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The study of the queueing system presented in this note was motivated by its possible
application to a multiprogramming computer system. The paper considers a closed network
with two service centres with feedback. The steady-state behaviour of the passage time, the
random times for a job to traverse a portion of the network, is examined through simulation.
The model can be applied to a twin-processor multiprogramming computer system.
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1. Introduction. In this work, we deal with a two-station closed network where, after

service completion at one centre, a customer may move either to the other centre or to

the tail of the queue at the same centre. Feedback probabilities are specified for each

centre. Also for each centre, we assume service times to be independent and exponen-

tially distributed to ensure Markovian character.

This type of models arises in theoretical computer science, more specifically regard-

ing multiprocessor multiprogramming environments.

We can think of a computer system based onM parallel processors which can handle

N statistically identical jobs simultaneously. The jobs circulate among the processors

completing identical partial processing. Such a system can be called an M-processor

system with N degree of multiprogramming. The processors are the service nodes and

the programs are identified with the jobs. Thus we have a typical situation of closed

network with feedback.

The augmented job stack process helps to identify the position of the process at any

instant.

We study the behaviour of passage times which are the random times for a job to

traverse a portion of the network.

We use the method of regenerative simulation to find the steady-state distribution of

passage time and the distribution of the number of transitions constituting a passage

time.

Steady-state distribution has been considered in Medya [2] along with supporting

simulation studies.

Yechiali [6] and Brandon and Yechiali [1] consider N-node open network systems

with feedback to the first node from an optimal sequencing point of view. Nguyen [3]

considers an interesting situation of mixed network with features of open queue and
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Figure 2.1. Two-node closed network model.

closed network with feedback. A model with feedback at one node only [5] can be used

for a multiprogramming system with single processor and single I/O channel. This

model has been discussed in [4], so this model is a special case of the model which we

have considered with the second feedback probability taken as zero.

2. The model. The type of model considered in this work is a queueing system con-

sisting of two single-server service centres and a fixed number, N, of jobs (Figure 2.1).

After service completion at centre i, i∈ {1,2}, a job moves instantaneously to the tail of

the queue at centre i with fixed probability pi (0≤ pi < 1) and with probability (1−pi),
moves to the tail of the queue at centre i′, where i′ = 2,1, for i= 1,2, respectively. We

assume that both queues are served according to a first-come first-served (FCFS) dis-

cipline. We also suppose that all service times are mutually independent and that the

service times at centre i are identically distributed as a positive random variable, Li,
i= 1,2. In this work we assume Li to have exponential distribution with parameter λi.

Let X(t) be the number of jobs waiting or in service at centre 1 at time t. The process

{X(t) : t ≥ 0} is a generalised semi-Markov process (GSMP) with finite state space, S =
{0,1,2, . . . ,N}, and event set, E = {e1,e2}, where event ei can be defined as “service

completion at centre i.” For s ∈ S, the sets E(s) of events that can occur in state s are

as follows. The event e1 ∈ E(s) if and only if 0 < s ≤N, and the event e2 ∈ E(s) if and

only if 0≤ s < N. If e= e2, then the state transition probability p(s−1;s,e)= 1−p1 and

p(s;s,e) = p1 when 0 < s ≤ N; if e = e2, then p(s+1;s,e) = 1−p2 and p(s;s,e) = p2

when 0≤ s < N. All other state transition probabilities p(s′;s,e) are equal to zero.

The model is appropriate for a twin-processor multiprogramming computer system

where N denotes the degree of multiprogramming and programs can be either trans-

ferred from one processor to the other or fed back to the same processor.

3. Augmented job stack process

Job stack. It is an enumeration by service centre of all the jobs of the network.

In our model the job stack process is called Z(t), where Z(t) is the number of jobs

waiting or in service at centre 1 at time t. It is an irreducible continuous time Markov

chain (CTMC) with finite state space [5, page 67].

The augmented job stack process for this model is

X(t)= {Z(t),N(t) : t ≥ 0
}
, (3.1)

where Z(t) denotes the number of jobs waiting or in service at centre 1 at time t and

N(t) denotes the position from the top (i.e., left in Figure 2.1) of the marked job in the

job stack at time t.
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The state space, G∗, is

G∗ = {(i,j) : i∈ {0,1, . . . ,N}, j ∈ {1,2, . . . ,N}}. (3.2)

Passage time. Informally, passage times in a network of queues are the random

times for a job to traverse a portion of the network.

Passage times for the marked job are specified by means of four nonempty subsets

(A1, A2, B1, and B2) of the state space G∗, of the augmented job stack process X. The

sets A1, A2 (resp., B1, B2) jointly define the random times at which passage times for

the marked job start (resp., terminate). The sets A1, A2, B1, and B2 in effect determine

when to start and stop the clock measuring a particular passage time of the marked

job.

Here we consider the passage time, P , that starts when a job completes service at

centre 2 (and joins the tail of the queue at centre 1) and terminates at the next such

time the job completes service at centre 2 (and joins the tail of the queue at centre 1).

The passage time is specified by the sets

A1 = B1 =
{
(i,N) : 0≤ i < N},

A2 = B2 =
{
(i+1,1) : 0< i≤N}. (3.3)

Steady-state behaviour. Under fairly general conditions, which are satisfied

here, the passage times have a steady-state distribution, that is, if Tn denotes the nth

passage time, then Tn ⇒ T for some random variable T . The distribution of T will be

referred to as the steady-state distribution of passage time.

4. Simulation. To simulate the process, the method of regenerative simulation

(Shedler [5]) has been employed here.

Regenerative method for simulation analysis. We have seen that in the

presence of certain regularity conditions, a regenerative stochastic process {X(t) : t ≥
0} has a limiting distribution provided that the expected time between regeneration

points is finite. Furthermore, the regenerative structure ensures that the behaviour of

the regenerative process in a cycle determines the limiting distribution of the process as

a ratio of expected values. A consequence of these results is that a strongly consistent

point estimate and asymptotic confidence interval for the expected value of the general

(measurable) function of the limiting random variable can be obtained by observing a

finite portion of a single sample path of the process. This comprises the regenerative

method and is accomplished by simulating the process in cycles and measuring quan-

tities determined by the individual cycles.

Cycle. Cycles are defined by intervals between successive returns to state (1,1).
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4.1. Simulation for the distribution of passage time. Here a sample path for the

process is generated through simulation through a large number of cycles, where a

cycle starts and ends with the state (1,1). Passage times are marked on the sample

path. The parameters to be estimated,

Pn = P(n≤ T <n+1)= E[IAn
]
, (4.1)

where n = 0,1,2, . . . and An = {n ≤ T < n+ 1}, together determine the probability

distribution of T . By the basic result of regenerative simulation (Shedler [5]), which is

similar to the result in Medya [2], the strongly consistent estimator of pn is

g
(
An
)

∑n∗
n=0 g

(
An
) , (4.2)

where g(An) is the number of simulated passage times T with T ∈ [n,n+1) and n∗ is

a suitably chosen upper limit.

We have considered various cases, namely, number of jobs = 2,5,10 and the combi-

nation of (p1,p2) values: p1 = p2 = 0.1; p1 = p2 = 0.25; p1 = p2 = 0.5; p1 = p2 = 0.75;

p1 = p2 = 0.9; p1 = 0.25, p2 = 0.75; and p1 = 0.1, p2 = 0.9.

Because of the symmetry, the last two cases are, respectively, equivalent to p1 = 0.75,

p2 = 0.25 and p1 = 0.9, p2 = 0.1.

Results for passage time distribution. Figures 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, and

4.7 represent the simulated steady-state distribution of the passage time in various

cases. The summary statistics, namely, means, s.d.’s, logarithmic means [E(lnT)], and

skewness and kurtosis coefficients are presented in Table 4.1. The result shows that

for a fixed number of jobs and p1 = p2, the mean and s.d. of the passage time increase

with the common value of p1 and p2. And for unequal values of p1 and p2, the greater

one dominates.

For fixed values of p1 and p2, the mean and s.d. of the passage time are nearly

proportional to the number of jobs. The same is true for the antilog of the logarithmic

mean (i.e., geometric mean). When p1 = p2, both skewness and kurtosis show very little

variation, irrespective of the common value and the number of jobs.

When one of p1 or p2 is large, skewness and kurtosis decrease as the number of

jobs increases. In other cases, skewness and kurtosis increase with the number of jobs

except for p1 = p2 = 0.9, N = 10.

For a fixed number of jobs, when p1 = p2, skewness and kurtosis increase with the

common value of p1 and p2. When p1 ≠ p2, we generally get larger skewness and kur-

tosis.

4.2. Simulation for the distribution of the number of transitions constituting a

passage time. Each passage time is a sum ofM exponential service times (transitions)

whereM is a random variable. We can use the same technique of simulation to estimate
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Figure 4.1
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Figure 4.2
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Figure 4.3
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Figure 4.4
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Figure 4.5

N = 2
N = 5
N = 10

Passage time
0 20 40 60 80 100

0

0.02

0.04

0.06

0.08

0.10

P
ro

b
ab

il
it

y

Figure 4.6
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Figure 4.7

Table 4.1 Summary statistics for distribution of T .

(p1,p2)
Mean of T s.d. of T

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

(0.1,0.1) 3.33826 6.67818 12.24155 2.02782 3.15246 4.78688

(0.25,0.25) 4.02476 7.98108 14.68056 2.57387 4.38026 7.25242

(0.5,0.5) 6.03558 11.97407 22.10263 4.08600 7.64751 13.62768

(0.75,0.75) 12.01037 23.92743 43.84632 8.44603 16.99128 31.24527

(0.9,0.9) 29.98046 59.93902 99.99991 21.40377 44.80911 79.96751

(0.25,0.75) 8.68969 49.95054 39.96846 7.07903 16.14019 33.29985

(0.1,0.9) 20.04972 49.90799 97.97700 18.59241 46.38462 87.06717

(p1,p2)
Logarithmic mean of T

N = 2 N = 5 N = 10

(0.1,0.1) 1.00642 1.79213 2.43716

(0.25,0.25) 1.18122 1.94203 2.58465

(0.5,0.5) 1.56428 2.29804 2.93345

(0.75,0.75) 2.22860 2.93506 3.54847

(0.9,0.9) 3.13099 3.81310 4.32806

(0.25,0.75) 1.85664 2.70072 3.38191

(0.1,0.9) 2.58013 3.48973 4.17065

(p1,p2)
Skewness of T Kurtosis of T

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

(0.1,0.1) 1.21470 1.30283 1.54099 5.20290 6.04107 7.18983

(0.25,0.25) 1.39587 1.61683 1.76532 6.08617 7.27155 7.80637

(0.5,0.5) 1.44394 1.64380 1.75444 5.98575 7.21286 7.62408

(0.75,0.75) 1.44972 1.60336 1.67858 6.10992 6.77495 6.94187

(0.9,0.9) 1.45591 1.58746 1.34684 6.21520 6.62154 4.80362

(0.25,0.75) 2.12381 1.88128 1.85668 11.16495 8.04259 7.49442

(0.1,0.9) 2.00422 1.95407 1.49411 9.03806 8.39876 5.04933



1274 BIDYUT K. MEDYA

N = 2
N = 5
N = 10

Number of transitions
0 10 20 30 40 50

0

0.10

0.20

0.30

0.40

P
ro

b
ab

il
it

y

Figure 4.8
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Figure 4.9

the probability distribution of M . The appropriate estimation formula for Qn = P(M =
m) is

Q̂n = total number of passage times with m transitions
total number of passage times

, (4.3)

which is derived from the general result for strongly consistent estimators in regener-

ative simulation. We have considered various cases as mentioned in Section 4.1.

Results for the distribution of number of transitions. Figures 4.8, 4.9,

4.10, 4.11, 4.12, 4.13, and 4.14 represent the simulated steady-state distribution of

the number of transitions making up a passage time. We note the oscillations in the

distribution for the cases p1 = 0.1, p2 = 0.9 and p1 = 0.25, p2 = 0.75, that is, the

asymmetric cases (Figures 4.13 and 4.14).

The summary statistics, namely, means, s.d.’s, logarithmic means [E(lnM)], and

skewness and kurtosis coefficients are presented in Table 4.2.
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Figure 4.10
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Figure 4.11

The result shows that for a fixed number of jobs and p1 = p2, the mean and s.d.

of the number of transitions increase with the common value of p1 and p2. And for

unequal values of p1 and p2, the greater one dominates.

For fixed values of p1 and p2, the mean and s.d. of the number of transitions are

nearly proportional to the number of jobs. The same is true for the antilog of the

logarithmic mean (i.e., geometric mean). Both skewness and kurtosis decrease with the

increasing number of jobs in cases where p1 or p2 or both are large. In other cases the

variation is small.

For a fixed number of jobs and p1 = p2, both skewness and kurtosis decrease with

the common value of p1 and p2. Another interesting observation is that skewness and

kurtosis show exactly the same pattern. The same is true for the distribution of passage

times.
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Figure 4.12
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Figure 4.13
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Figure 4.14
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Table 4.2 Summary statistics for distribution of M .

(p1,p2)
Mean of M s.d. of M

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

(0.1,0.1) 4.45201 11.09873 22.18072 1.34290 3.49283 6.54112

(0.25,0.25) 5.38323 13.31429 26.65159 2.26502 5.85343 11.55903

(0.5,0.5) 8.05452 19.94198 39.96466 4.37307 11.40223 22.55128

(0.75,0.75) 16.02196 39.87281 78.80769 10.18025 26.59799 50.94848

(0.9,0.9) 40.01549 99.56318 193.78700 27.03170 69.84216 129.39040

(0.25,0.75) 10.69827 26.50189 53.10912 7.38668 19.75484 41.64418

(0.1,0.9) 22.09698 55.39670 108.17150 18.96437 49.92718 92.77766

(p1,p2)
Logarithmic mean of M

N = 2 N = 5 N = 10

(0.1,0.1) 1.45449 2.36539 3.06337

(0.25,0.25) 1.60914 2.51012 3.20856

(0.5,0.5) 1.95500 2.85091 3.54938

(0.75,0.75) 2.57940 3.47319 4.15789

(0.9,0.9) 3.45405 4.34048 5.01357

(0.25,0.75) 2.17322 3.03959 3.70361

(0.1,0.9) 2.76815 3.63691 4.29958

(p1,p2)
Skewness of M Kurtosis of M

N = 2 N = 5 N = 10 N = 2 N = 5 N = 10

(0.1,0.1) 1.60896 1.77780 1.76669 7.06338 7.94924 6.63456

(0.25,0.25) 1.60117 1.72102 1.85314 6.68347 7.01114 7.53302

(0.5,0.5) 1.44783 1.57360 1.40786 5.93274 6.53622 4.98711

(0.75,0.75) 1.43156 1.45874 1.09945 6.02005 5.86248 3.66994

(0.9,0.9) 1.40786 1.24161 0.75764 6.01493 4.48107 2.68169

(0.25,0.75) 2.03801 1.87816 1.66728 9.93744 8.15164 6.01406

(0.1,0.9) 1.96784 1.92967 1.37367 8.47793 8.12918 4.45402

5. Remarks. We have also looked at the above steady-state distributions from al-

ternative angles. Distribution of the number M of transitions comprising a passage

time can be evaluated directly through complete enumeration of cases though this is

a heavily intensive data-storage process and difficult to carry out for cases where the

distribution has a long right tail, that is, when at least one of p1 and p2 is large.

Once the distribution of M is known, the distribution of passage time T can be ob-

tained as a compound distribution.
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