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The torus is one of the popular topologies for the interconnecting processors to build high-
performance multicomputers. This paper presents methods to generate edge-disjoint Hamil-
tonian cycles in 2D tori.

2000 Mathematics Subject Classification: 68M10.

1. Introduction. A multicomputer system consists of multiple nodes that commu-

nicate by exchanging messages through an interconnection network. At a minimum,

each node normally has one or more processing elements, a local memory, and a com-

munication module. A popular topology for the interconnection network is the torus.

Also called a wrap-around mesh or a toroidal mesh, this topology includes the k-ary

n-cube which is an n-dimensional torus with the restriction that each dimension is of

the same size, k, and the hypercube, which is a k-ary n-cube with k = 2; a mesh is a

subgraph of a torus.

Several parallel machines, both commercial and experimental, have been designed

with a toroidal interconnection network. Included among these machines are the fol-

lowing: the iWarp (torus) [5], Cray T3D and T3E (3D torus) [13], the Mosaic (k-aryn-cube)

[14], and the Tera parallel computer (torus) [2].

Some topological properties of torus and k-ary n-cubes based on Lee distance are

given in [6, 7]. The existence of disjoint Hamiltonian cycles in the cross-product of

various graphs has been discussed in [1, 4, 8, 9, 10, 11, 15]; however, a straightforward

way of generating such cycles was not known until the results in [3], where some simple

ways of generating edge-disjoint Hamiltonian cycles in k-ary n-cubes are presented.

In this paper, some simple solutions to this problem are described for 2D torus. For

example, Figure 1.1 gives two edge-disjoint cycles in C3×C4.

The rest of the paper is organized as follows. Section 2 gives some preliminaries

about the definition of torus. Section 3 discusses the results on edge-disjoint Hamil-

tonian cycles on the 2D torus. Section 4 is the conclusion of this paper.

2. Preliminaries. This section contains definitions and mathematical background

that will be useful in subsequent sections.

2.1. Lee distance, cross-product, and torus. LetA= an−1an−2 ···a0 be ann-dimen-

sional mixed-radix vector over ZK , where K = kn−1×kn−2×···×k0, that is, all ai ∈ Zki ,
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Figure 1.1. Two disjoint Hamiltonian cycles in C3×C4.

for i= 0,1, . . . ,n−1. The Lee weight of A in mixed-radix notation is defined as

WL(A)=
n−1∑
i=0

∣∣ai
∣∣, (2.1)

where |ai| =min(ai,ki−ai), for i= 0,1, . . . ,n−1.

The Lee distance between the two vectors A and B is denoted by DL(A,B) and is

defined to be WL(A−B). That is, the Lee distance between the two vectors is the Lee

weight of their digitwise difference. In other words, DL(A,B) =
∑n−1
i=0 min(ai−bi,bi−

ai), where ai−bi and bi−ai are modki operations. For example, when K = 4×6×3,

WL(321) = min(3,4−3)+min(2,6−2)+min(1,3−1) = 1+2+1 = 4, and DL(123,321)
=WL(123−321)=WL(202)= 3.

A k-ary n-cube graph (Cnk ) and an n-dimensional torus (Tk1,k2,...,kn ) are 2n-regular

graphs containing kn and k1k2 ···kn nodes, respectively; it is assumed that k≥ 3 and

ki ≥ 3 for i= 1,2, . . . ,n. Each node in a Cnk is labeled with a distinctn-digit radix-k vector

while each node in a Tk1,k2,...,kn is labeled with a distinct n-digit mixed-radix vector. If

u and v are two nodes in the graph, then there is an edge between them if and only if

DL(u,v)= 1. From the definition of Lee distance, it can be seen that every node in a Cnk
or a Tk1,k2,...,kn shares an edge with two nodes in every dimension, resulting in a regular

graph of degree 2n.

Since the Hamming distance, DH(A,B), between the two vectors A and B is the num-

ber of positions in which A and B differ, DL(A,B) =DH(A,B) when ki = 2 or 3, for all

i, and DL(A,B)≥DH(A,B) when some ki > 3.

The k-ary n-cube and the torus can also be seen as the cross-product of cycles. The

cross-product of G1 and G2, denoted by G =G1⊗G2, is defined as follows [6, 12]:

V = {(u,v) |u∈ V1, v ∈ V2
}
,

E = {((u1,v1
)
,
(
u2,v2

)) | ((u1,u2
)∈ E1 and v1 = v2

)
or
(
u1 =u2 and

(
v1,v2

)∈ E2
)}
,

(2.2)

where G = (V ,E), G1 = (V1,E1), and G2 = (V2,E2). A cycle of length k is denoted by

Ck, and each node in Ck is labeled with a radix k number, 0, . . . ,k−1. There is an edge

between vertices u and v if and only if DL(u,v)= 1. Thus, a k-ary n-cube (Cnk ) and an

n-dimensional torus (Tk1,k2,...,kn ) can be defined as a product of cycles as follows:

Cnk = Ck⊗Ck⊗···⊗Ck︸ ︷︷ ︸
n times

=⊗ni=1Ck,

Tk1,k2,...,kn = Ck1
⊗Ck2

⊗···⊗Ckn.
(2.3)



EDGE-DISJOINT HAMILTONIAN CYCLES IN TWO-DIMENSIONAL TORUS 1301

x0

x1

0 1 2 3
0
1
2
3
4

(a) Spiral.

x0

x1

0 1 2 3
0
1
2

3
4

(b) Maze.

x0

x1

0 1 2 3
0
1

2
3
4

(c) Maze+feedback.

Figure 3.1. Basic mappings.

3. Edge-disjoint Hamiltonian cycles in a 2D torus. When edge-disjoint Hamiltonian

cycles are used in a communication algorithm, their effectiveness is improved if more

than one cycle exists. As mentioned earlier, the existence of disjoint Hamiltonian cycles

in the cross-product of various graphs has been discussed in the literature [1, 4, 8, 9,

10, 11, 15]; however, all these methods do not give a straightforward way of generating

such disjoint cycles. This section contains the functions that generate these disjoint

cycles for the 2D torus.

Two Gray codes, G1 and G2, over Znk are said to be independent if two words, a and

b, are adjacent in G1 (or G2), then they are not adjacent in G2 (or G1). If k ≥ 3, we can

have at most n sets of independent Gray codes; for all ki = 2, this number is �n/2�.
Note that the independent Gray codes form the edge-disjoint cycles.

In order to develop generating functions for 2D torus, we first define several ba-

sic mappings: spiral and maze, and some basic vector operations: reverse, mod, and

translate.

Using these basic building blocks, we first show the generating functions of the edge-

disjoint Hamiltonian cycles in 2D torus (Tk1,k0) whose sides are either both even or

both odd, and then extend the result to the general 2D torus. This 2D Hamiltonian

decomposition can also be used as a basis for 3D Hamiltonian decomposition.

Let X be an integer, x1 = �X/k�, and x0 =Xmodk.

Basic operations.

(i) reverse((x1,x0))= (x1,x0)R = (x0,x1).
(ii) (x1,x0)mod(k1,k0)= (x1 modk1,x0 modk0).

(iii) translate(+) : (x1,x0)+(d1,d0)= (x1+d1,x0+d0).
(iv) translate(−) : (x1,x0)−(d1,d0)= (x1−d1,x0−d0).

Spiral mapping. Figure 3.1(a) is the graphical view of this mapping. The cycle is

produced by generating Gs(X;k) for successive values of X starting at X = 0:

Gs(X;k)=Gs
((
x1,x0

)
;k
)= (x1,

(
x0−x1

)
modk

)
,

G−1
s
((
y1,y0

)
;k
)= (y1,

(
y1+y0

)
modk

)
.

(3.1)
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Maze mapping. Figure 3.1(b) is the graphical view of this mapping. The cycle is

produced by generating Gm(X;k) for successive values of X starting at X = 0:

Gm(X;k)=Gm
((
x1,x0

)
;k
)=



(
x1,x0

)
, if x1 is even,(

x1,k−1−x0
)
, if x1 is odd,

G−1
m (Y ;k)=G−1

m
((
y1,y0

)
;k
)=



(
y1,y0

)
, if y1 is even,(

y1,k−1−y0
)
, if y1 is odd.

(3.2)

Maze with feedback. Figure 3.1(c) is the graphical view of this mapping. The cycle

is produced by generating Gmf (X;k) for successive values of X starting at X = 0:

Gmf
(
X;k1,k0

)=


Gm

(
X;k0−1

)
, if x < k1k0−k1,

−X, if k1k0−k1 ≤ x.
(3.3)

3.1. Special case 1: k1 = k0 = k. In a Tk,k, the Hamiltonian cycles can be described

as follows:

h0
(
X,Tk,k

)= (x1,x0−x1
)
mod(k,k)=Gs(X,k),

h1
(
X,Tk,k

)= hR0
(
X,Tk,k

)= (x0−x1,x1
)
mod(k,k),

(3.4)

where x1 = �X/k� and x0 =Xmodk.

3.2. Special case 2: k1 =mk0 and GCD(k1,k0−1)= 1

Theorem 3.1. In a mixed-radix number system Zk1×k0 , if GCD(k1,k0−1) = 1 and

k1 =mk0, for m ≥ 1, then the following two functions generate the independent Gray

codes:

f0
(
X;k1,k0

)= (x1 modk1,
(
x0+

(
k0−1

)
x1
)
modk0

)
,

f1
(
X;k1,k0

)= ((x0+
(
k0−1

)
x1
)
modk1,x1 modk0

)
,

(3.5)

where X = (x1,x0), x1 ∈ Zk1 , and x0 ∈ Zk0 .

Proof. The proof has three parts.

(1) If X′ ≠ X′′, then it is required to prove that f0(X′;k1,k0) ≠ f0(X′′;k1,k0) and

f1(X′;k1,k0) ≠ f1(X′′;k1,k0). Let X′ = (x′1,x′0), X′′ = (x′′1 ,x′′0 ), x′1,x′′1 ∈ Zk1 , and x′0,
x′′0 ∈ Zk0 .

(a) Suppose f0(X′;k1,k0) = f0(X′′;k1,k0). Since x′1 = x′′1 modk1 and x′1,x
′′
1 ∈ Zk1 ,

x′1 = x′′1 . For the second component, x′0+ (k0−1)x′1 = x′′0 + (k0−1)x′′1 modk0,

and hence x′0 = x′′0 . Thus f0(X′;k1,k0)≠ f0(X′′;k1,k0) if X′ ≠X′′.
(b) Suppose f1(X′;k1,k0)= f1(X′′;k1,k0), x′1 = x′′1 modk0, that is, k0|(x′1−x′′1 ), and

x′0+(k0−1)x′1 = (x′′0 +(k0−1)x′′1 )modk1, that is, x′0−x′′0 +(k0−1)(x′1−x′′1 ) =
0modk1. Since |x′0−x′′0 |< k0 and k0|(x′1−x′′1 ), x′0−x′′0 = 0modk0. Further, x′1−
x′′1 = 0modk1 because GCD(k0−1,k1)= 1. Thus f1(X′;k1,k0)≠ f1(X′′;k1,k0) if

X′ ≠X′′.
This implies that f0 and f1 are one-to-one mappings over Z2

k .



EDGE-DISJOINT HAMILTONIAN CYCLES IN TWO-DIMENSIONAL TORUS 1303

(2) f0 and f1 generate cycles H0 and H1, respectively. In other words, the mappings

of two numbers X and X+1 by f0 or f1 must generate an edge inH0 orH1. There would

be the following subcases.

(a) Case X = (x1,x0) and X+1= (x1,x0+1). Since f0(X)= (x1,x0+(k0−1)x1) and

f1(X+1)= (x1,x0+1+(k0−1)x1), we have e0 = (f0(X),f0(X+1))= ((x1,x0+
(k0−1)x1),(x1,x0+1+(k0−1)x1)) and DL(f0(X),f0(X+1))= 1. Thus e0 is an

edge of H0.

(b) Case X′ = (x′1,k0−1) and X′ +1 = (x′1+1,0). Similar to case (a), we have e1 =
((x′1,(k0−1)(x′1+1)),(x′1+1,(k0−1)(x′1+1))) and DL(f0(X′),f0(X′ +1)) = 1.

Thus e1 is an edge of H0.

(c) Case X′′ = (x′′1 ,x′′0 ) and X′′ +1 = (x′′1 ,x′′0 +1). Similarly, we have e2 = (f1(X′′),
f1(X′′ +1)) = ((x′′0 + (k0−1)x′′1 ,x

′′
1 ),(x

′′
0 +1+ (k0−1)x′′1 ,x

′′
1 )) and DL(f1(X′′),

f1(X′′ +1))= 1. Thus e2 is an edge of H1.

(d) CaseX′′′ = (x′′′1 ,k0−1) andX′′′+1= (x′′′1 +1,0). We have e3 = (f1(X′′′),f1(X′′′+
1)) = (((k0 − 1)(x′′′1 + 1),x′′′1 ),((k0 − 1)(x′′′1 + 1),(x′′′1 + 1))) and DL(f1(X′′′),
f1(X′′′ +1))= 1. Thus e3 is an edge of H1.

Since f0 is one-to-one and DL(f0(X),f0(X+1)) = 1, f0 generates a Hamiltonian cycle.

Similarly, f1 also generates another Hamiltonian cycle.

(3) The edges which are generated by f0 and f1 must be unique so that the cycles, H0

and H1, become edge-disjoint. In other words, the edges e0, e1, e2, and e3 (described in

the above case (2)) must be different. The proof is by contradiction. Suppose that e0 (in

H0) is the same as e2 (in H1). For that, one of (3.6a) or (3.6b) must hold:

x1 = x′′0 +
(
k0−1

)
x′′1 ,

x0+
(
k0−1

)
x1 = x′′1 ,

x1 = x′′0 +1+(k0−1
)
x′′1 ,

x0+1+(k0−1
)
x1 = x′′1 ,

(3.6a)

x1 = x′′0 +1+(k0−1
)
x′′1 ,

x0+
(
k0−1

)
x1 = x′′1 ,

x1 = x′′0 +
(
k0−1

)
x′′1 ,

x0+1+(k0−1
)
x1 = x′′1 .

(3.6b)

However, either (3.6a) or (3.6b) cannot be true. Similarly, one of e0 and e1 (inH0) cannot

be the same as one of e2 and e3 (in H1). Therefore H0 and H1 are edge-disjoint.

The inverses of f0 and f1 are as follows:

f−1
0

(
Y ;k1,k0

)= (y1 modk1,
(
y0−

(
k0−1

)
y1
)
modk0

)
,

f−1
1

(
Y ;k1,k0

)= ((y0−
(
k0−1

)
y1
)
modk1,y1 modk0

)
,

(3.7)

where Y = (y1,y0), y1 ∈ Zk1 , and y0 ∈ Zk0 .
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Figure 3.2. Edge-disjoint Hamiltonian cycles in T9,3 produced by f0 and f1 of Theorem 3.1.

Corollary 3.2. There are two independent Gray codes in Tkr ,k for k≥ 3 and r ≥ 1

and are generated by the functions h0 and h1, where

h0
(
x1,x0

)= (a1,a0
)= (x1,

(
x0−x1

)
modk

)
,

h1
(
x1,x0

)= (b1,b0
)= ((x0+(k−1)x1

)
modkr ,x1 modk

)
.

(3.8)

The inverse functions are given by

h−1
0

(
a1,a0

)= (x1,x0
)= (a1,

(
a1+a0

)
modk

)
,

h−1
1

(
b1,b0

)= (x1,x0
)= ((b1−x0

)
(k−1)−1 modkr ,

(
b1−b0(k−1)

)
modk

)

= ((b1−x0
)
(k−1)−1 modkr ,

(
b1+b0

)
modk

)

= ((b1−
((
b1+b0

)
modk

))
(k−1)−1 modkr ,

(
b1+b0

)
modk

)
,

(3.9)

where (k−1)−1 is the multiplicative inverse of (k−1) under modkr (note that for k≥ 3,

k−1 and kr are relatively prime and so the inverse exists).

Example 3.3. Figure 3.2 shows the two edge-disjoint Hamiltonian cycles in T9×3

produced by f0 and f1 of Theorem 3.1.

3.3. k1 = k+2r and k0 = k+2s. Without loss of generality, we assume k1 = k+2r
and k0 = k+2s for some k≥ 3, r ≥ 0, and s ≥ 0.

Definition 3.4. If k1 = k+2r and k0 = k+2s for some k, r ≥ 0, and s ≥ 0, define a

function h0(X;Tk1,k0) as follows:

h′0
(
X;Tk1,k0

)=




Gs
(
X+2s;k0

)−(0,2s), if 0≤X <pα,
GRm

(
X−pα;k1−k+2

)+(k−1,k), if pα ≤X <pβ,
Gm

(
X−pβ;k

)+(k,0), if pβ ≤X,
h0
(
X;Tk1,k0

)= h′0
(
X;Tk1,k0

)
mod

(
k1,k0

)
,

(3.10)

where pα = (k−2)k0+2k−1 and pβ = k1k0−k(k1−k).
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Note that h0(pα;Tk1,k0)= (k−1,kmodk0) and h0(pβ;Tk1,k0)= (kmodk1,0).

Theorem 3.5. The function h0(X;Tk1,k0) generates a Hamiltonian cycle, H0(Tk1,k0),
in a 2D torus (Tk1,k0).

Proof. The proof has two parts.

(1) If X ≠X′, then h0(X;Tk1,k0)≠ h0(X′;Tk1,k0).
Assume Y = (y1,y0) = h0(X;Tk1,k0). By Definition 3.4, the range of Y can be found

from the range of X. If these ranges are disjoint, then the claim will be true:

R1 =
{
h0(X) | 0≤X <pα

}

= {(y1,y0
) |y1 = 0, 0≤y0 < k

}∪{(y1,y0
) | 0<y1 < k−1, 0≤y0 < k0

}

∪{(y1,y0
) |y1 = k−1, 1≤y0 < k

}
,

R2 =
{
h0(X) | pα ≤X <pβ

}

= {(y1,y0
) |y1 = 0, k≤y0 < k0

}∪{(y1,y0
) | k−1≤y1 < k1, k≤y0 < k0

}
,

R3 =
{
h0(X) | pβ ≤X

}= {(y1,y0
) | k≤y1 < k1, 0≤y0 < k

}
.

(3.11)

Since R1, R2, and R3 are mutually exclusive, the claim is true.

(2) DL(h0(X;Tk1,k0),h0(X′;Tk1,k0)) = 1 if X = X′ + 1. In each subrange, the proof

is trivial. The only case that needs to be considered is the situation where there are

transitions from one subrange to another subrange. h0(pα−1;Tk1,k0) = (k−1,k−1),
h0(pα;Tk1,k0)= (k−1,k), h0(pβ−1;Tk1,k0)= (k−1,0), and h0(pβ;Tk1,k0)= (k,0).

Corollary 3.6 (inverse of h0(X;Tk1,k0)). h
−1
0 ((y1,y0);Tk1,k0) is described as follows:

h−1
0

(
Y ;Tk1,k0

)=




G−1
s
(
Y +(0,2s);k0

)−2s, if Y ∈ R1,

G−1
m
((
Y −(k−1,k)

)R
;k1−k+2

)+pα, if Y ∈ R2,

G−1
m
(
Y −(k,0);k)+pβ, if Y ∈ R3.

(3.12)

Theorem 3.7. If H0(Tk1,k0) and H1(Tk1,k0) are the edge-disjoint Hamiltonian cycles,

and H0(Tk1,k0) is generated by the function h0(X;Tk1,k0), then the generator function

h1(X;Tk1,k0) for H1(Tk1,k0) is defined as

h1
(
X;Tk1,k0

)= hR0
(
X;Tk0,k1

)
. (3.13)

Proof. We prove the theorem by induction on k1 and k0.

Base step. Consider Tk,k. We get h0(X;Tk,k) = Gs(X;k) and hR1 (X;Tk,k) = GRs (X;k).
Thus H0(Tk,k) and H1(Tk,k) are edge-disjoint.

Inductive step. Assume that a Tk1,k0 , where k1 = k+2r and k0 = k+2s, has two

edge-disjoint Hamiltonian cycles generated by h0(X;Tk1,k0) and h1(X;Tk1,k0).
case 1. k′1 = k1+2: Figure 3.3 illustrates the process of adding two rows to a T3,7.

case 2. k′0 = k0+2: similar to the previous case.

Example 3.8. Figure 3.3 shows two edge-disjoint Hamiltonian cycles in T5,7 pro-

duced by Theorem 3.7.
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Figure 3.3. H0 and H1 in T5,7 (k= 3).

Figure 3.4. H0 and H1 in T6,7 (k= 3).

3.4. k1 = 4+2r and k0 = 3+2s. Without loss of generality, we assume k1 = 4+2r
and k0 = 3+2s. We treat Tk1,k0 as a torus obtained after inserting a row to Tk1−1,k0 . For

example, T6,7 is the torus obtained from T3,3 after inserting rows and columns as in

Figure 3.4.

Corollary 3.9. H0(Tk1,k0) fromH0(Tk1−1,k0): by inserting a row in between the third

and the fourth row of Tk1−1,k0 , the function h0(X;Tk1,k0) which generates a Hamiltonian

cycle, H0(Tk1,k0), can be described as follows:

h′0
(
X;Tk1,k0

)=




Gs
(
X+2s;k0

)−(0,2s), if 0≤X < k0+3,

GRm
(
X−k0−3;2

)+(2,1), if k0+3≤X < k0+7,

GRm
(
X−k0−7;k1−1

)+(2,3), if k0+7≤X <pβ,
Gm

(
X−pβ;3

)+(4,0), if pβ ≤X,
h0
(
X;Tk1,k0

)= h′0
(
X;Tk1,k0

)
mod

(
k1,k0

)
,

(3.14)

where pβ = k1k0−3(k1−4).

Note that h0(pγ ;Tk1,k0) = (1,0). Further note that pα = pβ if k0 = 3, and 0 = pβ if

k1 = 4, and we get

h0
(
0,Tk1,k0

)= (0,0),
h0
(
pα,Tk1,k0

)= (4modk1,3modk0
)
,

h0
(
pβ,Tk1,k0

)= (4modk1,0
)
.

(3.15)

Example 3.10. Figure 3.4 shows two edge-disjoint Hamiltonian cycles in T6,7 pro-

duced from T5,7 by the above corollaries.
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Corollary 3.11. H1(Tk1,k0) from H1(Tk1−1,k0): the second function h1(X;Tk1,k0),
where k1 is even and k0 is odd, is as follows:

h′1
(
X;Tk1,k0

)=




GRs (X;3), if 0≤X < 4,

GRs
(
pα−1−X;k1

)+(3,1), if 4≤X <pα,
Gm

(
X−pα+k0−1;k0−1

)+(2,2), if pα ≤X <pβ,
GRm

(
X−pβ;3

)+(0,3), if pβ ≤X,
h1
(
X;Tk1,k0

)= h′1
(
X;Tk1,k0

)
mod

(
k1,k0

)
,

(3.16)

where pα = k1+5, pβ = k1k0−3(k0−3).

Note that pα = pβ if k0 = 4, and 0= pβ if k1 = 3, and we get

h0
(
0,Tk1,k0

)= (0,0),
h0
(
pα,Tk1,k0

)= (3modk1,4modk0
)
,

h0
(
pβ,Tk1,k0

)= (3modk1,0
)
.

(3.17)

Corollary 3.12. h0(X,Tk1,k0) and h1(X,Tk1,k0), by Corollaries 3.9 and 3.11, gener-

ate two edge-disjoint Hamiltonian cycles in Tk1,k0 , where k1 is even and k0 is odd.

Similar to Corollary 3.6, we can obtain the inverses of h0(X,Tk1,k0) and h1(X,Tk1,k0).

4. Conclusion. In this paper, we present methods to generate the edge-disjoint

Hamiltonian cycles in 2D torus. These methods can be used to generate edge-disjoint

Hamiltonian cycles in higher-dimensional torus networks. For example, consider a 4D

torus T = (Ck1⊗Ck2⊗Ck3⊗Ck4). This can be decomposed as T = (H1⊕H2)⊗(H3⊕H4),
where H0 and H1 are disjoint cycles obtained from (Ck1⊗Ck2); so also H3 and H4 from

(Ck3⊗Ck4). Then, T can be written as

T = (H1⊗H3
)⊕(H2⊗H4

)=H′
1⊕H′

2⊕H′
3⊕H′

4. (4.1)

All these four cycles (H′
is) are disjoint and of length (k1×k2×k3×k4). Some simple

functions to generate these cycles need further research.
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