
IJMMS 2004:26, 1379–1391
PII. S0161171204212078

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

MAGILL-TYPE THEOREMS FOR MAPPINGS

GIORGIO NORDO and BORIS A. PASYNKOV

Received 9 December 2002

Magill’s and Rayburn’s theorems on the homeomorphism of Stone-Čech remainders and
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1. Introduction. In 1968, Magill [8] proved the following theorem.

Theorem 1.1. For two locally compact Tychonoff spaces X and Y , the Stone-Čech re-

mainders (i.e., the remainders of the Stone-Čech compactifications) βX\X and βY \Y are

homeomorphic if and only if the posetsK(X) andK(Y) of all Hausdorff compactifications

of X and Y are isomorphic.

In 1973, Rayburn [12] gave the following definition.

Definition 1.2. A Tychonoff space X is called k-absolute if βX \X is a k-space.

It is proved in [12] that a Tychonoff space X is k-absolute if and only if cX \X is a

k-space for some cX ∈K(X) and if and only if cX \X is a k-space for any cX ∈K(X).

All locally compact Tychonoff spaces are k-absolute because their Stone-Čech remain-

ders are compact. Consequently, the following Rayburn’s theorem generalizes one half

of Theorem 1.1.

Theorem 1.3. For any pair of k-absolute spaces X, Y , if the posets K(X) and K(Y)
are isomorphic, then the Stone-Čech remainders βX \X and βY \Y are homeomorphic.

We note that the second half of Theorem 1.1 cannot be generalized to k-absolute

spaces (see [12, Example (B)]).

In [2], both Theorems 1.1 and 1.3 are generalized to arbitrary compactifications of

two Tychonoff spaces.

This paper is devoted to an extension of Theorems 1.1 and 1.3 and their generaliza-

tions (given in [2]) to the class of WZ-mappings (in particular, closed mappings) from a

locally compact Tychonoff space or a k-absolute space to a compact Hausdorff space.

Although, even for this rather narrow class of mappings, the formulations of corre-

sponding theorems look rather complicated, the examples presented in Section 4 show

that more simple approaches are not sufficient.
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We note that results concerning the extension of Theorem 1.1 to mappings are also

contained in [5], but they are different from ours (see the remark at the end of this

paper).

2. Preliminaries. Throughout this paper, space will mean a topological space and

mapping will mean a continuous function. Terms and undefined concepts are used as

in [4]. In this section, we recall some definitions and results from [2]. Some additional

notions concerning fibrewise general topology (FGT) can be found in [9, 10].

Definition 2.1. Let X, Y , Z be spaces and λ : X → Y , µ : X → Z mappings. We say

that λ is equivalent to µ and we will write λ ≡ µ if there exists some homeomorphism

h : Y → Z such that µ = h◦λ.

Evidently, the homeomorphism h is unique.

We will identify equivalent mappings, and so we can consider the set �(X) of all the

continuous maps from a fixed space X onto other spaces.

Definition 2.2. Let λ,µ ∈ �(X). We say that λ follows µ and we will write λ ≥ µ if

there exists some continuous mapping h : Y → Z such that µ = h◦λ.

It is evident that (�(X),≥) is a poset.

Definition 2.3. Let λ∈�(X). We say that

(i) λ is simple if there exists a unique point tλ ∈ λ(X) such that |λ−1({tλ})|> 1 and

|λ−1({t})| = 1 for every t ∈ λ(X)\{tλ};
(ii) λ is finite simple if there exists a nonempty finite set T ⊂ λ(X) of points such

that |λ−1({t})|> 1 for every t ∈ T and |λ−1({t})| = 1 for every t ∈ λ(X)\T .

We will suppose from this moment thatX is a Hausdorff space and that �(X) denotes

the poset (as a subposet of �(X)) of all perfect onto mappings of X. Clearly, λ(X) is

Hausdorff for any λ∈�(X).

Definition 2.4. A mapping λ ∈ �(X) is called a dual point if it is simple and

|λ−1({tλ})| = 2.

Let � = �(X) denote the set of all dual points of �(X) and ��(X) = {λ ∈ �(X) :

λ is finite simple}∪{idX}.
Definition 2.5. A family � ⊂ � is said to be a 3-vertex family if for any distinct

α,β∈� there exists some γ ∈�\� such that γ > inf{α,β}.
Definition 2.6. A 3-vertex family �⊂� is called a point family if it is maximal (i.e.,

if there is no 3-vertex family properly containing �).

Lemma 2.7. If � is a 3-vertex family consisting of more than one element, then the

set X� =
⋂{λ−1({tλ}) : λ∈�} is a single point (which will be denoted by J�(�)).

Definition 2.8. Let �⊂�(X) such that ��(X)⊂ � and x ∈X. We put K�(x)= {δ∈
� : x ∈ δ−1({tδ})}.

Lemma 2.9. If |X|> 2, then K�(x) is a point family.
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Evidently, for |X|> 2,

J�

(
K�(x)

)= x for any x ∈X, (2.1)

K�

(
J�(�)

)=� for any point family �⊂�. (2.2)

In [2], dual points are characterized only by means of the order in �. It follows from

this that if, for Hausdorff spaces Xj , we have ��(Xj) ⊂ �j ⊂ �(Xj) with j = 1,2 and

i : �1 → �2 is a poset isomorphism, then i(K�1(x)) is a point family in �2.

We recall [2] that a one-to-one mapping f :X → Y between Hausdorff spaces is called

a k-homeomorphism if f is continuous on compact subsets of X and its inverse f−1 is

continuous on compact subsets of Y . Clearly, a k-homeomorphism between k-spaces

is a homeomorphism.

Theorem 2.10. LetXj be a Hausdorff space and �(Xj) the set of all perfect onto map-

pings of Xj (with j = 1,2). If X1 and X2 are k-homeomorphic and they are k-spaces, then

�(X1) and �(X2) (and so ��(X1) and ��(X2)) are isomorphic. Let ��(Xj)⊂ �j ⊂�(Xj)
for j = 1,2. If �1 and �2 are poset isomorphic, then X1 and X2 are k-homeomorphic, and

if, additionally, X1 and X2 are k-spaces, then they are homeomorphic. More precisely, if

i : �1 → �2 is a poset isomorphism and |X1|> 2, then the function hi :X1 →X2, such that

hi(x)= J�2(i(K�1(x))) for any x ∈X1, is a k-homeomorphism.

Now, let X be a Tychonoff space and let K(X) denote the poset of all Hausdorff

compactifications of X (see, e.g., [3]).

For any cX,dX ∈K(X) such that cX < dX, let

πdc =πdcX : dX �→ cX (2.3)

be the canonical map (i.e., it is continuous and πdc|X = idX ).

Then π−1
dc (cX \X)= dX \X and the mapping

rπdc = rπdcX def= πdc : dX \X �→ cXX (2.4)

is perfect and onto, that is, rπdc ∈�(dX \X).
Fix eX ∈K(X) and let

K(eX)= {cX ∈K(X) : cX ≤ eX} (2.5)

(in particular, K(βX)=K(X)).
In [2], the function

σeX :K(eX) �→�(eX \X) (2.6)

was defined by σeX(cX)= rπec and the following lemma was proved.

Lemma 2.11. σeX is an isomorphism of the posets K(eX) and

�(eX) def= σeX
(
K(eX)

)
. (2.7)
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The following two lemmas were also proved in [2].

Lemma 2.12. ��(eX \X)⊂�(eX).

Lemma 2.13. If X is a locally compact space, then �(eX)=�(eX \X).

3. On the homeomorphisms of two pairs of spaces

Definition 3.1. A space X and a closed subset A are called a pair of spaces and

denoted by (X,A).

Definition 3.2. Suppose (X,A) and (Y ,B) are pairs of spaces, where X, Y are Haus-

dorff. Then a homeomorphism (a k-homeomorphism) h :X → Y is called a homeomor-

phism (a k-homeomorphism) of the pair (X,A) onto the pair (Y ,B) if h(A)= B.

Let X be a Hausdorff space and A a closed subset of X.

For any λ∈�(X), let

resXA(λ)= λ :A �→ λ(A), (3.1)

that is, resXA(λ) is the corestriction of λ to A.

Evidently, resXA(�(X))⊂�(A) and resXA : �(X)→�(A) is monotonous.

It is not difficult to prove the following lemma.

Lemma 3.3. resXA(�(X))=�(A), resXA(��(X))=��(A), and resXA(�(X)∪{idX})=
�(A)∪{idA}.

Let ��(X)⊂ �(X)⊂�(X) and ��(A)⊂ �(A)⊂�(A). Then, clearly,

resXA
(
K�(X)(x)

)\{ idA
}=K�(A)(x) ∀x ∈A. (3.2)

Theorem 3.4. Let X and Y be Hausdorff spaces, let A be a closed subset of X, and

let B be a closed subset of Y ,

min
{|X|,|Y |}≥ 3, min

{|A|,|B|}≥ 2,

��(X)⊂ �(X)⊂�(X), ��(A)⊂ �(A)⊂�(A),

��(Y)⊂ �(Y)⊂�(Y), ��(B)⊂ �(B)⊂�(B),

(3.3)

and let

iXY : �(X) �→ �(Y), iAB : �(A) �→ �(B) (3.4)

be poset isomorphisms such that

iAB ◦resXA = resYB ◦iXY . (3.5)

Then

(i) in the case min{|A|,|B|} ≥ 3 for k-homeomorphisms hiAB :A→ B and hiXY :X → Y
(see Theorem 2.10),

hiAB (x)= hiXY (x) for every x ∈A; (3.6)
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(ii) in the case min{|A|,|B|} = 2, there exists a homeomorphism hiAB (x) :A→ B such

that (3.6) is also true.

Thus

hiXY (A)⊂ B, hiAB = hiXY :A �→ B, (3.7)

and so hiXY is a k-homeomorphism of (X,A) onto (Y ,B).
If, additionally, X and Y are k-spaces, then hiXY and hiAB are homeomorphisms, and

so hiXY is a homeomorphism of (X,A) onto (Y ,B).

Proof. First, let min{|A|,|B|} ≥ 3.

Let x ∈A. Then, by Theorem 2.10, hiXY and hiAB are k-homeomorphisms and

hiAB (x)= J�(B)
(
iAB
(
K�(A)(x)

)) (
by (3.2)

)

=J�(B)
(
iAB
(
resXA

(
K�(X)(x)

)\{ idA
}))

(
by (3.5) and since iAB is a poset isomorphism

)

= J�(B)
(
resYB

(
iXY

(
K�(X)(x)

))\{ idB
})

(
by (2.2) and since iXY is a poset isomorphism

)

=J�(B)
(
resYB

(
K�(Y)

(
J�(Y)

(
iXY

(
K�(X)(x)

))))\{ idB
})

(
by the definition of hiXY

)

=J�(B)
(
resYB

(
K�(Y)

(
hiXY (x)

))\{ idB
}) (

by (3.2)
)

=J�(B)
(
K�(B)

(
hiXY (x)

)) (
by (2.1)

)

=hiXY (x).

(3.8)

Now, let |A| = 2. Since iAB is a poset isomorphism, |�(B)| = |�(A)| = 2 and so |B| = 2.

There is a unique dual point λ ∈ �(X) such that λ−1({tλ}) = A. Let A = {x1,x2}.
Evidently, K�(X)(x1)∩K�(X)(x2)= {λ}. Then, by (2.2),

K�(Y)
(
hiXY

(
xi
))=K�(Y)

(
J�(Y)

(
iXY

(
K�(X)

(
xi
))))

= iXY
(
K�(X)

(
xi
))

for i= 1,2.
(3.9)

Hence

iXY
({λ})= iXY

(
K�(X)

(
x1
)∩K�(X)

(
x2
))

= iXY
(
K�(X)

(
x1
))∩iXY

(
K�(X)

(
x2
))

=K�(Y)
(
hiXY

(
x1
))∩K�(Y)

(
hiXY

(
x2
))
.

(3.10)

Thus, for η = iXY (λ), η−1({tη}) = {hiXY (x1),hiXY (x1)} = hiXY (A). But, by (3.5), ξ =
resYB(η)= resYB(iXY (λ))= iAB(resXA(λ)). Since resXA(λ) is a dual point in �(A) and iAB
is a poset isomorphism, ξ is also a dual point in �(B). Thus, B = ξ−1({tξ})= η−1({tη})=
hiXY (A).

4. Extensions of Magill’s and Rayburn’s theorems to mappings

Definition 4.1. For mappings fj : Xj → Y of (Hausdorff) spaces Xj (with j = 1,2),

a (k-) homeomorphism h : X1 → X2 is called a (k-) homeomorphism of f1 onto f2
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if f1 = f2 ◦h. The mappings fj : Xj → Y (for j = 1,2) are (k-) homeomorphic if there

exists a (k-) homeomorphism of f1 onto f2.

It is not difficult to prove the following lemma.

Lemma 4.2. For mappings fj : Xj → Y (with j = 1,2) and for (k-) homeomorphism

h :X1 →X2 of spaces X1 and X2, the following conditions are equivalent:

(i) h is a homeomorphism of f1 onto f2;

(ii) h(f−1
1 ({y}))⊂ f−1

2 ({y}) for every y ∈ Y ;

(iii) there is a function hy : f−1
1 ({y}) → f−1

2 ({y}) such that hy = h : f−1
1 ({y}) →

f−1
2 ({y}) for every y ∈ Y .

Given a Tychonoff space X and a closed subset A of X, we may define a function

kresXA :K(X) �→K(A) (4.1)

such that

kresXA(cX)= clcX(A) for every cX ∈K(X). (4.2)

If eX,cX ∈ K(X) and cX < eX, then πecX(cleX(A)) = clcX(A), πecX(A) = A, and

(πecX :A→A)= idA.

Consequently, (eA = kresXA(eX)) > (cA = kresXA(cX)) and πecA = πecX : eA →
cA. Thus, kresXA is monotone and rπecA = rπecX : eA \A → cA \A, that is, rπecA =
reseX\X,eA\A(rπecX). It follows from this that (σeA ◦kresXA)(cX) = σeA(cA) = rπecA =
reseX\X,eA\A(rπecX)= reseX\X,eA\A(σeX(cX)).

We have then proven the following lemma.

Lemma 4.3. If eX ∈K(X) and eA= kresXA(eX), then

reseX\X,eA\A ◦σeX = σeA ◦kresXA |K(eX). (4.3)

Let f : X → Y be a mapping to a Tychonoff space Y and let βf+ : βX → βY be the

(usual) continuous extension of f over the Stone-Cěch compactifications βX, βfX =
(βf+)−1(Y), and βf = βf+ : βfX → Y . Evidently, the mapping βf is perfect. We note

that X is C∗-embedded in βfX because X ⊂ βfX ⊂ βX. Recall that f is called a WZ-

mapping [6] (resp., a Z-mapping) if (βf)−1({y}) = clβf X(f−1({y})) for every y ∈
Y (resp., if f(Z) is closed for any zero-set Z in X). It is clear that (βf)−1({y}) =
β(f−1({y})) if the space X is normal and f is a WZ-mapping. It is known [6] that

every Z-mapping is a WZ-mapping.

Theorem 4.4. Let Xj be a Tychonoff space, let Y be a compact Hausdorff space,

let fj : Xj → Y be a WZ-mapping, let eXj be a Hausdorff compactification of Xj , and

let efj : eXj → Y be a continuous extension of fj (thus, efj is a compactification of fj )
for j = 1,2. Let also Xjy = f−1

j ({y}), eXjy = cleXj (Xjy) (i.e., eXjy = kresXjXjy (eXj))
for j = 1,2, and suppose that there exist poset isomorphisms i : K(eX1) → K(eX2) and

iy :K(eX1y)→K(eX2y) such that

iy ◦kresX1X1y = kresX2X2y ◦i for every y ∈ Y . (4.4)
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Then the remainders efj \fj def= efj : eXj \Xj → Y of efj for j = 1,2 are k-homeomorphic

(more exactly, if min{|eX1\X1|,|eX2\X2|} ≥ 3, then the function hσeX2◦i◦σ−1
eX1

: eX1\X1 →
eX2 \X2 is a k-homeomorphism of ef1 \f1 onto ef2 \f2). If, additionally, X1 and X2 are

k-absolute spaces, then the remainders ef1 \f1 and ef2 \f2 are homeomorphic.

Proof. Fix y ∈ Y . Let Rej = eXj \Xj and Rejy = eXjy \Xjy for j = 1,2.

By Lemmas 2.11 and 2.12, the mappings σeXj : K(eXj)→ (�j def= σeXj (K(eXj))) and

σeXjy :K(eXjy)→ (�jy def= σeXjy (K(eXjy))) are poset isomorphisms and ��(Rej)⊂ �j ,

��(Rejy)⊂ �jy for j = 1,2.

Hence, i12 = σeX2 ◦i◦σ−1
eX1

: �1 → �2 and i12y = σeX2y ◦iy ◦σ−1
eX1y : �1y → �2y are poset

isomorphisms too.

We consider the following diagram:

K
(
eX1

) i

kresX1X1y

K
(
eX2

)

σeX2

kresX2X2y

�1

σ−1
eX1

i12

resRe1Re1y

�2

resRe2Re2y

�1y
i12y

σ−1
eX1y

�2y

K
(
eX1y

)

iy
K
(
eX2y

)
.

σeX2y

(4.5)

By (4.4), the external part of it is commutative. We prove that its internal part is

commutative too, that is, that

resRe2Re2y ◦i12 = i12y ◦resRe1Re1y . (4.6)

By (4.3), for j = 1,2, we have (see the diagram)

resRejRejy ◦σeXj = σeXjy ◦kresXjXjy |K(eXj). (4.7)

Thus, since σeXj , σeXjy are isomorphisms,

kresXjXjy |K(eXj) ◦σ−1
eXj = σ−1

eXjy ◦resRejRejy ,

resRejRejy
(
�j
)⊂ �jy .

(4.8)
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Hence,

resRe2Re2y ◦i12 = resRe2Re2y ◦σeX2 ◦i◦σ−1
eX1

= σeX2y ◦kresX2X2y ◦i◦σ−1
eX1

= σeX2y ◦iy ◦kresX1X1y ◦σ−1
eX1

= σeX2y ◦iy ◦σ−1
eX1y ◦resRe1Re1y

= i12y ◦resRe1Re1y .

(4.9)

By Theorem 3.4, in the case min{|Re1|,|Re2|,|Re1y |,|Re2y |} ≥ 3, the homeomorphisms

hi12 : Re1 → Re2 and hi12y : Re1y → Re2y are such that

hi12y = hi12 : Re1y �→ Re2y, (4.10)

and in the case min{|Re1|,|Re2|} ≥ 3, min{|Re1y |,|Re2y |} ≥ 2, there exists a homeomor-

phism hi12y : Re1y → Re2y such that (4.10) is also true.

Finally, in the case min{|Re1|,|Re2|} ≥ 3, min{|Re1y |,|Re2y |} ≤ 1, the existence of a

homeomorphism hi12y : Re1y → Re2y such that (4.10) holds is evident.

Thus, in the case min{|Re1|,|Re2|} ≥ 3, (4.10) holds for every y ∈ Y .

In the case min{|Re1|,|Re2|} ≤ 2, the existence of homeomorphisms hi12 : Re1 → Re2
and hi12y : Re1y → Re2y such that (4.10) holds is evident.

Since fj is a WZ-mapping, Rejy = (efj)−1({y})\fj−1({y}) for j = 1,2, and so

hi12y = hi12 :
(
ef1

)−1({y})\f1
−1({y}) �→ (ef2

)−1({y})\f2
−1({y}) for every y ∈ Y .

(4.11)

By Lemma 4.2, hi12 is a k-homeomorphism of ef1 \f1 onto ef2 \f2.

Corollary 4.5 [2]. LetX1,X2 be Tychonoff spaces and let eX1, eX2 be their Hausdorff

compactifications. If K(eX1) andK(eX2) are poset isomorphic, then the remainders eX1\
X1 and eX2 \X2 are k-homeomorphic, and they are homeomorphic if, additionally, X1,

X2 are k-absolute spaces.

Proof. It is sufficient to apply Theorem 4.4 to (the simplest) mappings fj of Xj to

the single point space Y for j = 1,2.

In particular, in Corollary 4.5, for eXj = βXj (j = 1,2), we have Rayburn’s Theorem

1.3. Thus, Theorem 4.4 is a generalization of this theorem to mappings.

Theorem 4.6. Let Xj be a locally compact Tychonoff space, let Y be a compact

Hausdorff space, let fj : Xj → Y be a WZ-mapping, let eXj be a Hausdorff compactifi-

cation of Xj , and let efj : eXj → Y be a continuous extension of fj for j = 1,2. Let also

Xjy = f−1
j ({y}), eXjy = cleXj (Xjy) (i.e., eXjy = kresXjXjy (eXj)) (for j = 1,2). Then the

remainders efj \fj = efj : eXj \Xj → Y of efj for j = 1,2 are homeomorphic if and only



MAGILL-TYPE THEOREMS FOR MAPPINGS 1387

if there exist poset isomorphisms i :K(eX1)→K(eX2) and iy :K(eX1y)→K(eX2y) such

that (4.4) holds.

Proof. One half of the theorem follows from Theorem 4.4.

Let Rej = eXj \ Xj and Rejy = eXjy \ Xjy for all y ∈ Y and j = 1,2. Now, sup-

pose that the remainders ef1 \ f1 and ef2 \ f2 are homeomorphic. Then there exists

a homeomorphism h : Re2 → Re1 such that ef2 \f2 = (ef1 \f1)◦h. Hence, the mappings

hy = h : Re2y → Re1y are homeomorphisms for all y ∈ Y . Since fj is a WZ-mapping,

(efj)−1({y}) is a compactification of f−1
j ({y}), and so eXjy = (efj)−1({y}) for all

y ∈ Y and j = 1,2. Evidently, i12 : �(Re1)→�(Re2) and i12y : �(Re1y)→�(Re2y), such

that i12(λ)= λ◦h for λ∈�(X1) and i12y(λ)= λ◦hy for λ∈�(X1y) and all y ∈ Y , are

poset isomorphisms.

We prove that (4.4) holds for all y ∈ Y .

Indeed, for every λ∈�(Re1) and y ∈ Y , we have

i12y ◦resRe1Re1y (λ)= i12y
(
λ|Re1y

)= λ|Re1y ◦hy
= (λ◦h)|Re2y =

(
i12(λ)

)|Re2y
= resRe2Re2y ◦i12(λ).

(4.12)

By Lemmas 2.11 and 2.13, σeXj : K(eXj)→ �(Rej) and σeXjy : K(eXjy)→ �(Rejy), for

j = 1,2 and y ∈ Y , are poset isomorphisms. Hence, i= σ−1
eX2
◦i12◦σeX1 and iy = σ−1

eX2y ◦
i12y ◦σeX1y are poset isomorphisms for y ∈ Y and j = 1,2.

We consider the diagram obtained from the previous one by replacing �j and �jy
by �(Rej) and �(Rejy) for j = 1,2 and σ−1

eX1
, σ−1

eX1y , σeX2 , σeX2y by σeX1 , σeX1y , σ−1
eX2

,

σ−1
eX2y , respectively. By (4.12), its internal part is commutative. As above, in the proof of

Theorem 4.4, we can prove that its external part is commutative too, that is, that (4.4)

holds.

Corollary 4.7 [2]. Let X1, X2 be locally compact Tychonoff spaces and let eX1, eX2

be Hausdorff compactifications of X1 and X2, respectively. Then the remainders eX1\X1

and eX2 \X2 are homeomorphic if and only if K(eX1) and K(eX2) are poset isomorphic.

Proof. It is sufficient to apply Theorem 4.6 to the simplest mappings fj of Xj and

efj of eXj to the single point space Y for j = 1,2.

In particular, when in Corollary 4.7, eXj = βXj for j = 1,2, we have Magill’s theorem

from [8]. Thus, Theorem 4.6 is a generalization of this theorem to mappings.

5. Reformulations of results obtained above and some examples. Some readers

may find that Theorems 4.4 and 4.6 do not sound very natural. The reformulations, in

the framework of FGT, sound better to us.

We will start with some definitions and results of FGT.

A mapping is called compact if it is perfect.

The following is evident.
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Lemma 5.1. For a compact Hausdorff space Y , a mapping f :X → Y is compact if and

only if X is compact.

Definition 5.2. A mapping f :X → Y is said to be T0 [11] if for every x,x′ ∈X such

that x = x′ and f(x) = f(x′), there exists a neighbourhood of x in X which does not

contain x′ or a neighbourhood of x′ in X not containing x.

Definition 5.3. A mapping f : X → Y is said to be completely regular [11] if for

every closed set F of X and x ∈X \F , there exist a neighbourhood O of f(x) in Y and a

continuous function ϕ : f−1(O)→ [0,1] such that ϕ(x)= 0 and ϕ(F∩f−1(O))⊆ {1}.
A completely regular T0-mapping is called Tychonoff (or T3(1/2)).

It is not difficult to prove the following lemma.

Lemma 5.4 [11]. For a Tychonoff space Y , a mapping f : X → Y is Tychonoff if and

only if X is Tychonoff.

Definition 5.5. A compact Tychonoff mapping ef : efX → Y is called a Tychonoff

compactification of a Tychonoff mapping f : X → Y if X ⊂ efX, X is dense in efX, and

efX|X = f (more precisely, if some embedding e :X → efX is fixed so that e(X) is dense

in efX and f = ef ◦e, but usually, X and e(X) are identified by means of e).

Throughout the rest of the paper, we fix a space Y and we will consider only Tychonoff

mappings to Y and their Tychonoff compactifications.

Definition 5.6. A mapping λ : dfX → cfX between two compactifications cf :

cfX → Y and df : dfX → Y is called canonical if df = cf ◦λ and λ|X = idX . In this

case, one says that we have a canonical morphism λ : df → cf (and we write that

df > cf ).

It is not difficult to prove that df and cf are homeomorphic if and only if df > cf
and cf > df (see, e.g., [1]).

It is proved in [11] (see also [1]) that all compactifications of a mapping to Y form

a set up to canonical homeomorphisms. This set will be denoted by TK(f). Evidently,

with respect to the just defined relation >, TK(f) is a poset.

In [11], it is also proved that there exists the maximal element βf : βfX → Y in TK(f)
and that, if Y is Tychonoff, βf may be obtained in the following way.

By Lemma 5.4, X is Tychonoff. Hence, there exists the unique continuous extension

βf+ : βX → βY of f . Then βfX = (βf+)−1(Y) and βf = βf+ : βfX → Y .

For a compactification ef : efX → Y of a mapping f : X → Y , the mapping ef \f =
ef : efX \X → Y is called the remainder of ef .

A mapping f :X → Y is called locally compact [7] if for any point x ∈X, there exists

a neighbourhood O of x in X such that f |clX(O) : clX(O)→ Y is compact.

It is not difficult to prove that

(i) for a locally compact Tychonoff space Y , a mapping f :X → Y is locally compact

if and only if X is locally compact;



MAGILL-TYPE THEOREMS FOR MAPPINGS 1389

(ii) a mapping f : X → Y is locally compact if and only if X is open in βfX or,

equivalently, if X is open in efX for any compactification ef : efX → Y of f .

Now, Theorem 4.4 can be reformulated in the following way.

Theorem 5.7. Let Y be a compact Hausdorff space and efj : efjXj → Y a Tychonoff

compactification of a locally compact Tychonoff WZ-mapping fj : Xj → Y (for j = 1,2).

Let alsoXjy = f−1
j ({y}), eXjy = cleXj (Xjy) for j = 1,2. Then the remainders ef1\f1 and

ef2 \f2 are homeomorphic if and only if there exist poset isomorphisms i : K(ef1X1)→
K(ef2X2) and iy :K(eX1y)→K(eX2y) such that (4.4) holds.

Theorem 3.4 may be reformulated analogously. But, even in the style of Theorem 5.7,

the formulation of Theorem 4.4 (and Theorem 3.4) seems too complicated, but this

complexity may not be avoided. In order to explain why, for any fixed space Y , consider

the category TopY , where

Ob
(
TopY

)= {f ∈ C(X,Y) : X ∈Ob
(
Top

)}
(5.1)

is the class of the objects and, for every pair f :X → Y , g : Z → Y of objects,

M(f ,g)= {λ∈ C(X,Z) : g◦λ= f} (5.2)

is the class of the morphisms from f to g, whose generic representation is denoted in

short by λ : f → g.

So, the question is: may the passage from the category Top to the category TopY
allow us to give simpler variants of Theorems 4.4 and 4.6 which can generalize Magill’s

and Rayburn’s theorems?

In this connection, we will give two examples which demonstrate that in the frame-

work of TopY , such generalizations are impossible.

Example 5.8. Let Y = [0,2], X1 = X2 =N, and fj : Xj → Y be such that fj(Xj)= {j}
for j = 1,2. Then βfjXj = βN, βfj(βfjXj) = {j}, βfj \fj = βfj : βfjXj \Xj → Y , and

so βfj \ fj = βfj : βN \N → Y , with (βfj \ fj)(βN \N) = {j} for j = 1,2. Thus, the

remainders βf1 \f1 and βf2 \f2 are not homeomorphic, but TK(f1) and TK(f2) are

poset isomorphic because they, in fact, coincide with K(N).

This example shows that an extension of Magill’s Theorem to the category TopY must

take into consideration fibres of objects of TopY .

Example 5.9. Let I = {(x,0) ∈ R2 : 0 ≤ x ≤ 1}, L = {(0,y) ∈ R2 : −1 ≤ y ≤ 1}, J =
{(x,1)∈R2 : 0≤ x ≤ 1}, Y = I, S1 = I∪L, and S2 = J∪L. Let j = 1,2. Put prj(x,y)= x
for any (x,y) ∈ Sj . Let ω1 be the space of all finite and countable ordinal numbers.

Then βω1 =ω1+1. Put Xj = Sj×ω1 and let πj be the projection of the product Xj onto

its factor Sj . Take fj = prj ◦πj . Evidently, fj is either closed or open and all its fibres

are countable compact. Then βXj = Sj × (ω1+1) and Rj = βXj \Xj is homeomorphic

to Sj . Let pj be the projection of the product βXj onto its factor Sj . Then βfj = prj ◦pj
and βfj \fj = βfj : Rj → Y is homeomorphic to prj .

Thus, the remainders βf1 \f1 and βf2 \f2 are not homeomorphic.
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For any t = (x,0) ∈ Y , (βfj)−1({t}) = β(f−1
j ({t})), and, for any t = (x,0) ∈ Y with

x > 0, the remainders Rjt = (βfj)−1({t})\fj−1({t}) = β(fj−1({t}))\fj−1({t}) are sin-

gle points. Hence, K(fj−1({t})) consists of only one element for t = (x,0) ∈ Y with

x > 0. For t = (0,0), the remainder Rjt is homeomorphic to L. Evidently, TK(fj) and

K(f−1
j ({(0,0)})) are poset isomorphic to �(L).

Now, it is evident that there exist poset isomorphisms i : TK(f1) → TK(f2), it :

K(f1
−1({t})) → K(f2

−1({t})) for t ∈ Y and monotone functions mtj : TK(fj) →
K(fj−1({t})) for t ∈ Y and j = 1,2 such that

(i) for any cfj : cfjXj → Y with cfj ∈ TK(fj), mtj(cfj) = (cfj)−1({t}), that is,

mtj(cfj) is the closure of f−1
j ({t}) in cfjXj ;

(ii) mt2 ◦i= it ◦mt1 for every t ∈ Y .

Example 5.9 shows that the use of the posets K(eX1) and K(eX2) (in particular K(X1)
and K(X2)) instead of TK(f1) and TK(f2) is justified.

Remark 5.10. Let f : X → Y be a mapping between Tychonoff spaces M(f) =
{y ∈ Y : f is not closed at y or f−1({y}) is not compact} and M1(f ) = {y ∈ Y :

|(βf)−1({y}) \ f−1({y})| = 1}. Evidently, M1(f ) ⊂ M(f) and βf(βfX \X) = M(f).
The following proposition is proved in [5].

Proposition 5.11. Let f : X → Y and g : Z → T be locally compact mappings be-

tween Tychonoff spaces and |M1(f )| = |M1(g)| = 1 . Then there exists a one-to-one cor-

respondence Ψ : M(f) → M(g) such that (βf \f)−1({y}) and (βg \g)−1({Ψ(y)}) are

homeomorphic for any y ∈ Y . If, additionally, M(f) and M(g) are discrete, then βf \f
and βg \g are homeomorphic in the sense of [5], that is, there exist homeomorphisms

ϕ : βfX \X → βgZ \Z and ψ :M(f)→M(g) such that ψ◦(βf \f) = (βg \g)◦ϕ if and

only if TK(f) and TK(g) are poset isomorphic.
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