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Let h be an entire function and Th a differential operator defined by Thf = f ′+hf . We show
that Th has the Hyers-Ulam stability if and only if h is a nonzero constant. We also consider
Ger-type stability problem for |1−f ′/hf | ≤ ε.
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1. Introduction. The first result, which we now call the Hyers-Ulam stability (HUS),

is due to Hyers [4] who gave an answer to a question posed by Ulam (cf. [11, Chapter VI]

and [12]) in 1940 concerning the stability of homomorphisms: for what metric groups

G is it true that an ε-automorphism of G is necessarily near to a strict automorphism?

An answer to the above problem has been given as follows. Suppose E1 and E2 are

two real Banach spaces and f : E1 → E2 is a mapping such that f(tx) is continuous

in t ∈ R, the set of all real numbers, for each fixed x ∈ E1. If there exist θ ≥ 0 and

p ∈R\{1} such that

∥∥f(x+y)−f(x)−f(y)∥∥≤ θ(‖x‖p+‖y‖p) (1.1)

for all x,y ∈ E1, then there is a unique linear mapping T : E1 → E2 such that ‖f(x)−
T(x)‖ ≤ 2θ‖x‖p/|2−2p| for every x ∈ E1. Hyers [4] obtained the result for p = 0. Then

Rassias [7] generalized the above result of Hyers to the case where 0≤ p < 1, while the

proof given in [7] also works for p < 0. Gajda [2] solved the problem for 1<p and also

gave an example that a similar result does not hold for p = 1 (cf. [8]).

In connection with the stability of exponential functions, Alsina and Ger [1] remarked

that the differential equation y ′ =y has the HUS. More explicitly, suppose I is an open

interval, ε > 0, and f : I → R is a differentiable function such that |f ′(t)−f(t)| ≤ ε
for all t ∈ I. Then, there is a differentiable function g : I → R such that g′ = g and

|f(t)−g(t)| ≤ 3ε for all t ∈ I. The third and first authors of this paper along with

Miyajima [10] considered the Banach-space-valued differential equation y ′ = λy , where

λ is a complex constant. Then they proved the HUS of y ′ = λy under the condition that

Reλ ≠ 0. Though, they treated the result as the stability of the operator D− Id, where

D denotes the ordinary differential operator and Id the identity. Some stability results

of other differential equations (or operators) are also known (cf. [5, 6, 9]).
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Taking the group structure of C\{0} into account, Ger and Šemrl [3] considered the

inequality

∣∣∣∣ f(x+y)f(x)f(y)
−1
∣∣∣∣≤ θ (x,y ∈ S) (1.2)

for a mapping f : S → C\{0}, where (S,+) is a semigroup and C is the set of all complex

numbers. If 0≤ θ < 1 and if (S,+) is a cancellative abelian semigroup, then they proved

that there is a unique function g : S → C \ {0} such that g(x+y) = g(x)g(y) for all

x,y ∈ S and that

max
{∣∣∣∣f(x)g(x)

−1
∣∣∣∣,
∣∣∣∣g(x)f(x)

−1
∣∣∣∣
}
≤
√√√√

1+ 1
(1−θ)2 −2

√
1+θ
1−θ (1.3)

for all x ∈ S. The stability phenomena of this kind is called Ger-type stability.

Throughout this paper, H(C) stands for the set of all entire functions. Let h∈H(C)
and Th :H(C)→H(C) be a linear differential operator defined by

Thf(z)= f ′(z)+h(z)f(z)
(
f ∈H(C), z ∈ C). (1.4)

Definition 1.1. The operator Th is said to have the HUS if and only if there ex-

ists a constant K ≥ 0 with the following property: to each ε ≥ 0 and f ,g ∈ H(C) sat-

isfying supz∈C |Thf(z)−g(z)| ≤ ε, there exists an f0 ∈H(C) such that Thf0 = g and

supz∈C |f(z)−f0(z)| ≤Kε. Such K is called an HUS constant for Th. If, in addition, the

minimum of all such K’s exists, then it is called the HUS constant for Th.

In this paper, we first consider the HUS of the differential operator Th. Then we show

that Th has the HUS if and only if h∈H(C) is a nonzero constant function. Moreover,

we give the HUS constant for Th. Finally, we consider the Ger-type stability problem of

the differential equation y ′ = λy . To be more explicit, suppose ε ≥ 0 and f ∈ H(C)
satisfies

sup
z∈C

∣∣∣∣ f ′(z)λf(z)
−1
∣∣∣∣≤ ε. (1.5)

Does there exist K ≥ 0 such that

sup
z∈C

∣∣∣∣f(z)ceλt
−1
∣∣∣∣≤Kε or sup

z∈C

∣∣∣∣ ceλtf (z)
−1
∣∣∣∣≤Kε (1.6)

holds for some c ∈ C\{0}? To this problem, we give a negative answer: the Ger-type

stability does not hold in general. Moreover, we show that the solution f ∈H(C) to the

differential equation y ′ = λy is only the function which satisfies both (1.5) and (1.6).

2. The HUS for Th. For simplicity, we write
∫ z
0f(ζ)dζ for

∫ 1
0f(zt)zdt, where z ∈ C

and f ∈H(C). We associate to each h∈H(C) a function h̃ defined by

h̃(z)= exp
∫ z

0
h(ζ)dζ (z ∈ C). (2.1)
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Let h∈H(C). Throughout this section, Th :H(C)→H(C) denotes a linear differential

operator defined by (1.4). Suppose f ,g ∈H(C). Then note that Thf = g if and only if f
is of the form

f(z)= 1

h̃(z)

{
f(0)+

∫ z
0
g(ζ)h̃(ζ)dζ

}
(z ∈ C). (2.2)

Lemma 2.1. Suppose h∈H(C) is not a constant function, f ∈H(C), and

0< sup
z∈C

∣∣Thf(z)∣∣<∞. (2.3)

Then

sup
z∈C

∣∣∣∣∣f(z)− c
h̃(z)

∣∣∣∣∣=∞ (2.4)

for every c ∈C.

Proof. By hypothesis, Thf is a bounded entire function, and so Thf must be con-

stant, say c0 ∈ C\{0} by Liouville’s theorem. Hence, by (2.2), f is of the form

f(z)= 1

h̃(z)

{
f(0)+c0

∫ z
0
h̃(ζ)dζ

}
(z ∈ C). (2.5)

Suppose supz∈C |f(z)−c1/h̃(z)|<∞ for some c1 ∈ C. Another application of Liouville’s

theorem yields the existence of a constant c2 ∈ C such that c2 = f−c1/h̃, and therefore

(2.5) gives

c2h̃(z)= f(0)−c1+c0

∫ z
0
h̃(ζ)dζ (z ∈ C). (2.6)

By differentiating both sides of (2.6) with respect to z, we obtain

c2hh̃= c0h̃, (2.7)

and hence

c2h= c0. (2.8)

Since h is not constant, this implies that c2 = 0. Thus, f = c1/h̃, and hence Thf = 0 (see

(2.2)), which contradicts 0< supz∈C |Thf(z)|.
Theorem 2.2. If h∈H(C), then each of the following statements implies the other:

(a) h is a nonzero constant function,

(b) Th has the HUS.

Proof. (a)⇒(b). Suppose h is a nonzero constant function, say λ ∈ C \ {0}. Then,

h̃(z)= eλz for z ∈ C. Suppose ε ≥ 0 and f ,g ∈H(C) satisfy supz∈C |Thf(z)−g(z)| ≤ ε.
Then there exists a c0 ∈ C such that Thf −g = c0 by Liouville’s theorem. Put

u(z)= e−λz
{∫ z

0
g(ζ)eλζdζ

}
(z ∈ C). (2.9)
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Then Thu= g, and so Th(f −u)= c0, |c0| ≤ ε. Hence, by (2.2), f is of the form

f(z)=u(z)+ 1

h̃(z)

{
f(0)−u(0)+c0

∫ z
0
h̃(ζ)dζ

}

= c0

λ
+u(z)+

(
f(0)−u(0)− c0

λ

)
e−λz

(2.10)

for all z ∈ C. Put

f0(z)=u(z)+
(
f(0)−u(0)− c0

λ

)
e−λz (z ∈ C), (2.11)

then Thf0 = g and

∣∣f(z)−f0(z)
∣∣=

∣∣∣∣c0

λ

∣∣∣∣≤ ε
|λ| (2.12)

for every z ∈ C so that Th has the HUS with an HUS constant 1/|λ|.
(b)⇒(a). Put

f1(z)= 1

h̃(z)

∫ z
0
h̃(ζ)dζ (z ∈ C). (2.13)

Then we obtain Thf1 = 1. Let K <∞ be an HUS constant for Th. Since Th has the HUS,

there is an f2 ∈H(C), such that Thf2 = 0 and

sup
z∈C

∣∣f1(z)−f2(z)
∣∣≤K. (2.14)

Note that f2 is of the form f2(z)= f2(0)/h̃(z) for all z ∈ C, since Thf2 = 0. Lemma 2.1,

applied to f1, yields that h is a constant function. If h were 0, then (2.13) would be writ-

ten in the form f1(z)= z for z ∈ C, and hence from (2.14), supz∈C |z−f2(0)| ≤ K <∞,

which is a contradiction. Thus, we conclude that h is a nonzero constant function.

Theorem 2.3. Suppose λ ∈ C \ {0}, f ,g ∈ H(C), and supz∈C |Tλf(z)−g(z)| < ∞.

Then there exists a unique f0 ∈H(C) such that Tλf0 = g and

sup
z∈C

∣∣f(z)−f0(z)
∣∣<∞. (2.15)

Furthermore, 1/|λ| is the HUS constant for Tλ.

Proof. The existence of such a function f0 ∈H(C) is proved by Theorem 2.2, and

so we need to show only the uniqueness. Suppose f1 ∈ H(C) and f2 ∈ H(C) satisfy

Tλfj = g and

sup
z∈C

∣∣f(z)−fj(z)∣∣<∞ (2.16)

for j = 1,2. Since Tλfj = g,

fj(z)= e−λz
{
fj(0)+

∫ z
0
g(ζ)eλζdζ

}
(z ∈ C) (2.17)
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for j = 1,2, and hence

f1(z)−f2(z)=
(
f1(0)−f2(0)

)
e−λz ∀z ∈ C. (2.18)

It follows from (2.16) that f1−f2 is constant by Liouville’s theorem. Therefore, f1(0)=
f2(0) by (2.18), which implies that f1 = f2, proving the uniqueness.

We show that 1/|λ| is the HUS constant for Tλ. Indeed, 1/|λ| is an HUS constant by

(2.12). Conversely, let K be an arbitrary HUS constant for Tλ, and put

f2(z)= 1
λ
− 1
λ
e−λz (z ∈ C). (2.19)

A simple calculation shows that f ′2(z) + λf2(z) = 1 for all z ∈ C, and hence

supz∈C |Tλf2(z)|=1. Then, there exists an f3∈H(C) such that Tλf3=0 and supz∈C |f2(z)
− f3(z)| ≤ K. Since |f2(z)+λ−1e−λz| = 1/|λ| for z ∈ C, the uniqueness implies that

f3(z)=−λ−1e−λz, which proves 1/|λ| ≤K. Thus, 1/|λ| is the HUS constant for Tλ.

3. Stability for the Ger-type differential inequality. In this section, we consider the

Ger-type stability problem. First, we show that the Ger-type stability does not hold in

general. Indeed, the following proposition is true.

Proposition 3.1. For λ ∈ C\{0} and ε > 0, there exists an f ∈ H(C) with the fol-

lowing properties:

sup
z∈C

∣∣∣∣ f ′(z)λf(z)
−1
∣∣∣∣≤ ε,

sup
z∈C

∣∣∣∣f(z)ceλz
−1
∣∣∣∣= sup

z∈C

∣∣∣∣ ceλzf (z)
−1
∣∣∣∣=∞ ∀c ∈ C\{0}.

(3.1)

Proof. We associate to each λ∈ C\{0} and ε > 0 a function f defined by

f(z)= e(λ+|λ|ε)z (z ∈ C). (3.2)

As above, we obtain

f ′(z)= (λ+|λ|ε)f(z) (z ∈ C), (3.3)

so that

∣∣∣∣ f ′(z)λf(z)
−1
∣∣∣∣= ε ∀z ∈ C. (3.4)

If c ∈ C\{0}, then we have

∣∣∣∣f(z)ceλz
−1
∣∣∣∣≥ 1

|c|
∣∣e|λ|εz∣∣−1 �→∞ (Rez �→∞),

∣∣∣∣ ceλzf (z)
−1
∣∣∣∣≥ |c|∣∣e−|λ|εz∣∣−1 �→∞ (Rez �→−∞),

(3.5)
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and so

sup
z∈C

∣∣∣∣f(z)ceλz
−1
∣∣∣∣= sup

z∈C

∣∣∣∣ ceλzf (z)
−1
∣∣∣∣=∞ ∀c ∈ C\{0}. (3.6)

One might ask when the Ger-type stability is true. We give an answer to this question.

If the Ger-type stability holds, then the function f ∈H(C) must be of the form f(z)=
f(0)eλz. That is, the only solution to the differential equation y ′ = λy has the Ger-type

stability.

Theorem 3.2. Suppose λ ∈ C \ {0}, ε > 0, and f ∈ H(C) satisfies f(z) ≠ 0 for all

z ∈ C and (1.5) holds. Suppose

sup
z∈C

∣∣∣∣f(z)ceλz
−1
∣∣∣∣ or sup

z∈C

∣∣∣∣ ceλzf (z)
−1
∣∣∣∣ (3.7)

is finite for some c ∈C\{0}; then f is of the form f(z)= f(0)eλz for all z ∈ C.

Proof. It follows from (1.5) that 1− f ′/λf is constant, say c0 ∈ C, by Liouville’s

theorem. Thus, f ′ = (1−c0)λf , and hence

f(z)= f(0)e(1−c0)λz (z ∈ C). (3.8)

Suppose that there is a c1 ∈ C\{0} such that

sup
z∈C

∣∣∣∣ f(z)c1eλz
−1
∣∣∣∣<∞. (3.9)

From (3.8), it follows that

sup
z∈C

∣∣∣∣f(0)c1
e−c0λz−1

∣∣∣∣<∞, (3.10)

and hence c0 must be 0, proving f(z)= f(0)eλz for all z ∈ C.

Similarly, we can treat the case where

sup
z∈C

∣∣∣∣c2eλz

f (z)
−1
∣∣∣∣<∞ (3.11)

for some c2 ∈ C\{0}, and so the proof is omitted.

Thus far, we have treated entire functions. Finally, we consider the Ger-type stability

problem in the category of holomorphic functions on a bounded region.

Theorem 3.3. Let 0 ∈ Ω be a bounded convex region of C and put M = supz∈Ω |z|.
Suppose λ ∈ C\{0}, 0 ≤ ε ≤ 1, and f : Ω→ C is holomorphic such that f(z) ≠ 0 for all

z ∈Ω and

sup
z∈Ω

∣∣∣∣ f ′(z)λf(z)
−1
∣∣∣∣≤ ε. (3.12)
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Then there are Kλ > 0 and c ∈ C\{0} such that

max
{

sup
z∈Ω

∣∣∣∣f(z)ceλz
−1
∣∣∣∣,sup
z∈Ω

∣∣∣∣ ceλzf (z)
−1
∣∣∣∣
}
≤Kλε. (3.13)

Proof. Put g(z)=−1+f ′(z)/λf(z) for z ∈Ω, and so

f ′(z)= λ(1+g(z))f(z) (z ∈Ω). (3.14)

From (3.14), it follows that

f(z)= f(0)eλz exp
∫ z

0
λg(ζ)dζ (3.15)

for every z ∈Ω, and hence

∣∣∣∣ f(z)
f(0)eλz

−1
∣∣∣∣=

∣∣∣∣exp
∫ z

0
λg(ζ)dζ−1

∣∣∣∣≤
∞∑
n=1

1
n!

∣∣∣∣
∫ z

0
λg(ζ)dζ

∣∣∣∣
n

≤
∞∑
n=1

|λεz|n
n!

≤ (e|λ|M−1
)
ε

(3.16)

for all z ∈Ω. Similarly, we can show that

sup
z∈Ω

∣∣∣∣f(0)eλzf (z)
−1
∣∣∣∣≤ (e|λ|M−1

)
ε, (3.17)

and so the proof is complete.
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