ON NON-MIDPOINT LOCALLY UNIFORMLY ROTUND NORMABILITY IN BANACH SPACES

A. K. MIRMOSTAFAEE

Received 21 May 2002

We will show that if X is a tree-complete subspace of ℓ_{∞} , which contains c_0 , then it does not admit any weakly midpoint locally uniformly convex renorming. It follows that such a space has no equivalent Kadec renorming.

2000 Mathematics Subject Classification: 46B20.

1. Introduction. It is known that ℓ_{∞} has an equivalent strictly convex renorming [2]; however, by a result due to Lindenstrauss, it cannot be equivalently renormed in locally uniformly convex manner [10]. In this note, we will show that every tree-complete subspace of ℓ_{∞} , which contains c_0 , does not admit any equivalent weakly midpoint locally uniformly convex norm. This can be considered as an extension of [1, 8]. Since every strictly convexifiable Banach space with Kadec property admits an equivalent midpoint locally uniformly convex renorming [9], it follows that every subspace of ℓ_{∞} with the tree-completeness property has no equivalent Kadec renorming. The existence of such a (nontrivial) subspace, which does not contain any copy of ℓ_{∞} , has already been proved by Haydon and Zizler (see [5, 7]).

2. Results. We recall that a norm $\|\cdot\|$ on a Banach space *X* is said to be *midpoint locally uniformly rotund* (MLUR) if, whenever $\{x_n\}$, $\{y_n\}$, and *x* are in *X* with $||x_n|| \rightarrow ||x||$, $||y_n|| \rightarrow ||x||$, and $||(x_n + y_n)/2 - x|| \rightarrow 0$, we necessarily have $||x_n - y_n|| \rightarrow 0$. If at the end of the last sentence, we replace norm with weak, the definition of *weakly midpoint locally uniformly rotund* (wMLUR) will be obtained [3]. Let *T* be the set of all finite (possible empty) strings of 0's and 1's. The empty string () is the unique string of length 0; the *length* |t| of a string *t* is *n* if $t \in \{0,1\}^n$. The *tree order* is defined by $s \prec t$ if |s| < |t| and t(m) = s(m) for $m \le |s|$. Each $t \in T$ has exactly two immediate successors, that is, *t*0 and *t*1.

A lattice *L* is said to be *tree-complete* if, whenever $\{f_t\}_{t\in T}$ is a bounded disjoint family in *L*, there exists $b \in \{0,1\}^N$, such that $\sum_{n\in N} f_{b|n}$ is in *L*.

Haydon and Zizler [7] constructed a closed linear subspace of ℓ_{∞} (which is a treecomplete sublattice of ℓ_{∞}) such that it contains c_0 but does not contain any subspace isomorphic to ℓ_{∞} . Notice that in this space *X* every infinite subset *M* of *N* has an infinite subset $M_0 \subset M$ such that $\mathbf{1}_{M_0} \in X$ [7].

THEOREM 2.1. Let X be a tree-complete sublattice of ℓ_{∞} . If X contains c_0 , then X does not admit any equivalent wMLUR renorming.

PROOF. Let $||| \cdot |||$ be an equivalent norm on *X*. We will show that this norm is not wMLUR. Let

$$A_{()} = \{ f \in X : ||f||_{\infty} = 1, N \setminus \text{supp}(f) \text{ is infinite} \}, M_{()} = \sup \{ |||f||| : f \in A_{()} \}, \qquad m_{()} = \inf \{ |||f||| : f \in A_{()} \}.$$
(2.1)

Choose an element $f_{()}$ of X such that $|||f_{()}||| > (3M_{()} + m_{()})/4$. Then select two disjoint infinite subsets N'_0 and N'_1 of $N \setminus \text{supp}(f_{()})$ with $\mathbf{1}_{N'_i} \in X$ for some $k_i \in N'_i$, define $N_i = N'_i \setminus \{k_i\}$, and let

$$A_i = \{ f \in A_{()} : f(n) = f_{()}(n) \text{ for each } n \notin N_i \} \quad (i = 0, 1).$$
(2.2)

Suppose that for some $t \in T$, with |t| < n, A_t is specified. Put

$$M_t = \sup\{|||f|||: f \in A_t\}, \qquad m_t = \inf\{|||f|||: f \in A_t\}.$$
(2.3)

Let $f_t \in A_t$ satisfy $|||f_t||| > (3M_t + m_t)/4$ and take two disjoint infinite subsets N'_{t0} and N'_{t1} of $N_t \setminus \text{supp}(f_t)$ with $\mathbf{1}_{N'_{ti}} \in X$, put $N_{ti} = N'_{ti} \setminus \{k_{ti}\}$, and define

$$A_{ti} = \{ f \in A_t : f(n) = f_t(n)n \notin N_{ti} \} \quad (i = 0, 1).$$
(2.4)

Thus, by induction on |t|, we can obtain a family $\{A_t\}_{t\in T}$ of subsets of X, a family $\{f_t\}$ of elements of X, a family $\{N_t\}$ of infinite subsets of N, and a family of integers $\{k_t\}$ with the following properties.

(a) A_{ti} is of the form

$$A_{ti} = \{ f \in A_t : f(n) = f_t(n), \ n \notin N_{ti} \} \quad (i = 0, 1),$$
(2.5)

for each $t \in T$.

- (b) $k_{ti} \in N_t \setminus N_{ti}$ and $f_t(k_t) = 0$ for $t \in T$ and i = 0, 1.
- (c) $|||f_t||| > (3M_t + m_t)/4$, where M_t and m_t denote the supremum and infimum of $\{|||f|||: f \in A_t\}$, respectively.
- (d) $N_s \subset N_t$ whenever $t \prec s$ and $N_t \cap N_s = \emptyset$, if *s* and *t* are not comparable.
- (e) supp $(f_t f_s) \subset N_t \setminus N_s$ for $t \prec s$.
- By (e), $\{g_t\}_{t \in T}$, defined by

$$g_{()} = f_{()}, \qquad g_{ti} = f_{ti} - f_t \quad (i = 0, 1),$$
(2.6)

is a disjoint family of elements of *X*. By the tree-completeness of *X*, there exists some $b \in \{0, 1\}^N$ such that

$$f_b(x) = f_{()} + \sum_{n \in N} g_{b|n}$$
(2.7)

is in *X*. Let $\{k_{\alpha(n)}\}$ be a subsequence of $\{k_{b|n}\}$ such that $\mathbf{1}_E \in X$, where $E = \{k_{\alpha(1)}, k_{\alpha(2)}, \ldots\}$. Let $E_n = \{k_{\alpha(n)}, k_{\alpha(n+1)}, \ldots\}$ and $h_n = \mathbf{1}_{E_n}$. By (a) and (b), $g_{n+1}^+ = f_b + h_{n+1}$ and $g_{n+1}^- = f_b - h_{n+1}$ are in $A_{b|n}$. Next, select some $\mu \in X^*$, such that $\mu(h_1) = 1$ and $\mu(g) = 0$ for each $g \in c_0$. Clearly, for such an element μ and each $n \in N$, we have $\mu(h_n) = 1$. By

1344

(a), $2f_b - f \in A_{b|n}$, thus $|||2f_{b|n} - f||| \le M_{b|n}$ for each $f \in A_{b|n}$ and $n \in N$. It follows that

$$\frac{(3M_{b|n-1} + m_{b|n-1})}{2} \le |||2f_{b|n}||| \le M_{b|n} + |||f|||, \quad \forall f \in A_{b|n},$$
(2.8)

and so

$$\frac{(3M_{b|n-1}+m_{b|n-1})}{2} \le M_{b|n}+m_{b|n} \le M_{b|n-1}+m_{b|n-1}, \quad \forall n \in \mathbb{N}.$$
(2.9)

Therefore,

$$M_{b|n} - m_{b|n} \le M_{b|n} - \frac{(M_{b|n-1} + m_{b|n-1})}{2}$$

$$\le M_{b|n-1} - \frac{(M_{b|n-1} + m_{b|n-1})}{2}$$

$$= \frac{(M_{b|n-1} - m_{b|n-1})}{2}.$$
 (2.10)

The above relations show that

$$||||g_{n+1}^{\pm}||| - |||f_b||| | \le M_{b|n} - m_{b|n} \le \frac{(M_{b|n-1} - m_{b|n-1})}{2} \le \frac{(M_{()} - m_{()})}{2^n}.$$
 (2.11)

That is $\lim |||g_n^+||| = |||f_b||| = \lim ||g_n^-|||$. Moreover, $f_b = (g_n^+ + g_n^-)/2$. But weak- $\lim (g_n^+ - g_n^-) \neq 0$, since $\mu(h_n) = 1$ for each $n \in N$. This shows that *X* does not admit any wMLUR norm.

It is known that weakly midpoint locally uniformly rotundity of a Banach space *X* is equivalent to saying that every point of $S(\hat{X})$ is an extreme point of $B(X^{**})$ [11]. It follows that the space considered in Theorem 2.1 has no equivalent norm such that $S(\hat{X})$ is a subset of $B(X^{**})$.

A norm on a Banach space *X* is said to be *strictly convex (rotund)* (R) if the unit sphere of *X* contains no nontrivial line segment. We say that a norm is *Kadec* if the weak and norm topologies coincide on the unit sphere. Every MLUR Banach space admits Kadec renorming (see [1]). Haydon in [6, Corollary 6.6] gives an example of a Kadec renormable space which has no equivalent R norm. The following result gives an example of a strictly convexifiable space with no equivalent Kadec norm.

COROLLARY 2.2. If a tree-complete subspace X of ℓ_{∞} contains c_0 , then it does not admit any equivalent Kadec renorming.

PROOF. It is known that ℓ_{∞} admits an equivalent strictly convex norm (see [4, page 120] or [2]). In [9] it is shown that every R Banach space with the Kadec property admits an equivalent MLUR renorming (see also [3, chapter IV]). Thus the result follows from Theorem 2.1.

A. K. MIRMOSTAFAEE

REFERENCES

- G. A. Aleksandrov and I. P. Dimitrov, On the equivalent weakly midpoint locally uniformly rotund renorming of the space l_∞, Mathematics and Mathematical Education (Sunny Beach (Sl"nchev Bryag), 1985), B"lgar. Akad. Nauk, Sofia, 1985, pp. 189-191.
- [2] M. M. Day, Normed Linear Spaces, 3rd ed., Springer-Verlag, New York, 1973.
- [3] R. Deville, G. Godefroy, and V. Zizler, *Smoothness and Renormings in Banach Spaces*, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 64, Longman Scientific & Technical, Harlow, 1993.
- [4] J. Diestel, *Geometry of Banach Spaces—Selected Topics*, Lecture Notes in Mathematics, vol. 485, Springer-Verlag, Berlin, 1975.
- [5] R. Haydon, A nonreflexive Grothendieck space that does not contain l_{∞} , Israel J. Math. 40 (1981), no. 1, 65-73.
- [6] _____, *Trees in renorming theory*, Proc. London Math. Soc. (3) **78** (1999), no. 3, 541–584.
- [7] R. Haydon and V. Zizler, A new space with no locally uniformly rotund renorming, Canad. Math. Bull. 32 (1989), no. 1, 122–128.
- [8] Z. Hu, W. B. Moors, and M. A. Smith, On a Banach space without a weak mid-point locally uniformly rotund norm, Bull. Austral. Math. Soc. 56 (1997), no. 2, 193-196.
- B.-L. Lin, P.-K. Lin, and S. L. Troyanski, *Characterizations of denting points*, Proc. Amer. Math. Soc. 102 (1988), no. 3, 526–528.
- [10] J. Lindenstrauss, Weakly compact sets—their topological properties and the Banach spaces they generate, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La, 1967), Ann. of Math. Studies, No. 69, Princeton University Press, Princeton, NJ, 1972, pp. 235–273.
- [11] W. B. Moors and J. R. Giles, Generic continuity of minimal set-valued mappings, J. Austral. Math. Soc. Ser. A 63 (1997), no. 2, 238–262.

A. K. Mirmostafaee: Department of Mathematics, Damghan University of Sciences, P.O. Box 36715-364, Damghan, Iran