ON THE MAPPING $xy \rightarrow (xy)^n$ IN AN ASSOCIATIVE RING

SCOTT J. BESLIN and AWAD ISKANDER

Received 26 August 2002

We consider the following condition (*) on an associative ring R: (*). There exists a function f from R into R such that f is a group homomorphism of (R,+), f is injective on R^2 , and $f(xy) = (xy)^{n(x,y)}$ for some positive integer n(x,y) > 1. Commutativity and structure are established for Artinian rings R satisfying (*), and a counterexample is given for non-Artinian rings. The results generalize commutativity theorems found elsewhere. The case n(x,y) = 2 is examined in detail.

2000 Mathematics Subject Classification: 16D70, 16P20.

Let R be an associative ring, not necessarily with unity, and let R^+ denote the additive group of R. In [3], it was shown that R is commutative if it satisfies the following condition.

- (I) For each x and y in R, there exists n = n(x, y) > 1 such that $(xy)^n = xy$. We generalize this result by considering the condition below.
- (II) There exists a function f from R into R such that f is a group homomorphism of R^+ , f is injective on R^2 , and $f(xy) = (xy)^{n(x,y)}$ for some positive integer n = n(x,y) > 1 depending on x and y.

An example of a ring satisfying (II) for n(x,y) = 2 is given by $R = B \oplus N$, where B is a Boolean ring and N is a zero ring (a ring with trivial product, xy = 0 for all x and y). In this case, we may take f to be the identity mapping. It was shown in [2] that a ring which is product-idempotent (i.e., $(xy)^2 = xy$ for every x and y) must be of the form $B \oplus N$. We will see that Artinian rings R for which (II) is true are not far removed from this structure.

In this paper, we give the structure of an Artinian ring R satisfying (II) without invoking the commutativity theorems of Bell [1]. We then exhibit an infinite noncommutative ring for which f is surjective but not injective. Throughout this paper, the notation J(R) denotes the Jacobson radical of the ring R. If r is in R, the symbol \bar{r} denotes the coset r + J(R).

The proposition below states that rings satisfying (II) obey the central-idempotent property.

PROPOSITION 1 (see [3]). Let R be a ring satisfying (II). If e is an idempotent in R, then e is central.

PROOF. Since $f(yx) = (yx)^{n(y,x)} = y(xy)x \cdots yx$, we have that xy = 0 in R implies yx = 0, for any x and y in R. Now, for every r in R, $(e^2 - e)r = e(er - r) = 0$. Thus, (er - r)e = 0 or ere = re. Similarly, ere = er. Hence, er = re.

THEOREM 2. Let R be an Artinian ring satisfying (II). If $(xy)^m = 0$ for some positive integer m, then xy = 0.

PROOF. Suppose that $(xy)^m = 0$ and $(xy)^{m-1} \neq 0$, m > 1. Then, $f[(xy)^{m-1}] = [(xy)^{m-1}]^n = 0$. Since f is injective on R^2 , $(xy)^{m-1} = 0$, a contradiction.

COROLLARY 3. If R is an Artinian ring satisfying (II), then $R \cdot J(R) = J(R) \cdot R = (0)$.

PROOF. Since R is Artinian, the ideal J(R) is nilpotent.

COROLLARY 4. For an Artinian ring R satisfying (II), J(R) is a zero ring.

COROLLARY 5. For an Artinian ring R satisfying (II), R/J(R) is commutative.

PROOF. If not, there is a direct summand of R/J(R) isomorphic to a full matrix ring over a division ring. Hence, there exist \bar{u} and \bar{v} in R/J(R) such that $\bar{u}\bar{v} \neq 0$ and $\bar{u}\bar{v}\bar{u} = 0$. It follows that $uv \neq 0$ in R and that uvu is in J(R). But then $f(uv) = (uv)^{n(u,v)} = uv \cdot uv \cdot uv = (uvu)v \cdot uv = 0$. Thus, by the injective property of f on R^2 , uv = 0, a contradiction.

We now obtain the structure of an Artinian ring R satisfying (II).

THEOREM 6. If R is an Artinian ring satisfying (II), then R decomposes as a direct sum of rings $eR \oplus N$, where e is an idempotent in R and N is a zero ring.

PROOF. By Corollary 5, the ring S = R/J(R) is a direct sum of fields; hence S has an identity \bar{t} , which lifts to a central idempotent e in R such that e-t is in J(R). Let $N = \{r - er : r \in R\}$. It is easy to see that N is an ideal of R, and that the intersection of N with eR is (0). Clearly, R = eR + N, and so we may write $R = eR \oplus N$. Now, e-t in J(R) implies that $(e-t)^2 = 0$ or $e = 2et - t^2$. Hence, if r is in R, $(2\bar{e} \cdot \bar{t} - \bar{t}^2)\bar{r} = \bar{e} \cdot \bar{r} = \bar{er}$ or $2\bar{e} \cdot \bar{t} \cdot \bar{r} - \bar{t}^2 \cdot \bar{r} = 2\bar{e} \cdot \bar{r} - \bar{r} = \bar{er}$, since \bar{t} is the identity of S. Thus, $\bar{er} - \bar{r} = 0$ or r - er is in J(R). Therefore, N is a zero subring of J(R).

COROLLARY 7. If R is an Artinian ring satisfying (II), then R is a direct sum $F \oplus N$, where F is a direct sum of fields and N is a zero ring.

PROOF. By Theorem 2, the ring eR in Theorem 6 has no nonzero nilpotent elements, and hence is a direct sum of fields by Corollary 5.

COROLLARY 8. *Let R be as in Theorem 2. Then R is commutative.*

COROLLARY 9. Let R be as in Theorem 2. Then J(R) consists precisely of the nilpotent elements $\{x: x^2 = 0\}$.

REMARK 10. The function f maps the ideal eR of Theorem 6 into itself, since $f(ex) = (ex)^n = e^n x^n = ex^n$.

REMARK 11. The specific fields in the direct sum F of Corollary 7 depend, of course, on the integers n(x,y). A Boolean ring is acceptable for any value of n. The prime field with p elements, p a prime, is acceptable for n = (p-1)m+1, m a positive

integer. A finite field of order p^k is acceptable for n = p. Of course, an infinite field of characteristic p need not be a pth root field.

We now exhibit an infinite noncommutative ring R for which $f(xy) = (xy)^2$ on R^2 . Let \mathbb{Z}_4 be the ring of integers modulo 4. Let R be the free \mathbb{Z}_4 -module with countable base $A = \{a_i : i = 1, 2, 3, \ldots\}$. On A, define the multiplication $a_1a_2 = a_3$, $a_2a_1 = -a_3$, $a_ia_j = 0$ otherwise. One may verify that this yields an associative multiplication which extends to a ring multiplication on R considered as an abelian group. Clearly, the ring R is noncommutative. Define $f: A \to A \cup \{0\}$ via $f(a_1) = f(a_3) = 0$ and $f(a_i) = a_{\rho(i)}$, $i \neq 1,3$, where ρ is any bijection of $\{2,4,5,\ldots\}$ onto the set of positive integers. The map f extends to a group homomorphism of R^+ . Now, $f(a_ia_j) = f(0) = 0 = (a_ia_j)^2$ for $(i,j) \neq (1,2)$ or (2,1). Moreover, $f(a_1a_2) = f(a_3) = 0 = (a_1a_2)^2 = a_3^2$. Similarly, $f(a_2a_1) = 0 = (a_2a_1)^2$. It is then easy to check that $f(xy) = (xy)^2$ for every x and y in R, since $a_ia_ja_k = 0$ for all a_i,a_j,a_k in A.

The function f above is not injective. We prove the following theorem which insures the commutativity of any ring S, given injectivity of f on the subring S^2 alone.

THEOREM 12. Let f be a function from a ring S into S such that f(x+y) = f(x) + f(y) and $f(xy) = (xy)^2$. Assume further that f is injective on s^2 . Then S is commutative.

PROOF. Let x, y, z, and t be arbitrary elements of S. Now, $f(2xy) = 2(xy)^2 = (2xy)^2 = 4(xy)^2$, so $2(xy)^2 = f(2xy) = 0$. Hence, 2xy = 0 by injectivity. Moreover, if xy = 0, then f(yx) = y(xy)x = 0 implies yx = 0. From $(xy)^2 + (zy)^2 = f(xy) + f(zy) = f((x+z)y) = [(x+z)y]^2 = (xy+zy)^2 = (xy)^2 + xyzy + zyxy + (zy)^2$, we obtain xyzy = zyxy. Now, $f(xtyz+yzxt) = f(xtyz) + f(yzxt) = xtyz \cdot xtyz + yzxt$. Hence, xtyz(xtyz+yzxt) = 0. Thus, $(xtyz+yzxt)xtyz = xtyz \cdot xtyz + yzxt \cdot xtyz = 0$. Therefore, xtyz+yzxt=0 or (xt)(yz) = (yz)(xt). Hence, S^2 is commutative.

Now, $f(xyz) = (xyz)(xyz) = x(yzx)(yz) = x(yz)^2x$. Similarly, $f(yzx) = x(yz)^2x$. So, xyz = yzx.

Finally, $f(xy) = (xy)(xy) = x(yxy) = x^2y^2 = y^2x^2 = (yx)(yx) = f(yx)$. Thus, xy = yx, and S is commutative. This completes the proof.

REMARK 13. The ring R in the example preceding Theorem 12 does not have a unity. It can be shown that if S is any ring in which every element is a square, and squaring is an endomorphism of S^+ , then S is commutative. It follows that a ring R satisfying (II) for n = 2 and having a right or left identity is commutative.

In view of Remark 13 and Theorem 12, we make the following conjecture and leave it as a problem.

CONJECTURE 14. Let *S* be a ring and $n \ge 2$ a positive integer. If the function $f(x) = x^n$ on *S* is surjective (injective) and *f* is a group endomorphism of S^+ , then *S* is commutative.

REFERENCES

- [1] H. E. Bell, A commutativity study for periodic rings, Pacific J. Math. 70 (1977), no. 1, 29-36.
- [2] S. Ligh and J. Luh, *Direct sum of J-rings and zero rings*, Amer. Math. Monthly **96** (1989), no. 1, 40-41.
- [3] M. Ó. Searcóid and D. MacHale, *Two elementary generalisations of Boolean rings*, Amer. Math. Monthly **93** (1986), no. 2, 121–122.

Scott J. Beslin: Department of Mathematics and Computer Science, Nicholls State University, Thibodaux, LA 70310, USA

E-mail address: scott.beslin@nicholls.edu

Awad Iskander: Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504, USA

E-mail address: awadiskander@juno.com