ax) = π(a)� π(x).
We say that such a map π is a ∗-representation of �;

(iii) if π(�0)⊂�†(�π), then π is a ∗-representation of the quasi ∗-algebra (�,�0).
Let π be a ∗-representation of �. The strong topology τs on π(�) is the locally

convex topology defined by the following family of seminorms: {pξ(·); ξ ∈�π}, where

pξ(π(a))≡ ‖π(a)ξ‖, where a∈�, ξ ∈�π .

For an overview on partial ∗-algebras and related topics, we refer to [3].

3. ∗-Derivations and their closability. Let (�,�0) be a quasi ∗-algebra.

Definition 3.1. A ∗-derivation of �0 is a map δ : �0 →� with the following prop-

erties:

(i) δ(x∗)= δ(x)∗ for all x ∈�0;

(ii) δ(αx+βy)=αδ(x)+βδ(y) for all x,y ∈�0 and for all α,β∈ C;

(iii) δ(xy)= xδ(y)+δ(x)y for all x,y ∈�0.

As we see, the ∗-derivation is originally defined only on �0. Nevertheless, it is clear

that this is not the unique possibility at hand: δ could also be defined on the whole

�, or in a subset of � containing �0, under some continuity or closability assumption.

Since the continuity of δ is a rather strong requirement, we consider here a weaker

condition.

Definition 3.2. A ∗-derivation δ of �0 is said to be τ-closable if for any net {xα} ⊂
�0 such that xα

τ
�������→ 0 and δ(xα)

τ
�������→ b ∈�, b = 0 results.

If δ is a τ-closable ∗-derivation, then we define

D
(
δ
)= {a∈� : ∃{xα}⊂�0 s.t. τ− lim

α
xα = a, δ

(
xα
)

converges in �
}
. (3.1)

Now, for any a∈D(δ), we put

δ(a)= τ− lim
α
δ
(
xα
)
, (3.2)

and the following lemma holds.

Lemma 3.3. If δ(�0)⊂�0, then D(δ) is a quasi ∗-algebra over �0.
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Proof. First we observe that D(δ) is a complex vector space. In particular, it is

closed under involution. In fact, from the definition itself, if a∈D(δ), then there exists

a net {xα} τ-converging to a. But, since the involution is τ-continuous, the net {x∗α} is

τ-converging to a∗ ∈�. We conclude that whenever a∈D(δ), a∗ ∈D(δ).
Next we show that the multiplication of an element a ∈ D(δ) and x ∈ �0 is well

defined. We consider here the product ax. The proof of the existence of xa is similar.

Since a ∈ D(δ), then there exists {xα} ⊂ �0 such that xα
τ
�������→ a. Moreover, the net

δ(xα) τ-converges to an element b ∈ � : δ(xα)
τ
�������→ b = δ(a). Recalling now that the

multiplication is separately continuous and since, by assumptions, δ(x) ∈ �0, we de-

duce that δ(xαx) = δ(xα)x+xαδ(x) τ�������→ δ(a)x+aδ(x), which shows that ax belongs

to D(δ) and that δ(ax)= τ− limαδ(xαx).

This lemma shows that, under some assumptions, it is possible to extend δ to a set

larger than �0 which, also if it is different from �, is a quasi ∗-algebra over �0 itself.

This result suggests the following rather general definition.

Definition 3.4. Let (�,�0) be a quasi ∗-algebra and � a vector subspace of � such

that (�,�0) is a quasi ∗-algebra. A map δ : �→� is called a ∗-derivation if

(i) δ(�0)⊂�0 and δ0 ≡ δ|�0 is a ∗-derivation of �0;

(ii) δ is linear;

(iii) δ(ax)= aδ(x)+δ(a)x = aδ0(x)+δ(a)x for all a∈� and for all x ∈�0.

Remark 3.5. Because of the previous results, if δ0 is τ-closable, then its closure δ0

is a ∗-derivation defined on D(δ0).

Now we look for conditions for a ∗-derivation δ to be closable, making use of some

duality result. For that, we first recall that if (�[τ],�0) is a locally convex quasi ∗-

algebra and δ is a ∗-derivation of �0, we can define the adjoint derivation δ′ acting on a

subspace D(δ′) of the dual space �′ of �. The derivation δ′ is first defined, forω∈�′

and x ∈�0, by (δ′ω)(x)=ω(δ(x)) and then extended to the domain

D(δ′)= {ω∈�′ : δ′ω has a continuous extension to �}. (3.3)

A classical result, [20], states that δ is τ-closable if and only ifD(δ′) isσ(�′,�)-dense

in �′. We now prove the following result.

Proposition 3.6. Let δ : �0 →� be a ∗-derivation. Assume that there exists ω∈�′

such that ω|�0 is a positive linear functional on �0 and

(1) ω◦δ is τ-continuous on �0;

(2) the GNS representation πω of �0 is faithful.

Then δ is τ-closable.

Proof. First we notice that condition (3.1) above implies thatω∈D(δ′). Secondly,

let x,y,z ∈�0. Since ω(xδ(y)z) =ω(δ(xyz))−ω(δ(x)yz)−ω(xyδ(z)), we have,

as a consequence of the continuity of ω◦δ and of ω itself,

∣∣ω(xδ(y)z)∣∣≤ pα(xyz)+pβ(δ(x)yz)+pγ(xyδ(z))≤ Cx,zpσ (y), (3.4)
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where we have also used the continuity of the multiplication. Cx,z is a suitable posi-

tive constant depending on both x and z. We further define a new linear functional

ωx,z(y)=ω(xyz). Of course we have |ω(xyz)| ≤Dx,zpα(y) for some seminorm pα
and a positive constantDx,z. It follows thatωx,z has a continuous extension to �, which

we still denote with the same symbol. Moreover, since (δ′ωx,z)(y) = ωx,z(δ(y)) =
ω(xδ(y)z), we have |(δ′ωx,z)(y)| ≤ Cx,zpσ (y) for every y ∈ �0. This implies that

ωx,z belongs toD(δ′) or, in other words, thatωx,z has a continuous extension to �. For

this reason, we have D(δ′)⊃ linear span{ωx,z : x,z ∈�0}, and this set is dense in �′.
Were it not so, then there would exist a nonzero element y ∈�0 such thatωx,z(y)= 0

for all x,z ∈�0. But this is in contrast with the faithfulness of the GNS-representation

πω since we would also have ω(xyz) = 〈πω(y)λω(z), λω(x∗)〉 = 0 for all x,z ∈�0,

which, in turn, would imply that πω(y)= 0.

4. Spatiality of ∗-derivations induced by ∗-representations. Let (�,�0) be a quasi
∗-algebra and δ a ∗-derivation of �0 as defined in Section 3. Let π be a ∗-representation

of (�,�0). We always assume that whenever x ∈�0 is such that π(x)= 0, π(δ(x))= 0

as well. Under this assumption, the linear map

δπ
(
π(x)

)=π(δ(x)), x ∈�0, (4.1)

is well defined on π(�0) with values in π(�) and it is a ∗-derivation of π(�0). We call

δπ the ∗-derivation induced by π .

Given such a representation π and its dense domain �π , we consider the usual graph

topology t† generated by the seminorms

ξ ∈�π �→‖Aξ‖, A∈�†(�π). (4.2)

Calling �′
π the conjugate dual of �π , we get the usual rigged Hilbert space �π[t†]⊂

�π ⊂ �′
π[t

′
†], where t′† denotes the strong dual topology of �′

π . As usual, we denote

with �(�π ,�′
π) the space of all continuous linear maps from �π[t†] into �′

π[t
′
†], and

with �†(�π) the ∗-algebra of all operators A in �π such that both A and its adjoint A∗

map �π into itself. In this case, �†(�π) ⊂ �(�π ,�′
π). Each operator A ∈ �†(�π) can

be extended to all of �′
π in the following way:

〈
Âξ′,η

〉= 〈ξ′,A†η〉 ∀ξ′ ∈�′
π , η∈�π . (4.3)

Therefore, the multiplication of X ∈�(�π ,�′
π) and A∈�†(�π) can always be defined:

(X ◦A)ξ =X(Aξ), (A◦X)ξ = Â(Xξ) ∀ξ ∈�π . (4.4)

With these definitions, it is known that (�(�π ,�′
π),�†(�π)) is a quasi ∗-algebra.

We can now prove the following theorem.

Theorem 4.1. Let (�,�0) be a locally convex quasi ∗-algebra with identity and δ a
∗-derivation of �0. Then the following statements are equivalent.

(i) There exists a (τ−τs)-continuous, ultra-cyclic ∗-representation π of �, with ultra-

cyclic vector ξ0, such that the ∗-derivation δπ induced by π is spatial, that is, there exists
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H =H† ∈�(�π ,�′
π) such that Hξ0 ∈�π and

δπ
(
π(x)

)= i{H ◦π(x)−π(x)◦H} ∀x ∈�0. (4.5)

(ii) There exists a positive linear functional f on �0 such that

f
(
x∗x

)≤ p(x)2 ∀x ∈�0, (4.6)

for some continuous seminorm p of τ and, denoting with f̃ the continuous extension of

f to �, the following inequality holds:

∣∣f̃ (δ(x))∣∣≤ C(
√
f
(
x∗x

)+
√
f
(
xx∗

)) ∀x ∈�0 (4.7)

and for some positive constant C .

(iii) There exists a positive sesquilinear form ϕ on �×� such that ϕ is invariant,

that is,

ϕ(ax,y)=ϕ(x,a∗y) ∀a∈�, x,y ∈�0; (4.8)

ϕ is τ-continuous, that is,

∣∣ϕ(a,b)∣∣≤ p(a)p(b) ∀a,b ∈� (4.9)

and for some continuous seminorm p of τ ; and ϕ satisfies the following inequality:

∣∣ϕ(δ(x),1)∣∣≤ C(
√
ϕ(x,x)+

√
ϕ
(
x∗,x∗

)) ∀x ∈�0 (4.10)

and for some positive constant C .

Proof. First we show that (i) implies (ii).

We recall that the ultra-cyclicity of the vector ξ0 means that �π =π(�0)ξ0. Therefore,

the map defined as

f(x)= 〈π(x)ξ0,ξ0
〉
, x ∈�0, (4.11)

is a positive linear functional on �0. Moreover, since f(x∗x)= ‖π(x)ξ0‖2, (4.6) follows

because of the (τ−τs)-continuity of π . As for (4.7), it is clear first of all that f has a

unique extension to � defined as

f̃ (a)= 〈π(a)ξ0,ξ0
〉
, a∈�, (4.12)

due to the (τ−τs)-continuity of π . Therefore, we have, using (4.5),

∣∣f̃ (δ(x))∣∣= ∣∣〈H ◦π(x)ξ0,ξ0
〉−〈Hξ0,π

(
x∗
)
ξ0
〉∣∣

≤ ∥∥Hξ0

∥∥(〈π(x)ξ0,π(x)ξ0
〉1/2+〈π(x∗)ξ0,π

(
x∗
)
ξ0
〉1/2

) (4.13)

so that inequality (4.7) follows with C = ‖Hξ0‖.
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We now prove that (ii) implies (iii). For that, we define a sesquilinear form ϕ in the

following way: let a,b be in � and let {xα}, {yβ} be two nets in �0, τ-converging,

respectively, to a and b. We put

ϕ(a,b)= lim
α,β
f
(
y∗β xα

)
. (4.14)

It is readily checked that ϕ is well defined. The proofs of (4.8), (4.9), and (4.10) are

easy consequences of definition (4.14) together with the properties of f .

To conclude the proof, we still have to check that (iii) implies (i).

Given ϕ as in (iii) above, we consider the GNS-construction generated by ϕ.

Let �ϕ = {a ∈ �; ϕ(a,a) = 0}; then �/�ϕ = {λϕ(a) = a+�ϕ, a ∈ �} is a pre-

Hilbert space with inner product 〈λϕ(a), λϕ(b)〉 =ϕ(a,b), a,b ∈ λϕ(�). We call �ϕ

the completion of λϕ(�) in the norm ‖ ·‖ϕ given by this inner product. It is easy to

check that λϕ(�0) is ‖·‖ϕ-dense in �ϕ. In fact, due to the definition of locally convex

quasi ∗-algebra, given a ∈ �, there exists a net xα ⊂ �0 such that xα
τ
�������→ a. Therefore,

we have, using the continuity of ϕ,

∥∥λϕ(a)−λϕ(xα)∥∥2
ϕ =

∥∥λϕ(a−xα)∥∥2
ϕ =ϕ

(
a−xα,a−xα

)≤ p(a−xα)2
�→ 0. (4.15)

We can now define a ∗-representation πϕ with ultra-cyclic vector λϕ(1) as follows:

πϕ(a)λϕ(x)= λϕ(ax), a∈�, x ∈�0. (4.16)

In particular, the fact that λϕ(1) is ultra-cyclic follows from the fact that πϕ(�0)λϕ(1)
= λϕ(�0) is dense in �ϕ. Moreover, the representation πϕ is also (τ−τs)-continuous;

in fact, taking a∈� and x ∈�0, we have

∥∥πϕ(a)λϕ(x)∥∥2
ϕ =

∥∥λϕ(ax)∥∥2
ϕ =ϕ(ax,ax)≤

(
p(ax)

)2 ≤ γx
(
p′(a)

)2. (4.17)

The last inequality follows from the continuity of the multiplication. This inequality

shows that whenever τ− limαxα = a, then τs− limαπϕ(xα)=πϕ(a).
This construction produces a ∗-representation πϕ with all the properties required

for π in (i). As a consequence, we can define a ∗-derivation δπϕ induced by πϕ as in

(4.1): δπϕ(πϕ(x))=πϕ(δ(x)) for x ∈�0. The proof of the spatiality of δπϕ generalizes

the proof of the analogous statement for C∗-algebras (see, e.g., [15]).

Let �ϕ be the conjugate space of �ϕ, with inner product

〈
λϕ(x),λϕ(y)

〉
�ϕ =

〈
λϕ(y),λϕ(x)

〉
�ϕ . (4.18)

From now on, we will indicate with the same symbol 〈·,·〉 all the inner products

whenever no possibility of confusion arises.

Let �ϕ be the subspace of �ϕ⊕�ϕ spanned by the vectors {λϕ(x),λϕ(x∗)}, x ∈�0.

We define a linear functional Fϕ on �ϕ by

Fϕ
({
λϕ(x),λϕ

(
x∗
)})= iϕ(δ(x),1), x ∈�0. (4.19)
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Inequality (4.10), together with the equality ‖{λϕ(x),λϕ(x∗)}‖2 =ϕ(x,x)+ϕ(x∗,x∗),
shows that fϕ is indeed continuous so that by Riesz’s lemma, there exists a vector

{ξ1,ξ2} ∈�ϕ⊕�ϕ such that

Fϕ
({
λϕ(x),λϕ

(
x∗
)})= 〈{λϕ(x),λϕ(x∗)},{ξ1,ξ2

}〉

= 〈λϕ(x),ξ1
〉+〈ξ2,λϕ

(
x∗
)〉
.

(4.20)

Using the invariance of ϕ, we also deduce that

Fϕ
({
λϕ(x),λϕ

(
x∗
)})= iϕ(δ(x),1)=−iϕ(δ(x∗),1), (4.21)

which, together with (4.20), gives

1
i
ϕ
(
δ(x),1

)= 〈λϕ(x),η〉−〈η,λϕ(x∗)〉, x ∈�0, (4.22)

where we have introduced the vector η as

η= ξ2−ξ1

2
. (4.23)

Now we define the operator H in the following way:

Hλϕ(x)= 1
i
λϕ
(
δ(x)

)+π̂ϕ(x)η, x ∈�0, (4.24)

where π̂ϕ indicates the extension of πϕ, defined in the usual way, which we need to

introduce since η belongs to �ϕ and not to �πϕ in general.

First of all, we notice from (4.24) that Hλϕ(1)= η∈�ϕ, as stated in (i). Moreover, H
is also well defined and symmetric since for all x,y ∈�0,

〈
Hπϕ(x)λϕ(1),πϕ(y)λϕ(1)

〉−〈πϕ(x)λϕ(1),Hπϕ(y)λϕ(1)〉

= 〈Hλϕ(x),λϕ(y)〉−〈λϕ(x),Hλϕ(y)〉

=
〈(

1
i
λϕ
(
δ(x)

)+π̂ϕ(x)η
)
,λϕ(y)

�
−
〈
λϕ(x),

(
1
i
λϕ
(
δ(y)

)+π̂ϕ(y)η
)�

= 1
i
(
ϕ
(
δ(x),y

)+ϕ(x,δ(y)))+〈π̂ϕ(x)η,λϕ(y)〉−〈λϕ(x),π̂ϕ(y)η〉

= 1
i
ϕ
(
δ
(
y∗x

)
,1
)+〈η,λϕ(x∗y)〉−〈λϕ(y∗x),η〉= 0.

(4.25)



1086 F. BAGARELLO ET AL.

This last equality follows from (4.22). We finally have to prove that H implements the

derivation δπϕ . For this, let x,y,z ∈�0. Then we have

i
(〈
H ◦πϕ(x)λϕ(y),λϕ(z)

〉−〈πϕ(x)◦Hλϕ(y),λϕ(y)〉)

= i(〈Hλϕ(xy),λϕ(z)〉−〈Hλϕ(y),λϕ(x∗y)〉)

= i
(〈

1
i
λϕ
(
δ(xy)

)+π̂ϕ(xy)η,λϕ(z)
�

−
〈

1
i
λϕ
(
δ(y)

)+π̂ϕ(y)η,λϕ(x∗z)
�)

=ϕ(δ(x)y,z)= 〈πϕ(δ(x))λϕ(δ(y)),λϕ(δ(z))〉.

(4.26)

Again, we made use of (4.22).

Remark 4.2. If we add to a spatial ∗-derivation δ0 a perturbation δp such that δ =
δ0+δp is again a ∗-derivation, it is reasonable to consider the question as to whether δ is

still spatial. The answer is positive under very general (and natural) assumptions: since

δ0 is spatial, the above proposition states that there exists a positive linear functional

f on �0 whose extension f̃ satisfies, among the others, inequality (4.7): |f̃ (δ0(x))| ≤
C(
√
f(x∗x)+

√
f(xx∗)) for all x ∈ �0. If we require that δp satisfies the inequality

|f̃ (δp(x))| ≤ |f̃ (δ0(x))| for all x ∈ �0, which is exactly what we expect since δp is

small compared to δ0, we first deduce that δp is spatial and, since for all x ∈ �0,

|f̃ (δ(x))| ≤ 2C(
√
f(x∗x)+

√
f(xx∗)), using the same proposition, we deduce that δ

is spatial too. If H, H0, and Hp denote the operators that implement, respectively, δ,

δ0, and δp , we also get the equality i[H,A]ψ = i[H0+Hp,A]ψ for all A∈�†(�π) and

ψ∈�π .

The problem of the spatiality of a derivation is particularly interesting when dealing

with quantum systems with infinite degrees of freedom. The reason is that for these

systems, we need to introduce a regularizing cutoff in their descriptions and remove

this cutoff only at the very end. Specifically, something like this can happen: the physical

system � is associated to, say, the whole space R3. In order to describe the dynamics of

�, the canonical approach (see [15] and the references therein) consists in considering a

subspace V ⊂R3, the physical system �V which naturally lives in this region, and writ-

ing down the so-called local Hamiltonian HV for �V . This Hamiltonian is a selfadjoint

bounded operator which implements the infinitesimal dynamics δV of �V . To obtain

information about the dynamics for �, we need to compute a limit (in V ) to remove

the cutoff. This can be a problem already at this infinitesimal level (see also [14] and

the references therein) and becomes harder and harder, in general, when the interest

is moved to the finite form of the algebraic dynamics, that is, when we try to integrate

the derivation. Among the other things, for instance, it may happen that the net HV
or the related net δV (or both) does not converge in any reasonable topology, or that

δV is not spatial. Another possibility that may occur is the following: HV converges (in

some topology) to a certain operator H and δV converges (in some other topology) to a

certain ∗-derivation δ, but δ is not spatial or, even if it is, H is not the operator which

implements δ.
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However, under some reasonable conditions, all these possibilities can be controlled.

The situation is governed by the next proposition which is based on the assumption

that there exist a (τ−τs)-continuous ∗-representation π in the Hilbert space �π , which

is ultra-cyclic with ultra-cyclic vector ξ0, and a family of ∗-derivations (in the sense of

Definition 3.1) {δn :n∈N} of the ∗-algebra �0 with identity. We define a related family

of ∗-derivations δ(n)π induced by π , defined on π(�0), and with values in π(�):

δ(n)π
(
π(x)

)=π(δn(x)), x ∈�0. (4.27)

Proposition 4.3. Suppose that

(i) {δn(x)} is τ-Cauchy for all x ∈�0;

(ii) for each n∈N, δ(n)π is spatial, that is, there exists an operator Hn such that

Hn =H†n ∈�
(
�π ,�′

π
)
,

Hnξ0 ∈�π , δ(n)π
(
π(x)

)= i{Hn ◦π(x)−π(x)◦Hn} ∀x ∈�0;
(4.28)

(iii) supn‖Hnξ0‖ =: L <∞.
Then

(a) there exists δ(x)= τ− limδn(x) for all x ∈�0, which is a ∗-derivation of �0;

(b) δπ , the ∗-derivation induced by π , is well defined and spatial;

(c) if H is the selfadjoint operator which implements δπ , and if 〈(Hn−H)ξ0,ξ〉 → 0

for all ξ ∈Dπ , then Hn converges weakly to H.

Proof. (a) This first statement is trivial.

(b) For a,b ∈�, we put ϕ(a,b)= 〈π(a)ξ0,π(b)ξ0〉. Then ϕ is an invariant positive

sesquilinear form on �×� since

ϕ(ax,y)= 〈π(ax)ξ0,π(y)ξ0
〉= 〈π(a)π(x)ξ0,π(y)ξ0

〉

= 〈π(x)ξ0,π
(
a∗
)
π(y)ξ0

〉=ϕ(x,a∗y) (4.29)

for all a∈� and x,y ∈�0. ϕ is τ-continuous: if a,b ∈�,

∣∣ϕ(a,b)∣∣= ∣∣〈π(a)ξ0,π(b)ξ0
〉∣∣≤ ∥∥π(a)ξ0

∥∥∥∥π(b)ξ0

∥∥≤ pα(a)pα(b), (4.30)

for some continuous seminorm pα on �, because of the (τ−τs)-continuity of π .

From this inequality, we deduce that for x ∈�0,

∣∣ϕ(δ(x),1)∣∣= lim
n

∣∣ϕ(δn(x),1)∣∣
= lim

n

∣∣〈Hn ◦π(x)ξ0,ξ0
〉−〈π(x)◦Hnξ0,ξ0

〉∣∣
= limsup

n

∣∣〈Hn ◦π(x)ξ0,ξ0
〉−〈π(x)◦Hnξ0,ξ0

〉∣∣

≤ limsup
n

∥∥Hnξ0

∥∥(∥∥π(x)ξ0

∥∥+∥∥π(x∗)ξ0

∥∥)

≤ L
(√
ϕ(x,x)+

√
ϕ
(
x∗,x∗

))
.

(4.31)
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This sesquilinear form ϕ satisfies all the conditions required in Theorem 4.1(iii).

Then, following the same steps as in the proof of Theorem 4.1, (iii)⇒(i), we construct

the GNS-representation πϕ associated to ϕ. We call �ϕ, ξϕ, and Hϕ, respectively, the

Hilbert space, the ultra-cyclic vector, and the symmetric operator implementing the

derivation associated to πϕ. Among others, the following equality must be satisfied:

ϕ(a,b)= 〈π(a)ξ0,π(b)ξ0
〉= 〈πϕ(a)ξϕ,πϕ(b)ξϕ〉 ∀a,b ∈�, (4.32)

which implies that πϕ and π are unitarily equivalent, that is, there exists a unitary

operator U : �π → �ϕ such that Uξ0 = ξϕ, Uπ(a)U−1 = πϕ(a), for all a ∈ �, and

U is continuous from Dπ[tπ] into Dϕ[tϕ]. We prove here only this last property. Let

x,y ∈�0; we have

∥∥πϕ(y)Uπ(x)ξ0

∥∥
ϕ =

∥∥Uπ(y)π(x)ξ0

∥∥
ϕ =

∥∥π(y)π(x)ξ0

∥∥, (4.33)

which implies that U∗ can be extended to an operator U† : �′
ϕ →�′

π . We have now

δπϕ
(
πϕ(x)

)=πϕ(δ(x))=Uπ(δ(x))U−1 =Uδπ
(
π(x)

)
U−1, (4.34)

which implies that δπ(π(x))=U−1δπϕ(πϕ(x))U . Since δπϕ is well defined, this equal-

ity implies that also δπ is well defined. Indeed, we have

π(x)= 0 �⇒πϕ(x)= 0 �⇒ δπϕ
(
πϕ(x)

)= 0 �⇒ δπ
(
π(x)

)= 0. (4.35)

Now we define H =U−1HϕU|�π . Then

δπ
(
π(x)

)=U−1δπϕ
(
πϕ(x)

)
U

= iU−1(Hϕ ◦πϕ(x)−πϕ(x)◦Hϕ)U
= i(U−1HϕU ◦U−1πϕ(x)U−U−1πϕ(x)U ◦U−1HϕU

)

= i(H ◦π(x)−π(x)◦H),

(4.36)

which allows us to conclude.

(c) For x,y,z ∈�0, we have, using the definition of ϕ and its τ-continuity,

ϕ
(
δn(x)y,z

)= 〈δ(n)π (
π(x)

)
π(y)ξ0,π(z)ξ0

〉

= i(〈(Hn ◦π(x))π(y)ξ0,π(z)ξ0
〉

−〈(π(x)◦Hn)π(y)ξ0,π(z)ξ0
〉)

�→ϕ(δ(x)y,z).

(4.37)
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Since 〈(π(x)◦Hn)π(y)ξ0,π(z)ξ0〉 = 〈Hnπ(y)ξ0,π(x∗z)ξ0〉, we deduce that, tak-

ing y = 1, 〈(π(x)◦Hn)ξ0,π(z)ξ0〉 = 〈Hnξ0,π(x∗z)ξ0〉 → 〈Hξ0,π(x∗z)ξ0〉 because of

the assumption on Hn. Then, since

ϕ
(
δ(x),z

)= i〈(H ◦π(x))ξ0,π(z)ξ0
〉

−〈(π(x)◦H)ξ0,π(z)ξ0
〉
,

(4.38)

we get, by (4.37), that 〈(Hnπ(x))ξ0,π(z)ξ0〉 → 〈(Hπ(x))ξ0,π(z)ξ0〉 for all x,z ∈�0.

Then Hn converges weakly to H.

Example 4.4 (a radiation model). In this example, the representation π is just the

identity map. We consider a model of n free bosons, [6], whose dynamics is given by

the Hamiltonian, H =∑ni=1a
†
i ai. Here ai and a†i are, respectively, the annihilation and

creation operators for the ith mode. They satisfy the following CCR:

[
ai,a

†
j

]
= 1δi,j . (4.39)

LetQL be the projection operator on the subspace of � with at most L bosons. This oper-

ator can be written considering the spectral decomposition of H(i) = a†i ai =
∑∞
l=0 lE

(i)
l .

We have QL =
∑n
i=1

∑L
l=0E

(i)
l . We now define a bounded operator HL in � by HL =

QLHQL. It is easy to check that, for any vector ΦM with M bosons (i.e., an eigen-

state of the number operator N = H = ∑ni=1a
†
i ai with eigenvalue M), the condition

supL‖HLΦM‖ < ∞ is satisfied. In particular, for instance, supL‖HLΦ0‖ = 0. It may be

worth remarking that all the vectors ΦM are cyclic. Denoting with δL the derivation

implemented by HL and by δ the one implemented by H, it is clear that all the assump-

tions of Proposition 4.3 are satisfied so that, in particular, the weak convergence of HL
to H follows. This is not surprising since it is known that HL converges to H strongly

on a dense domain [6].

Example 4.5 (a mean-field spin model). The situation described here is quite dif-

ferent from the one in the previous example. First of all (see [8, 10]) there exists no

Hamiltonian for the whole physical system but only for a finite volume subsystem:

HV = (1/|V |)
∑
i,j∈V σi3σ

j
3 , where i and j are the indices of the lattice site, σi3 is the

third component of the Pauli matrices, V is the volume cutoff, and |V | is the number

of the lattice sites in V . It is convenient to introduce the mean magnetization operator

σV3 = (1/|V |)
∑
i∈V σi3. We indicate with ↑i and ↓i the eigenstates of σi3 with eigenvalues

+1 and −1, respectively. We define Φ↑ = ⊗i∈V ↑i. It is clear that σV3 Φ↑ = Φ↑, which im-

plies that HVΦ↑ = |V |Φ↑, which in turn implies that supV ‖HVΦ↑‖ =∞. This means that

the cyclic vector Φ↑ does not satisfy the main assumption of Proposition 4.3, and for

this reason, nothing can be said about the convergence of HV . However, it is possible

to consider a different cyclic vector

Φ0 = ···⊗ ↑j−1 ⊗ ↓j ⊗ ↑j+1 ⊗ ↓j+2 ⊗··· (4.40)
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which is again an eigenstate of σV3 . Its eigenvalue depends on the volume V . However,

it is clear that ‖σV3 Φ0‖ = (1/|V |)‖Φ0‖εV , where εV can take only the values 0, 1. Analo-

gously, we have ‖HVΦ0‖ = (1/|V |)‖Φ0‖ε2
V → 0. This means that this vector satisfies the

assumptions of Proposition 4.3 so that the derivation δV(·) = i[HV ,·] converges to a

derivation δ which is spatial and implemented by H, and that HV is weakly convergent

to H.

As we see, contrary to Example 4.4, the choice of the cyclic vector which we take as

our starting point is very important in order to be able to prove the existence of δ, its

spatiality, and convergence of HV to a limit operator. It is also worth remarking that

the same conclusions could also be found replacing Φ0 with any vector which can be

obtained as a local perturbation of Φ0 itself.

Remark 4.6. All the results we have proved above can be specialized to CQ∗-

algebras, which can be considered as a particular example of locally convex quasi ∗-

algebras. The main difference in this case concerns statement (c) of Proposition 4.3:

the weak convergence of Hn to H, in this case, is replaced by a strong convergence. In

more details, referring to the example of Section 2 and calling Ω ∈�+1 a cyclic vector,

we can prove that if ‖(Hn−H)Ω‖−1 → 0, then ‖(Hn−H)AΩ‖−1 → 0 for all A∈ B(�+1).

The following result gives an interplay between the results of this section and of

the previous sections. In particular, we consider now the possibility of extending the

domain of definition of the derivation δ (as we did in Section 3) defined as a limit of

a net of derivations δn (as we have done in this section). For this, we first need the

following definition.

Definition 4.7. Let (�[τ],�0) be a locally convex quasi ∗-algebra. A sequence {δn}
of ∗-derivations is called uniformly τ-continuous if for any continuous seminorm p on

�, there exists a continuous seminorm q on � such that

p
(
δn(x)

)≤ q(x) ∀x ∈�0, ∀n∈N. (4.41)

We can now prove the following.

Proposition 4.8. Let δ be the τ-limit of a uniformly τ-continuous sequence {δn} of
∗-derivations such that the set

�(δ)=
{
x ∈�0 : ∃τ− lim

n
δn(x)

}
(4.42)

is τ-dense in �0. Then, δ is a ∗-derivation and, denoting with δ̃n the continuous extension

of δn to �, we have {x ∈� : ∃τ− limn δ̃n(x)} =�.

Proof. The proof that δ is a ∗-derivation is trivial.

Let a be a generic element in �. Since, by assumption, �(δ) is τ-dense in �0, and

therefore in �, there exists a net {xα} ⊂ D(δ) τ-converging to a. This means that for

any continuous seminorms p and for any ε > 0, there existsαp,ε such that p(a−xα) < ε
for all α>αp,ε.
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Take an arbitrary continuous seminorm p on �. Let q be the continuous seminorm

on � satisfying (4.41). Then,

p
(
δ̃n(a)− δ̃m(a)

)≤ p(δ̃n(a−xα))+p((δ̃n− δ̃m)(xα))+p(δ̃m(a−xα))

≤ 2q
(
a−xα

)+p((δ̃n− δ̃m)(xα))

≤ 2ε+p((δ̃n− δ̃m)(xα))≤ ε′
(4.43)

for all fixed α>αq,ε and n, m large enough. This completes the proof.

All the results obtained in this section rely on the fact that there exists one under-

lying Hilbert space related to the representation, in the case of locally convex quasi
∗-algebras, or to triplets of Hilbert spaces for CQ∗-algebras. However, it is known that

in some physically relevant situation like in quantum field theory, the relevant operators

are the quantum fields and these operators belong to �(�,�′) for suitable �, instead of

being in some �†(�,�). This motivates our interest for the next result, which extends

in a nontrivial way Proposition 4.3. Before stating the main proposition (Theorem 4.10),

we need to introduce some definitions.

Let (�,�0) be a quasi ∗-algebra and π0 a ∗-representation of �0 on the domain

�π0 ⊂ �π0 . This means that π0 maps �0 into �†(�π0) and that π0 is a ∗-homomor-

phism of ∗-algebras. As usual, we endow �π0 with the topology t†, the graph topology

generated by �†(�π0). In this way, we get the rigged Hilbert space �π0 ⊂ �π0 ⊂ �′
π0

,

where �′
π0

is the dual of �π0[t†]. On �′
π0

, we consider the strong dual topology t′†
defined by the seminorms

‖F‖� = sup
ξ∈�

∣∣〈F,ξ〉∣∣, � bounded in �π0

[
t†
]
. (4.44)

In �(�π0 ,�′
π0
), we consider the quasi-strong topology τqs defined by the seminorms

�
(
�π0 ,�

′
π0

)�X �→‖Xξ‖�, ξ ∈�π0 , � bounded in �π0

[
t†
]
, (4.45)

and the uniform topology τ� defined by the seminorms

�
(
�π0 ,�

′
π0

)�X �→‖X‖� = sup
ξ,η∈�

∣∣〈Xξ,η〉∣∣, � bounded in �π0

[
t†
]
. (4.46)

Definition 4.9. Let (�,�0) and π0 be as above. A linear map π : �→�(�π ,�′
π) is

called a qu∗-representation of � associated with π0 if π extends π0 and

π
(
a∗
)=π(a)† ∀a∈�;

π(ax)=π(a)π0(x) ∀a∈�, x ∈�0.
(4.47)

Theorem 4.10. Let (�,�0) be a locally convex quasi ∗-algebra with identity and with

topology τ and δ a ∗-derivation of �0.
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Then the following statements are equivalent.

(i) There exists a (τ−τqs)-continuous, ultra-cyclic qu∗-representation π of (�,�0),
with ultra-cyclic vector ξ0 such that the ∗-derivation δπ induced by π is spatial,

that is, there exists H =H† ∈ �(�π ,�′
π) such that

δπ
(
π(x)

)= i{H ◦π(x)−π(x)◦H} ∀x ∈�0. (4.48)

(ii) There exist a positive linear functional f on �0 and a sesquilinear positive form

Ω on �0×�0 such that

(a) for some continuous seminorm p on �[τ],

f
(
x∗x

)≤ p(x)2 ∀x ∈�0; (4.49)

(b) if f̃ is the continuous extension of f to �, then the inequalities

∣∣f̃ (y∗x)∣∣≤ p(x)Ω(y,y)1/2 ∀x,y ∈�0, (4.50)

hold for some continuous seminorm p;

(c)

∣∣f̃ (y∗ax)∣∣≤ γaΩ(x,x)1/2Ω(y,y)1/2 ∀x,y ∈�0, a∈� (4.51)

and for some positive constant γa;

(d)

∣∣f̃ (δ(x))∣∣≤ C(Ω(x,x)1/2+Ω(x∗,x∗)1/2
)
∀x ∈�0 (4.52)

and for some positive constant C ;

(e) for any ultra-cyclic ∗-representation Θ of �0, with ultra-cyclic vector ξθ , sat-

isfying

f(x)= 〈Θ(x)ξθ,ξθ〉 (4.53)

for all x ∈�0, the sesquilinear form on �θ×�θ , �θ =Θ(�0)ξθ , defined by

ϕθ
(
Θ(x)ξθ,Θ(y)ξθ

)=Ω(x,y), (4.54)

is jointly continuous on �θ[t†].

Proof. We prove that (i) implies (ii). For this, let π be a (τ−τqs)-continuous, ultra-

cyclic qu∗-representation of � associated with π0, with ultra-cyclic vector ξ0: π0(�0)ξ0

=�π . For all x ∈�0, we define f(x) = 〈π0(x)ξ0,ξ0〉. Then, since π coincides with π0

on �0 and since π is (τ−τqs)-continuous, we have

f
(
x∗x

)= 〈π0
(
x∗x

)
ξ0,ξ0

〉= 〈π(x∗x)ξ0,ξ0
〉= ∥∥π(x)ξ0

∥∥2 ≤ p(x)2 (4.55)

for some continuous seminorm p of �[τ]. In fact, ‖π(x)ξ0‖ is one of the seminorms

defining τqs . If f̃ is called the continuous extention of f , it is clear that for any a∈�,
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we have f̃ (a)= 〈π(a)ξ0,ξ0〉. Therefore, for x,y ∈�0 and a∈�, we have

f̃
(
y∗ax

)= 〈π(y∗ax)ξ0,ξ0
〉= 〈π(ax)ξ0,π0(y)ξ0

〉
= 〈π(a)π0(x)ξ0,π0(y)ξ0

〉
,

(4.56)

and since, by assumption, π(a)π0(x)ξ0 is a continuous functional on �[t†], there exist

a positive constant γ and a continuous seminorm on �[t†] such that

∣∣f̃ (y∗ax)∣∣≤ γ∥∥Tπ0(y)ξ0

∥∥, (4.57)

where T ∈�†(�π) labels the seminorm. The best value of γ can be found considering

the following bounded subset � of �π[t†]: � = {ξ ∈�π : ‖Tξ‖ = 1}. In this way, we get

∣∣f̃ (y∗ax)∣∣≤ ∥∥π(a)π0(x)ξ0

∥∥
�

∥∥Tπ0(y)ξ0

∥∥≤ px(a)∥∥Tπ0(y)ξ0

∥∥. (4.58)

The last inequality follows from the (τ−τqs)-continuity of π . Furthermore, since π(a)
belongs to �(�π ,�′

π), the following inequality also holds:

∥∥π(a)π0(x)ξ0

∥∥
� ≤ γ2

∥∥Cπ(x)ξ0

∥∥ (4.59)

for a certain positive constant γ2 and an operator C ∈�†(�π).
Moreover, since f̃ (δ(x))= i{〈π(x)ξ0,Hξ0〉−〈Hξ0,π(x∗)ξ0〉}, and since, as a func-

tional, Hξ0 is continuous, there exist a B ∈ �†(�π) and a positive constant γ1 such

that

∣∣f̃ (δ(x))∣∣≤ γ1
(∥∥Bπ(x)ξ0

∥∥+∥∥Bπ(x∗)ξ0

∥∥). (4.60)

Inequalities (4.57), (4.59), and (4.60) refer to three elements of �†(�π): B, C , and T .

It is always possible to find another element A∈�†(�π) such that

‖Aη‖ � ‖Bη‖, ‖Aη‖ � ‖Tη‖, ‖Aη‖ � ‖Cη‖ ∀η∈�π . (4.61)

We now define the positive sesquilinear form Ω on �0×�0 as

Ω(x,y)= 〈Aπ(x)ξ0,Aπ(y)ξ0
〉
, x,y ∈�0. (4.62)

Then, because of (4.61), inequalities (4.49), (4.50), (4.51), and (4.52) easily follow.

As for the joint continuity of ϕθ , we start noticing that since f(x) = 〈π0(x)ξ0,ξ0〉 =
〈Θ(x)ξθ,ξθ〉, thenΘ is unitarily equivalent toπ0 since they are both unitarily equivalent

to the GNS-representation πf defined by f on �0 because of the essential uniqueness

of the latter. Thus, there exists a unitary operator U : �θ → �π0 , with ξ0 = Uξθ and

such that Θ(x)=U−1π0(x)U .

By the definition itself,

ϕπ0

(
π0(x)ξ0,π0(y)ξ0

)=Ω(x,y)= 〈Aπ0(x)ξ0,Aπ0(y)ξ0
〉
, (4.63)
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then ϕπ0 is jointly continuous on �π0[t†]. Therefore,

ϕθ
(
Θ(x)ξθ,Θ(y)ξθ

)=Ω(x,y)= 〈Aπ0(x)ξ0,Aπ0(y)ξ0
〉

= 〈U−1AUΘ(x)ξθ,U−1AUΘ(y)ξθ
〉 (4.64)

and ϕθ is jointly continuous on �θ[t†] too.

We prove now the converse implication, that is, (ii) implies (i).

We assume that there exist f and Ω satisfying all the properties we have required in

(ii). We define the following vector space: �f = {a∈� : f̃ (a∗x)= 0∀x ∈�0}. It is clear

that if a∈�f and y ∈�0, then ya∈�f . We denote with λf (a), for a∈�, the element

of the vector space �/�f containing a. The subspace λf (�0) = {λf (x), x ∈ �0} is a

pre-Hilbert space with inner product

〈
λf (x),λf (y)

〉= f (y∗x), x,y ∈�0, (4.65)

and the form 〈λf (x),λf (a)〉 = f̃ (a∗x), x ∈�0, a ∈�, puts �/�f and λf (�0) in sep-

arating duality. Now we can define an ultra-cyclic ∗-representation π0 of �0 in the

following way: its domain �π0 coincides with λf (�0), and π0(x)λf (y) = λf (xy) for

x,y ∈ �0. The vector λf (1) is ultra-cyclic and f(x) = 〈π0(x)λf (1),λf (1)〉, for all

x ∈ �0. Therefore, the sesquilinear form ϕπ0(π0(x)λf (1),π0(y)λf (1)) = Ω(x,y) is

jointly continuous in �π0[t†].
We now claim that �/�f ⊂ �′

π0
, the dual space of �π0[t†]. This follows from the

joint continuity of ϕπ0 , which gives the following estimate:

∣∣Ω(x,y)∣∣≤ γ∥∥A′π0(x)λf (1)
∥∥∥∥A′π0(y)λf (1)

∥∥, (4.66)

which holds for all x,y ∈�0, for suitable γ > 0, and A′ ∈�†(�π0). Using the extension

of (4.50) to �0×� and (4.66), we find

∣∣〈λf (x),λf (a)〉∣∣= ∣∣f̃ (a∗x)∣∣≤ p(a)Ω(x,x)1/2 ≤ γ1/2p(a)
∥∥A′π0(x)λf (1)

∥∥, (4.67)

which implies that λf (a)∈�′
π0

.

We can now extend π0 to � in a natural way: for a∈�, we put π(a)λf (x)= λf (ax)
for all x ∈ �0. For each a ∈ �, π(a) is well defined and maps �π0[t†] into �′

π0
[t′†]

continuously. Moreover, π is (τ−τqs)-continuous. The induced derivation δπ is well

defined, as is easily checked, and its spatiality can be proven by repeating essentially

the same steps as in Theorem 4.1.

Remark 4.11. In the so-called Wightman formulation of quantum field theory (see,

e.g., [19]), the point-like A(x), x ∈R4, can be a very singular mathematical object such

as a sesquilinear form depending on x and defined on �×�, where � is a dense domain

in Hilbert space �. The smeared field is an operator-valued distribution f ∈ �(R4)→
�†(�), �(R4) being the space of Schwartz test functions. If f has support contained in

a bounded region 	 of R4, then A(f) is affiliated with the local von Neumann algebra

�(	) of all observables in 	.
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A reasonable approach [16, 17] consists in considering the point-like field A(x), for

each x ∈ R4, as an element of �(�,�′), once a locally convex topology on � has been

defined. A crucial physical prescription is that the field must be covariant under the

action of a unitary representation U(g) of some transformation group (such as the

Poincaré or Lorentz group) and, as it is known, the infinitesimal generator H of time

translations gives the energy operator of the system which defines in a natural way a

spatial ∗-derivation of the quasi ∗-algebra (�,�0) of observables.

There could be however a different approach. This occurs when a field x � A(x) is

defined on the basis of some heuristic considerations. In order that A(x) represents

a reasonable physical solution of the problem under consideration, covariance under

some Lie algebra of infinitesimal transformation must be imposed. For infinitesimal

time translations, this amounts to find some ∗-derivation δ of the quasi ∗-algebra ob-

tained by taking the weak completion of the ∗-algebra �0 generated by the local von

Neumann algebras �(	), with 	 a bounded region of R4. But, of course, a number of

problems arises.

The first one consists in finding an appropriate domain � for the family of operators

{A(f); f ∈�(R4)} and an appropriate topology on � in such a way thatA(x)∈�(�,�′)
for every x ∈ R4. Once this is done, if the identical representation has the properties

required in Theorem 4.10, then a symmetric operator H implementing δ can be found

and one expects H to be the energy operator of the system. But, as it is well known, the

problem of integrating δ is far to be solved even in much more regular situations than

those considered here. We hope to discuss these problems in a future paper.
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