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We introduced the logarithmic matrix L; and studied it as mappings into £ and G in 1998
and 2000, respectively. In this paper, we study L; as mappings into Gy, .
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1. Introduction. The logarithmic power series method of summability [1], denoted
by L, is the following sequence-to-function transformation: if

xhgl—{ log(l x) g }_A’ (LD

then u is L-summable to A. The matrix analogue of the L-summability method is the
Ly matrix [2] given by

1 1 tk+1

Tog (1=6,) k+1'" -

Ank = —

where 0 < t,, < 1 for all n and lim,, t,, = 1. Thus, the sequence u is transformed into
the sequence L;u whose nth term is given by

Z Tukty' (1.3)

k:O

(L), = log 1 ty)

The L; matrix is called the logarithmic matrix. Throughout this paper, t will denote
such a sequence: 0 < t,, < 1 for all n, and lim,, t,, = 1.

2. Basic notations and definitions. Let A = (a,x) be an infinite matrix defining a
sequence-to-sequence summability transformation given by

)

= zankxk, (2.1)

where (Ax), denotes the nth term of the image sequence Ax. The sequence Ax is called
the A-transform of the sequence x. Let v be a complex number sequence. Throughout
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this paper, we will use the following basic notations and definitions:

£ = {y: PEARE convergent},
k=0

U(A) ={y:Ay e l},
G=1{y:yx=0(r¥) for some r € (0,1)},
Guw = v :ye=0(r") for some r € (0,w), 0 <w < 1}, (2:2)
Guw(A) ={y:Ay € Gu},
c = {the set of all convergent sequences},

c(A)={y:A(y) ec}.

DEFINITION 2.1. If X and Y are complex number sequences, then the matrix A is
called an X-Y matrix if the image Au of u under the transformation A is in Y whenever
u is in X.

DEFINITION 2.2. The summability matrix A is said to be G, -translative for a se-
quence u in G, (A) provided that each of the sequences T, and Sy, is in G, (A), where
Ty = {ui,u,us,...} and Sy, = {0,ug,uy,...}.

DEFINITION 2.3. The matrix A is G,,-stronger than the matrix B provided that G,, (B)
S Gy (A).

3. Main results. Our first main result gives a necessary and sufficient condition for
L; tobe Gy-Gy.

THEOREM 3.1. The logarithmic matrix L; is a G, -G, matrix if and only if —1/log(1 —
t) e Gy.

PROOF. Since 0 < t,, < 1, it follows that

| ank | _
g ] < b (3.1)

for all n and k. Therefore, if —1/log(1 —t) € Gy, [3, Theorem 2.3] guarantees that L;
is a Gy -Gy, matrix. Conversely, if —1/log(1 —t) ¢ G, then the first column of L, is
not in Gy, because a, o = —tn/log(1l —t,) ¢ G,. Hence, L; is not a G-G,, matrix by
[3, Theorem 2.3]. O

COROLLARY 3.2. IfO0 <ty <uy <landL;isaGy -Gy matrix, then Ly, is also a G, -Gy
matrix.

COROLLARY 3.3. Suppose x > —1 and L; is an G, -G, matrix, then (1 — ¥l e Gy.

COROLLARY 3.4. Lett, =1—e 1, where q, = v". Then L, is a G, -G, matrix if and
only ifr > 1/w.

COROLLARY 3.5. IfL; is a Gy, -G, matrix, then it is a G-G matrix.
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The next result suggests that the logarithmic matrix L; is G4, -stronger than the iden-
tity matrix. The result indicates that the L; matrix is rather a strong method in the
Gy-Gyy setting.

THEOREM 3.6. If L; is a Gy, -Gy, matrix and the series >.;_, xy has bounded partial
sums, then it follows that x € G, (L;).

PROOF. The proof easily follows using the same techniques as in the proof of
Theorem 3.10 [2]. O

REMARK 3.7. Theorem 3.6 indicates that if L; is a G, -G, matrix, then G, (L;) con-
tains the class of all conditionally convergent series. This suggests how large the size
of Gy, (L) is. In fact, we can give a further indication of the size of G, (L;) by showing
thatif L; is a G, -G, matrix, then G, (L¢) contains also an unbounded sequence. To see
this, consider the sequence x given by

xp = (=DM(k+1)2(k+2) (k+3). (3.2)
Then
ikatﬁ“:tni(—l)k(k+l)(k+2)(k+3)tﬁ:6#4 (3.3)
ikl k=0 +1n)
Hence,
[(Lex), | = Ot ) (3:4)

—log (1—tn)(1+t,)* ~ log(1—tn)
Thus, if L; is an G,,-G,, matrix, then by Theorem 3.1, —1/log(1—t) € Gy, 80X € Gy (Ly).

The next few results deal with the G, -translativity of L;. We will show that the L;
matrix is G, -translative for some sequences in G, (L¢).

PROPOSITION 3.8. Every G, -G, L; matrix is G, -translative for each sequence x €
Guw.

THEOREM 3.9. Suppose L; is a G, -G, matrix and {xy/k} is a sequence such that
xr/k = 0 for k = 0, then the sequence {xy/k} is in G, (L¢) for each L-summable se-
quence x.

PROOF. Let Y be the L;-transform of the sequence {xy/k}. Then we have

|[Yn| = log Z k(k+l)xktﬁ“ <Cn+Dy, (3.5)
where
C = — |x1|tn _ |x2 | tn
" 2log( —tn) 6log(1—ty)’
o (3.6)
D= -
" log(l tn) kék(k+1)xkt”
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By Theorem 3.1, the hypothesis that L; is G,,-G,, implies that C € G,,, and hence there
remains only to show D € G,, to prove the theorem. Note that

o Xk n k-1
Z(k+1)<fot ‘”)‘

k=3

fn S k-1
Jo dt(Z o) Kt )‘

k=3

3 1
log (1 -ty)

R S

" log(1-ty)

D, =

(3.7)

The interchanging of the integral and the summation is legitimate as the radius of
convergence of the power series

=1
>tk (3.8)
Pt k+1

is at least 1 by [2, Lemma 1] and hence the power series converges absolutely and
uniformly for 0 < t < t,,. Now we let

ST S
F(t) _kz L (3.9)
=3
Then we have
F(t) 1 | 1
- =— 3.10
log(1—t) log(l—t)lg‘gk+lxkt ’ (3.10)

and the hypothesis that x € ¢(L) implies that

1mLt):A(ﬁnite), forO<t<1. (3.11)
t—-1- —log(1—1t)
We also have
_F
thE)lflOg(lft) =0. (3.12)
Now (3.11) and (3.12) yield
F(t) ‘
‘—7log(17t) <M, forsomeM >0, (3.13)

and hence

|F(t)| < —Mlog(1-t), forO<t<1. (3.14)
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So, we have
1 tn
Pr= " log =t | Jo Pt
1 tn
S_ilog(l—tn)ﬁ) |F(t)|dt
M fn
<-——F —log(1 - (3.15)
= log(l—tn)Jo og(l-t)dt
Mt,
= M(l-t,)———""1
=) = jog (1-1,)
..M
T log(l—ty)”

The hypothesis that L; is G, -G, implies that both —1/log(1—t) and (1 —t) are in G,
by Theorem 3.1. Hence D € Gy,. |

THEOREM 3.10. Every G,,-G, L; matrix is G, -translative for each L-summable se-
quence in Gy, (Ly).

PROOF. Let x € ¢(L) NGy (L¢). Then we will show that
(i) Tx € Gw(Ly),

(11) Sx S Gw (Lt)

We first show that (i) holds. Note that

— 1 < 1 k+1
[(LeTe)n | = log (1—ty) kgokJrlxk“t"
1 =1
= | Y Zxitk
log (1 t) k;k kon (3.16)
1 o (1 1 K
" Tlog(1-tn) k;(k+1+k(k+1))xkt"
< Py +Qn,
where
_ 1 - 1 k
" Jog(1—tn) g'lk+1xkt"’
) - : (3.17)
_ k
Qn =100 =1,) glk(kﬂ)xkt"

So, we have |(L;Ty)n| < P, + Q4, and if we show that both P and Q are in G, then
(i) holds. But the condition P € G,, follows from the hypothesis that x € G, (L;) and
Q € Gy, follows from Theorem 3.9.
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Next we will show that (ii) holds. We have

— k+1
| (LeSx) | = “log (1 *tn k;l 1k 1ty
> (3.18)
— tk+2
“log(1 —tn k%) Xktn
<Wn+Uy,
where
_ k+2
Wn “log (1 —tn g TRE
1 ® 1 (3.19)
— _ k+2
Un = “tog (1-1) § (k+ 1) (k+2) Kt

The hypothesis that X € G, (L;) implies that W € G,,. We can also show that U € G,
by making a slight modification in the proof of Theorem 3.9, replacing the sequence
{xr/k} with the sequence {xi/(k+2)}. Hence, the theorem follows. O
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