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To my teachers

A sequential space (X,T) is called minimal sequential if no sequential topology on X is
strictly weaker than T . This paper begins the study of minimal sequential Hausdorff spaces.
Characterizations of minimal sequential Hausdorff spaces are obtained using filter bases, se-
quences, and functions satisfying certain graph conditions. Relationships between this class
of spaces and other classes of spaces, for example, minimal Hausdorff spaces, countably
compact spaces, H-closed spaces, SQ-closed spaces, and subspaces of minimal sequential
spaces, are investigated. While the property of being sequential is not (in general) preserved
by products, some information is provided on the question of when the product of minimal
sequential spaces is minimal sequential.
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1. Introduction. All hypothesized spaces are Hausdorff topological spaces. If (X,T)
is a space and Q ⊂ X, {x ∈ X : some sequence in Q converges to x}, that is, the T -

sequential closure of Q will be denoted by ∆T (Q). A subset Q ⊂ X is T -sequentially

closed if ∆T (Q) =Q, and is T -sequentially open if X−Q is T -sequentially closed. It is

not difficult to show that (1) the collection of T -sequentially open subsets, which we

denote by ST , is a topology onX, (2) T ⊂ ST , and (3)Q∈ ST if and only if each sequence in

X which is T -convergent to an element ofQ is ultimately inQ. The space (X,T) is called

sequential if T = ST . In this case, the phrase “T is sequential” is often used. It is obvious

that first countable spaces are sequential and it is known that a sequential space might

fail to be first countable [4]. In this paper, a space (X,T) is minimal sequential if T is

sequential and no sequential topology on X is strictly weaker (= smaller) than T . Such

a space will be called minimal Hausdorff (sq). This terminology parallels the following

from [1].

If P is a property of topological spaces, then P(1) will mean a space which is first

countable and has property P, thus a space is Hausdorff (1) provided it is Hausdorff and

first countable. It is proved in [4] that sequential spaces are characterized as quotients

of first countable (metric) spaces. Hence, the class of minimal Hausdorff (sq) spaces

coincides with the class of spaces which are minimal in the class of quotients of first

countable (metric) spaces. Two proper subclasses of this class of spaces have been

recently investigated in [9].

In Section 2, a number of characterizations of minimal Hausdorff (sq) spaces are es-

tablished in terms of filter bases, sequences, and functions into such spaces satisfying
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certain graph conditions. These characterizations include parallels of those of minimal

Hausdorff spaces by Bourbaki [2] in terms of open filter bases, and of those by Her-

rington and Long [6] in terms of arbitrary filter bases. These characterizations reveal

that a number of spaces which have been the object of study are minimal Hausdorff

(sq). Indeed, minimal P spaces, where P is either of the properties semimetrizable, sym-

metrizable, neighborhood �, �, weakly first countable, are minimal Hausdorff (sq) (see

[11, 12]). In Section 3, some relationships between the class of minimal Hausdorff (sq)

spaces and other classes of spaces, for example, minimal Hausdorff spaces, countably

compact spaces, H-closed spaces, and SQ-closed spaces in the sense of Thompson [14],

are determined. It is established that minimal Hausdorff sequential spaces, as well as

sequentially compact sequential spaces, are minimal Hausdorff (sq) and that every min-

imal Hausdorff (sq) space is sequentially H-closed. Sequentially H-closed spaces were

studied by Thompson [14] and Espelie et al. [3] under the name of SQ-closed spaces. Ex-

amples are provided to show that a minimal Hausdorff (sq) space need not be H-closed

and that a sequential H-closed space might fail to be minimal Hausdorff (sq). Other

examples are given to distinguish this class of spaces from other classes of spaces. In

Section 3, subspaces and products of minimal Hausdorff (sq) spaces are studied. Par-

allel to the result of Katětov [10] and Stone [13] that a space is compact if and only

if every closed subspace is H-closed, we prove that a space is countably compact if

and only if every closed subspace is SQ-closed. Although the property of a space being

minimal Hausdorff (sq) is not preserved by products, we apply results from [3, 5] to

provide some information on products of such spaces in this section.

2. Characterizations of minimal Hausdorff (sq) spaces. Preliminary to our first the-

orem, we introduce some additional concepts and notations which are utilized through-

out the paper. If (X,T) is a space and Q ⊂ X, we use the notation ΣT (Q) (ΣT (x) if

Q = {x}) for the collection of elements of T which contain Q (simply Σ(Q) when con-

fusion is unlikely); we let Q (Q◦) represent the closure (interior ) of Q. If Ω is a filter

base on a space, adhΩ will represent its adherence (adhΩ = ⋂F∈Ω F ). If Q is a subset

of a space X, Veličko [15] called {x ∈ X :Q∩V ≠∅ is satisfied for each V ∈ Σ(x)} the

θ-closure of Q and denoted this set by [Q]θ ([x]θ if Q = {x}). He called Q θ-closed

if [Q]θ = Q and showed that [Q]θ might fail to be θ-closed. Indeed, a subset Q of a

countable H-closed space can satisfy [Q]nθ ⊊ [Q]
n+1
θ for every positive integer n [8].

It is known that [Q]θ =
⋂
Σ(Q) V , that for (x,y ∈ X), x ∈ [y]θ if and only if y ∈ [x]θ

[3], and that X is Hausdorff if and only if [x]θ = {x} for each x ∈ X. The θ-adherence

of a filter base on X denoted by [Ω]θ is
⋂
Ω[F]θ , and Ω θ-converges to x denoted by

Ω ������→
θ
x, if for each V ∈ Σ(x), there is an F ∈ Ω satisfying F ⊂ V [15]. The notions θ-

cluster point and θ-convergence of nets are similarly defined. If � is a filter on a space

(X,T), the filter base T ∩� will be called the open part of � and will be denoted by

�(�), {A ∈ �(�) : A is regular open} will be called the regular-open part of � and can

be denoted by �(�). Recall that an open subset V is regular open if V = V ◦, and a

topological space is semiregular if the regular-open subsets of the space are a base for

its topology. Since it is an elementary fact of General Topology that A◦◦ = A◦ for any

subset A of a topological space, we see that adh�(�)= adh�(�)= [Ω]θ .
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Theorem 2.1. The following statements are equivalent for a space (X,T):
(i) if xn is a sequence in X with at most one (T −θ)-cluster point, xn converges;

(ii) if T∗ ⊂ T is a topology on X, then ∆T∗(Q)=∆T (Q) is satisfied for each Q⊂X;

(iii) if T∗ is a topology on X and T∗ ⊂ T , then each T∗-sequentially closed subset of

X is T -sequentially closed;

(iv) if T∗ is a topology on X and T∗ ⊂ T , then ST = ST∗ ;

(v) each countable filter base on X with at most one (T −θ)-adherent point T -con-

verges;

(vi) all topologies onX which are smaller than T have the same convergent sequences

as T ;

(vii) if � is a filter on X with a countable base and �(�) has at most one T -adherent

point, then �(�) converges;

(viii) if � is a filter on X with a countable base and �(�) has at most one T -adherent

point, then �(�) converges.

Proof. (i)⇒(ii). Let x ∈∆T∗(Q). Then there is a sequence xn inQ such that xn ���������������������������������������→
T∗

x.

If h is a subnet of xn and h ������→
θ
z with respect to T , then h ������→

θ
z with respect to T∗ since

T∗ ⊂ T . Since T∗ is Hausdorff, it follows that z = x. Hence, xn has at most one (T −θ)-

cluster point. From (i), xn ���������→
T
x. So, x ∈ ∆T (Q) and ∆T∗(Q) ⊂ ∆T (Q). It follows from

T∗ ⊂ T that ∆T (Q)⊂∆T∗(Q).
(ii)⇒(iii)⇒(iv). The proof is obvious.

(iv)⇒(v). Let N be the set of positive integers, let Ω = {Fn :n∈N} be a filter base, and

let v ∈X such that Fn+1 ⊂ Fn, [Ω]θ ⊂ {v}, and suppose Ω does not converge. Choose a

V0 ∈ ΣT (v) satisfying Fn−V0 ≠∅. Let xn be a sequence such that xn ∈ Fn−V0. Clearly,

xn 	 ���������→
T
v . Let

T∗ = (T −ΣT (v)
)∪{V ∈ ΣT (v) : xn ∈ V ultimately

}
, (2.1)

let x,y ∈ X −{v}, x ≠ y . Since T is a Hausdorff topology, there exist V ∈ ΣT (x)−
(ΣT (v)∪ΣT (y)), W ∈ ΣT (y)−(ΣT (v)∪ΣT (x)) such that V ∩W =∅. Let x ∈ X, x ≠ v .

Then x 	∈ [Fn]θ for some n. For such an n, there exist V ∈ ΣT (x), W ∈ ΣT (Fn) such

that V ∩W =∅. Thus, T∗ is a Hausdorff topology on X and clearly T∗ ⊂ T . Obviously,

T∗ ≠ T since xn ���������������������������������������→
T∗

v ; the range of xn, call it R(xn), is T -sequentially closed since the

only T -convergent sequences in R(xn) are those which are ultimately constant. On the

other hand, v ∈ ∆T∗(R(xn))−R(xn). Hence, R(xn) is not T∗-sequentially closed and

this contradicts (iv).

(v)⇒(vi). Let xn be a sequence in X and suppose xn ���������������������������������������→
T∗

x. Using the same argument

as in the proof of (i)⇒(ii) above, x is the only possible (T −θ)-adherent point of the

elementary filter generated by xn. Hence, xn ���������→
T
x.

(vi)⇒(i). Let xn be a sequence in X with at most one (T −θ)-cluster point. Without

loss of generality, choose v ∈X such that no cluster point of xn is in X−{v}. Employ

the same construction as in the proof of (iv)⇒(v) to get a Hausdorff topology T∗ on X
such that T∗ ⊂ T , and xn ���������������������������������������→

T∗
v . Then, xn ���������→

T
v in view of (vi).
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(vii)⇒(v). Let Ω be a countable filter base on X, let v ∈ X, and suppose [Ω]θ ⊂ {v}.
Then �(�)=⋃ΩΣ(F) for the filter � with baseΩ and adh�(�)= [Ω]θ . Hence, �(�) ���������→

T
v ,

and consequently Ω ���������→
T
v .

(v)⇒(vii). Let � be a filter on X with countable baseΩ, v ∈X, and suppose adh�(�)⊂
{v}. Then [Ω]θ ⊂ adh�(�), so Ω ���������→

T
v and consequently, Σ(v)⊂ �(�).

(v)�(viii). We see that adh�(�)= adh�(�)= [Ω]θ .

In view of Theorem 2.1, we have the following theorem.

Theorem 2.2. The following statements are equivalent for a sequential space (X,T):
(i) (X,T) is minimal Hausdorff (sq);

(ii) if xn is a sequence in X with at most one (T−θ)-cluster point, then xn converges;

(iii) if T∗ ⊂ T is a topology on X, then ∆T∗(Q)=∆T (Q) is satisfied for each Q⊂X;

(iv) if T∗ is a topology on X and T∗ ⊂ T , then each T∗-sequentially closed subset of

X is T -sequentially closed;

(v) if T∗ is a topology on X and T∗ ⊂ T , then ST = ST∗ ;

(vi) each countable filter base on X with at most one (T −θ)-adherent point T -con-

verges;

(vii) all topologies onX which are smaller than T have the same convergent sequences

as T ;

(viii) if � is a filter on X with a countable base and �(�) has at most one T -adherent

point, then �(�) converges;

(ix) if � is a filter on X with a countable base and �(�) has at most one T -adherent

point, then �(�) converges.

Corollary 2.3 comes easily from equivalence (ix) of Theorem 2.2.

Corollary 2.3. A minimal Hausdorff (sq) space is semiregular.

In [14], Thompson introduced the class of SQ-closed spaces. A space is SQ-closed if

its continuous image in any Hausdorff space is sequentially closed. In [3], it is proved

that a space is SQ-closed if and only if every countable filter base on the space with at

most one θ-adherent point θ-converges.

Corollary 2.4 is immediate in view of this result and equivalence (vi) of Theorem 2.2.

Corollary 2.4. A minimal Hausdorff (sq) space is SQ-closed.

Corollary 2.5. A minimal Hausdorff (sq) space is H-closed if and only if it is minimal

Hausdorff.

Next we present characterizations of minimal Hausdorff (sq) spaces in terms of

functions into such spaces satisfying certain graph conditions. Let X, Y be spaces

and let f : X → Y . We will say that f has a subclosed (strongly subclosed) graph if

adh(f (Ω)) ⊂ {f(x)} ([f (Ω)]θ ⊂ {f(x)}) for each x ∈ X and filter base Ω on X−{x}
satisfying Ω → x. When f has a subclosed (strongly subclosed) graph and {f(x)} is

closed (θ-closed) in Y for each x ∈ X, we say that f has a closed (strongly closed)

graph. The notion of strongly closed graph was introduced by Herrington and Long
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in [6], while subclosed and strongly subclosed graphs were introduced by Joseph [7].

The function f is said to be sequentially continuous at x ∈X if f(xn)→ f(x) for each

sequence xn in X satisfying xn → x, and is said to be sequentially continuous if it

is sequentially continuous at each x ∈ X. If X is a nonempty set, v ∈ X, and Ω is a

filter base with empty intersection on X −{v}, X(v,Ω) denotes X with the topology

T = {Q⊂X : v 	∈Q or F ⊂Q for some F ∈Ω}. Clearly, X(v,Ω) is Hausdorff and is first

countable if Ω is countable. Let X, Y , and Z be nonempty sets, f : X → Z , g : Y → Z .

Denote {(x,y) ∈ X ×Y : f(x) = g(y)} ({x ∈ X : f(x) = g(x)}) by �(f ,g,X ×Y ,Z)
(�(f ,g,X,Z)).

Theorem 2.6. The following statements are equivalent for a sequential space Z :

(i) Z is minimal Hausdorff (sq);

(ii) for each space X, each f : X → Z with a strongly closed graph is sequentially

continuous;

(iii) for all spaces X, Y and f : X → Z , g : Y → Z with strongly closed and closed

graphs, respectively, �(f ,g,X×Y ,Z) is a sequentially closed subset of X×Y ;

(iv) for each space X and all f ,g : X → Z with strongly closed and closed graphs,

respectively, �(f ,g,X,Z) is a sequentially closed subset of X;

(v) for each space X and all f ,g : X → Z with strongly closed and closed graphs,

respectively, �(f ,g,X,Z)=X whenever ∆(�(f ,g,X,Z))=X.

Proof. (i)⇒(ii). Let X be a space, let f : X → Z have a strongly closed graph, let

x ∈ X be a point which is not isolated, and let xn be a sequence in X−{x} such that

xn → x. Let Ω be the usual base for the elementary filter generated by {xn}. Then

[f (Ω)]θ = {f(x)}, since Z is minimal Hausdorff (sq), it follows by equivalence (vi)

of Theorem 2.2 that f(Ω) → f(x) and the proof that f is sequentially continuous is

complete.

(ii)⇒(iii). Suppose X, Y are spaces, f : X → Z , g : Y → Z are functions with strongly

closed and closed graphs, respectively, and let (xn,yn) be a sequence in �(f ,g,X ×
Y ,Z) such that (xn,yn)→ (x,y). Then xn → x, yn → y , and f(xn)→ f(x) from (ii).

Hence, g(yn)→ f(x) and g(y)= f(x) since g has a closed graph. Therefore, (x,y)∈
�(f ,g,X×Y ,Z).

(iii)⇒(iv). Let X be a space and let f ,g :X → Z have strongly closed and closed graphs,

respectively. Then �(f ,g,X,Z) = π(�(f ,g,X ×X,Z)∩�), where π is the projection

of X ×X onto X and � is the diagonal of X ×X. From (iii), �(f ,g,X ×X,Z)∩� is a

sequentially closed subset of �, and the restriction of π to � is a homeomorphism, so

(iv) holds.

(iv)⇒(v). The proof is obvious.

(v)⇒(i). Suppose Ω is a countable filter base on Z and v ∈ Z such that [Ω]θ ⊂ {v}. As-

suming that Ω 	→ v , there is a V0 ∈ Σ(v) such that Γ = {F−V0 : F ∈Ω} is a filter base on

Z such that [Γ]θ ⊂ [Ω]θ . Choose w ∈ Z−{v} and define f ,g : Z(v,Γ)→ Z by f(x)= x
for all x, g(v) = w, g(x) = x on Z −{v}. We see that �(f ,g,Z(v,Γ),Z) = Z −{v},
while ∆(�(f ,g,Z(v,Γ),Z)) = Z . To establish that f and g have strongly closed and

closed graphs, respectively, we need to check only at v . If Λ is a filter base on Z−{v}
and Λ→ v , then [f (Λ)]θ = [Λ]θ ⊂ [Ω]θ ⊂ {v} = {f(v)}, while adh(g(Λ))⊂ adhΓ =∅.



1174 BHAMINI M. P. NAYAR

3. Relationships between the class of minimal Hausdorff (sq) spaces and the

classes of countably compact spaces, minimal Hausdorff spaces, SQ-closed spaces,

and H-closed spaces. Thompson [14] has proved that every countably compact space

is SQ-closed. Theorem 3.1 parallels the well-known result that a space is compact if and

only if each of its closed subspaces is H-closed [10, 13].

Theorem 3.1. A space X is countably compact if and only if each closed subspace of

X is SQ-closed.

Proof. If (X,T) is countably compact, then each closed subspace is countably com-

pact, and hence is SQ-closed. Conversely, suppose that each closed subspace of X is

SQ-closed and that A ⊂ X is infinite and has no limit points in X. Then A is a closed

subspace of X which is discrete in its relative topology, and is therefore not SQ-closed.

We have the following result for minimal Hausdorff (sq) spaces.

Theorem 3.2. A sequentially compact sequential space is minimal Hausdorff (sq).

Proof. Let (X,T) be a sequentially compact sequential space, let v ∈X, and let xn
be a sequence inX with no θ-cluster point inX−{v}. IfV0 ∈ Σ(v) andxn is frequently in

X−V0, then some subsequence of xn converges to some point in X−V0, a contradiction

to the assumption that xn has no θ-cluster point in X−{v}. Therefore xn ���������→
T
v .

Corollary 3.3. A countably compact sequential space is minimal Hausdorff (sq).

Proof. A countably compact sequential space is sequentially compact.

Corollary 3.4. If each closed subspace of a sequential space (X,T) is SQ-closed,

then X is minimal Hausdorff (sq).

In [6], Herrington and Long proved that a Hausdorff space is minimal Hausdorff if

and only if each filter base on the space with at most one θ-adherent point converges.

In view of this result, it is obvious that every sequential minimal Hausdorff space is

minimal Hausdorff (sq). But, as can be seen from the following example, a minimal

Hausdorff (sq) space need not be minimal Hausdorff.

Example 3.5. The space [0,Ω) of ordinals less than the first uncountable ordinal

endowed with the order topology is not minimal Hausdorff although it is countably

compact and first countable.

Example 3.5 also establishes that a minimal Hausdorff (sq) space need not be H-

closed since the space there is regular and is not compact.

The following example shows that a first countable minimal Hausdorff space need

not be countably compact. The space is the classical example of a countable minimal

Hausdorff space which is not compact.

Example 3.6. Let X = {0}∪N∪{j+1/n : j,n∈N−{1}} and define V ⊂X to be open

if V satisfies the following properties:

(i) if j ∈ (V ∩N)−{1}, then j+1/n∈ V ultimately;
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(ii) if 0∈ V , then, ultimately, j+1/2n∈ V for all n;

(iii) if 1∈ V , then, ultimately, j+1/(2n+1)∈ V for all n.

The next example shows that a sequential H-closed space need not be minimal Haus-

dorff (sq).

Example 3.7. Let Y = {0}∪(N−{1})∪{j+1/2n : j,n∈N−{1}} with the subspace

topology T from X in Example 3.6. Then 0 is the only θ-cluster point of xn defined by

xn =n+1, but xn 	→ 0.

It is well known that both compactness and sequential compactness imply countable

compactness. We have the following implication diagram for the class of sequential

spaces; none of the implications is reversible:

Compact Minimal Hausdorff H-closed

Countably compact Minimal Hausdorff (sq) SQ-closed

Sequentially compact.

(3.1)

Theorem 3.8. Every closed subspace of a sequential space is minimal Hausdorff (sq)

if and only if the space is sequentially compact.

Proof. If every closed subspace of a space is minimal Hausdorff (sq), then each

closed subspace is SQ-closed and the space is countably compact from Theorem 3.1.

Since a countably compact sequential space is sequentially compact, the necessity is

established. The sufficiency follows from Theorem 3.2.

Before moving to some results on products of minimal sequential spaces, we note

that quotients of sequential spaces are sequential [4] and quotients of SQ-closed spaces

are SQ-closed [3]. However, the space in Example 3.7 is a quotient of the space in

Example 3.6 under the partition {{x} : x ∈ N−{1}}∪ {{0,1}}∪ {{1/2n,1/(2n+1)} :

n∈N−{1}}. Hence, quotients of minimal Hausdorff (sq) spaces might fail to be mini-

mal Hausdorff (sq).

Theorem 3.9. If Xµ is a family of spaces such that the product X =ΠXµ is sequential,

then each Xµ is minimal Hausdorff (sq).

Proof. From [4], Xµ is sequential. Now, let yn be a sequence in Xµ and y ∈ Xµ
such that the filter base Ω defined by Fn = {yk : k ≥ n} satisfies [Ω]θ ⊂ {y}. Choose

v ∈X and let vn be the point in X with µ-coordinate yn and every other coordinate the

same as that of v . Then the point x ∈X with µ-coordinate y and all other coordinates

the same as those of v is the only possible θ-cluster point of the sequence vn. Hence,

vn→ x and yn→y .

Theorem 3.10. If Xµ is a family of H-closed minimal Hausdorff (sq) spaces such that

the product X =ΠXµ is sequential, then X is minimal Hausdorff (sq).
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Proof. EachXµ is H-closed and minimal Hausdorff (sq), and thus minimal Hausdorff

from Corollary 2.5. Hence, X is minimal Hausdorff.

Theorem 3.11 shows that if a sequence of minimal Hausdorff (sq) spaces has a se-

quential product, the product is minimal Hausdorff (sq).

Theorem 3.11. If Xn is a sequence of sequential spaces such that the product X =
ΠXn is sequential, then X is minimal Hausdorff (sq) if and only if each Xn is minimal

Hausdorff (sq).

Proof

Necessity. This follows from Theorem 3.9.

Sufficiency. Let Ω be a countable filter base on X and suppose [Ω]θ ⊂ {x}. From

[3], X is SQ-closed and [Ω] ������→
θ
x. The projection of the filter base Ω is πk(Ω) ������→

θ
πk(x).

So, [πk(Ω)]θ ⊂ {πk(x)}. Otherwise, z ∈ X defined by πn(z)= πn(x) if n≠ k, πk(z)∈
[πk(Ω)]θ−{πk(x)} satisfies z ∈ [Ω]θ , z ≠ x. Therefore, πk(Ω)→πk(x) and Ω→ x.

Since the product of a sequence of first countable spaces is first countable, we have

Corollary 3.12.

Corollary 3.12. The product ΠXn of a sequence of first countable minimal Haus-

dorff (sq) spaces is minimal Hausdorff (sq) if and only if eachXn is first countable minimal

Hausdorff (sq).

Corollary 3.13 comes as a consequence of Theorem 3.11 and a necessary and suffi-

cient condition for the product of two sequential spaces to be sequential, given in [5],

in terms of X and Y as quotients (under the quotient maps ϕX , ϕY ) of the topological

sums of the convergent sequences (see [4, Proposition 1.12]).

Corollary 3.13. The product of spaces X, Y is minimal Hausdorff (sq) if and only if

X, Y are sequential and ϕX×ϕY is a quotient map.

Proof

Sufficiency. If X, Y are minimal Hausdorff (sq) spaces and ϕX×ϕY is a quotient

map, then X×Y is minimal Hausdorff (sq) from Theorem 3.11 since, from [5], X×Y is

sequential.

Necessity. This follows from [5] and Theorem 3.9.
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