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SPECTRAL PROPERTIES OF THE KLEIN-GORDON s-WAVE
EQUATION WITH SPECTRAL PARAMETER-DEPENDENT
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We investigate the spectrum of the differential operator Lλ defined by the Klein-Gordon
s-wave equation y′′ +(λ−q(x))2y = 0, x ∈R+ = [0,∞), subject to the spectral parameter-
dependent boundary condition y′(0)−(aλ+b)y(0)= 0 in the space L2(R+), where a≠±i,
b are complex constants, q is a complex-valued function. Discussing the spectrum, we prove
that Lλ has a finite number of eigenvalues and spectral singularities with finite multiplicities
if the conditions limx→∞q(x) = 0, supx∈R+{exp(ε

√
x)|q′(x)|} <∞, ε > 0, hold. Finally we

show the properties of the principal functions corresponding to the spectral singularities.

2000 Mathematics Subject Classification: 47A10, 47E05, 34B05.

1. Introduction. Let L denote the operator generated in L2(R+) by differential ex-

pression

l(y)=−y ′′ +q(x)y, x ∈R+, (1.1)

and the boundary condition y ′(0)−hy(0) = 0; here q is a complex-valued function,

and h∈ C. The spectral analysis of Lwas first investigated by Năımark [6]. In this paper,

he has proved that some of the poles of the resolvent’s kernel of L are not the eigen-

values of the operator. Moreover, he has proved that these poles are on the continuous

spectrum. (Schwartz named these poles as spectral singularities [11].) Furthermore,

Năımark has shown that if the condition∫∞
0
eεx

∣∣q(x)∣∣dx <∞, ε > 0, (1.2)

holds, then L has a finite number of eigenvalues and spectral singularities with finite

multiplicities.

The effect of spectral singularities in the spectral expansion of the operator L in

terms of principal functions has been investigated in [4, 5]. The dependence of the

structure of spectral singularities of L on the behavior of q at infinity has been studied

in [9]. In [10], some problems of spectral theory of the operator L with real potential

and complex boundary condition were studied under the condition on the potential

sup
x∈R+

{
exp

(
ε
√
x
)∣∣q(x)∣∣}<∞, ε > 0, (1.3)

which is weaker than that considered in [6].
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We consider the operator Lλ generated in L2(R+) by the Klein-Gordon s-wave equa-

tion for a particle of zero mass with static potential

y ′′ +(λ−q(x))2y = 0, x ∈R+, (1.4)

and the spectral parameter-dependent boundary condition

y ′(0)−(aλ+b)y(0)= 0, (1.5)

where a,b ∈ C, a≠±i, a≠ 0, q is a complex-valued function and is absolutely contin-

uous on each finite subinterval of R+.

Some problems of the spectral theory of the Klein-Gordon equation have been in-

vestigated in [2, 3] with real potential, and in [1] with complex potential subject to the

boundary condition y(0)= 0.

In this paper, using the similar technique used in [1, 12], we discuss the spectrum

of Lλ and prove that this operator has a finite number of eigenvalues and spectral

singularities with finite multiplicities if the conditions

lim
x→∞q(x)= 0, sup

x∈R+

{
exp

(
ε
√
x
)∣∣q′(x)∣∣}<∞, ε > 0, (1.6)

hold. Therefore we find the principal functions corresponding to the eigenvalues and

the spectral singularities of Lλ. In the rest of the paper, we use the following notations:

C+ = {λ : λ∈ C, Imλ > 0}, C− = {λ : λ∈ C, Imλ < 0},
C+ = {λ : λ∈ C, Imλ≥ 0}, C− = {λ : λ∈ C, Imλ≤ 0},

R∗ =R\{0}.
(1.7)

2. Preliminaries. We suppose that the functions q and q′ satisfy

∫∞
0
x
{∣∣q(x)∣∣+∣∣q′(x)∣∣}dx <∞. (2.1)

Obviously we have from (2.1) that limx→∞q(x)= 0, x|q(x)| is bounded and

∫∞
0
x
∣∣q(x)∣∣2dx <∞ (2.2)

(see [1]). Under condition (2.1), equation (1.4) has the following solutions:

f+(x,λ)= ei(α(x)+λx)+
∫∞
x
K+(x,t)eiλtdt (2.3)

for λ∈ C+, and

f−(x,λ)= e−i(α(x)+λx)+
∫∞
x
K−(x,t)e−iλtdt (2.4)
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for λ ∈ C−, where α(x) = ∫∞
x q(t)dt and K±(x,t) are solutions of integral equations

of Volterra type and are continuously differentiable with respect to their arguments.

Moreover, |K±(x,t)|, |K±x (x,t)|, |K±t (x,t)| satisfy the following inequalities:

∣∣K±(x,t)∣∣≤ cω(x+t
2

)
exp

{
γ(x)

}
,

∣∣K±x (x,t)∣∣,∣∣K±t (x,t)∣∣≤ c{ω2
(
x+t

2

)
+θ

(
x+t

2

)}
,

(2.5)

where

ω(x)=
∫∞
x

{∣∣q(t)∣∣2+∣∣q′(t)∣∣}dt, γ(x)=
∫∞
x

{
t
∣∣q(t)∣∣2+2

∣∣q(t)∣∣}dt,
θ(x)= 1

4

{
2
∣∣q(x)∣∣2+∣∣q′(x)∣∣}, (2.6)

and c > 0 is a constant [3]. Therefore f+(x,λ) and f−(x,λ) are analytic with respect

to λ in C+ and C−, respectively, and continuous in λ up to the real axis. f±(x,λ) also

satisfy the following asymptotic equalities:

f±(x,λ)= e±iλx[1+o(1)], λ∈C±, x �→∞,
f±x (x,λ)= e±iλx

[±iλ+o(1)], λ∈ C±, x �→∞.
(2.7)

Moreover, from (2.3) and (2.4), we have

f±(x,λ)= e±i(α(x)+λx)+o(1), λ∈ C±, |λ| �→∞. (2.8)

From (2.7), the Wronskian of the solutions of f+(x,λ) and f−(x,λ) is

W
{
f+(x,λ),f−(x,λ)

}= lim
x→∞W

{
f+(x,λ),f−(x,λ)

}=−2iλ (2.9)

for λ∈R. Hence f+(x,λ) and f−(x,λ) are the fundamental solutions of (1.4) for λ∈R∗.

Let ϕ(x,λ) denote the solution of (1.4) satisfying the initial conditions

ϕ(0,λ)= 1, ϕ′(0,λ)= aλ+b, (2.10)

which is an entire function of λ.

3. Eigenvalues and spectral singularities. Letψ±(x,λ) denote the solutions of (1.4)

satisfying the following conditions:

lim
x→∞e

±iλxψ±(x,λ)= 1, lim
x→∞e

±iλxψ±x(x,λ)=∓iλ, λ∈ C±. (3.1)

So

W
{
f±(x,λ),ψ±(x,λ)

}=∓2iλ, λ∈ C± (3.2)
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(see [3]). We obtain from (2.9) and (3.2) that if

g±(λ)= f±x (0,λ)−(aλ+b)f±(0,λ),
g̃±(λ)=ψ±x(0,λ)−(aλ+b)ψ±(0,λ),

(3.3)

then we can write the solutionϕ(x,λ) of the boundary value problem (1.4) and (1.5) as

follows:

ϕ±(x,λ)= g
±(λ)
2iλ

ψ±(x,λ)− g̃
±(x,λ)
2iλ

f±(x,λ), λ∈ C±, (3.4)

ϕ(x,λ)= g
+(λ)
2iλ

f−(x,λ)− g
−(λ)
2iλ

f+(x,λ), λ∈R∗. (3.5)

Let

R(x,t;λ)=
R+(x,t;λ), λ∈ C+,R−(x,t;λ), λ∈ C−,

(3.6)

be Green’s function of Lλ. Then, using classical methods, we easily obtain the kernel of

the resolvent as follows [6]:

R±(x,t;λ)= 1
g±(λ)

f±(x,λ)ϕ(t,λ), 0≤ t < x,
f±(t,λ)ϕ(x,λ), x ≤ t <∞. (3.7)

Now we denote the eigenvalues and the spectral singularities of Lλ by σd(Lλ) and

σss(Lλ), respectively. From (2.8), (3.1), (3.4), (3.5), and (3.7), we obtain that

σd
(
Lλ
)= {λ : λ∈ C+, g+(λ)= 0

}∪{λ : λ∈ C−, g−(λ)= 0
}
, (3.8)

σss
(
Lλ
)= {λ : λ∈R∗, g+(λ)= 0

}∪{λ : λ∈R∗, g−(λ)= 0
}
, (3.9){

λ : λ∈R∗, g+(λ)= 0
}∩{λ : λ∈R∗, g−(λ)= 0

}=φ. (3.10)

Definition 3.1. The multiplicity of a zero of g± in C± is defined as the multiplicity

of the corresponding member of the spectrum.

It is clear from (3.8) and (3.9) that, in order to investigate the quantitative properties

of the members of the spectrum of Lλ, we must investigate the zeros of g+(λ) in C+
and g−(λ) in C−. We will consider the zeros of g+(λ) in C+. The zeros of g−(λ) in C−
will be similar then.

We define the following sets:

N+1 =
{
λ : λ∈ C+, g+(λ)= 0

}
, N+2 =

{
λ : λ∈R, g+(λ)= 0

}
. (3.11)

Lemma 3.2. Under condition (2.1),

(a) the set N+1 is bounded and has at most a countable number of elements, and its

limit points can lie only in a bounded subinterval of the real axis,

(b) the set N+2 is compact.
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Proof. From (2.3) we get that g+ is analytic in C+, continuous in C+, and it has the

form

g+(λ)= (i−a)λeiα(0)−(iq(0)+b)eiα(0)+(ai−1)K+(0,0)+
∫∞

0
A+(t)eiλtdt, (3.12)

where

A+(t)=K+x (0, t)−aiK+t (0, t)−bK+(0, t). (3.13)

It is clear from (2.5) and (3.12) that A+ ∈ L1(R+) and

g+(λ)= (i−a)λeiα(0)+O(1), λ∈ C+, |λ| �→∞. (3.14)

Hence the proof is obtained from (3.14) by the assumption i≠ a.

Now we suppose that the following conditions hold:

lim
x→∞q(x)= 0,

∣∣q′(x)∣∣≤ c exp(−εx), c > 0, ε > 0. (3.15)

We then have

∣∣q(x)∣∣≤ c exp(−εx). (3.16)

Using (2.5) and (2.6) we find

∣∣K+(x,t)∣∣,∣∣K+x (x,t)∣∣,∣∣K+t (x,t)∣∣≤ c exp
{−ε

2
(x+t)

}
. (3.17)

From (3.17) we get that the functions f+x (0,λ) and f+(0,λ) can be continued analytically

from C+ into the half-plane Imλ > −ε/2. Hence g+(λ) can be continued analytically

fromC+ into the half-plane Imλ >−ε/2. Therefore the setsN+1 andN+2 cannot have limit

points on the real axis. From Lemma 3.2, we find that N+1 and N+2 have a finite number

of points. Moreover, multiplicities of the zeros of g+(λ) in C+ are finite. (Similarly, we

can prove the finiteness of the zeros, and their multiplicities, of g−(λ) in C−.)

From (3.8) and (3.9), we get the following theorem.

Theorem 3.3. Under conditions (3.15), the operator Lλ has a finite number of eigen-

values and spectral singularities with finite multiplicities.

Now we suppose that the following conditions hold:

lim
x→∞q(x)= 0, sup

x∈R+

{
eε
√
x∣∣q′(x)∣∣}<∞, ε > 0. (3.18)

Obviously (3.18) is weaker than (3.15) which was considered in [10] for Sturm-Liouville

case with real potential. Using (3.18), (2.6), and (2.5), we obtain

∣∣K+(x,t)∣∣,∣∣K+x (x,t)∣∣,∣∣K+t (x,t)∣∣≤ c exp

−ε2
√
x+t

2

. (3.19)
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Here c > 0 is a constant. (3.19) cannot let g+(λ) continue analytically into a domain

containing the real axis. So the technique of analytic continuation fails to apply here.

From (2.3), (2.5), condition (3.18) gives that the function g+ is analytic in C+, and all

of its derivatives are continuous in C+. So

∣∣g+(λ)−(i−a)λeα(0)∣∣<∞, λ∈ C+,∣∣∣∣ ddλg+(λ)
∣∣∣∣≤ |i−a|eiα(0)+∫∞

0
te−(ε/2)

√
tdt, λ∈ C+,∣∣∣∣ dndλn g+(λ)

∣∣∣∣≤ Bn, λ∈ C+, n= 2,3, . . . .

(3.20)

Here

Bn = 2n+1c
∫∞

0
tne−(ε/2)

√
tdt, n= 2,3, . . . , (3.21)

and c > 0 is a constant.

Let N+3 and N+4 denote the sets of limit points of N+1 and N+2 , respectively, and let N+5
denote the set of all zeros of g+ with infinite multiplicity in C+. Clearly,

N+3 ⊂N+2 , N+4 ⊂N+2 , N+5 ⊂N+2 . (3.22)

Since all the derivatives of g+(λ) are continuous on R, we then have

N+3 ⊂N+5 , N+4 ⊂N+5 . (3.23)

In order to show the finiteness of the zeros of g+(λ) and their multiplicities, we need

to prove that N+5 =φ. So we will use the following uniqueness theorem given by Pavlov.

Pavlov’s theorem. Assume that the function g is analytic inC+, all of its derivatives

are continuous on C+, and there exists T > 0 such that

∣∣g(n)(z)∣∣≤ Bn, n= 0,1, . . . , z ∈ C+, |z|< 2T ,∣∣∣∣∫ −T−∞ ln
∣∣g(x)∣∣
1+x2

dx
∣∣∣∣<∞, ∣∣∣∣∫∞

T

ln
∣∣g(x)∣∣
1+x2

dx
∣∣∣∣<∞. (3.24)

If the set Q, with linear Lebesgue measure zero, is the set of all zeros of the function g
with infinite multiplicity and if

∫ h
0

lnE(s)dµ
(
Qs
)=−∞, (3.25)

where E(s) = infn(Ansn/n!), n = 0,1, . . . , µ(Qs) is the linear Lebesgue measure of

s-neighborhood of Q, and h is an arbitrary positive constant, then g(z)≡ 0 [9].

Therefore we have the following lemma.

Lemma 3.4. N+5 =φ.



SPECTRAL PROPERTIES OF THE KLEIN-GORDON s-WAVE EQUATION . . . 1443

Proof. From Lemma 3.2, (3.20), and (3.21), g+ satisfies (3.24). Since g+´�≡0, then by

Pavlov’s theorem, N+5 satisfies

∫ h
0

lnE(s)dµ
(
N+5,s

)
>−∞. (3.26)

Here

E(s)= inf
n

Bnsn

n!
, (3.27)

and µ(N+5,s) is the linear Lebesgue measure of s-neighborhood of N+5 , and the constant

Bn is defined by (3.21).

Considering (3.21), we obtain the following estimates for Bn:

∣∣Bn∣∣≤Ddnnnn!. (3.28)

Here D and d are constants depending on c and ε. From E(s) and (3.28), we find

E(s)≤D inf
n

{
dnsnnn

}≤Dexp
{−d−1e−1s−1}, (3.29)

or by (3.26), we obtain

∫ h
0

dµ
(
N+5,s

)
s

<∞. (3.30)

Inequality (3.30) holds for an arbitrary s if and only if µ(N+5,s) = 0 or N+5 = φ, which

proves the lemma.

Theorem 3.5. Under conditions (3.18), the operator Lλ has a finite number of eigen-

values and spectral singularities with finite multiplicities.

Proof. From Lemma 3.4 and (3.23), we getN+3 =N+4 =φ. Hence the setsN+1 andN+2
have no limit points. So g+ has only a finite number of zeros in C+. From Lemma 3.4,

the multiplicities of these zeros are finite. (Similarly, we can show that g− has a finite

number of zeros with finite multiplicities in C−.) The proof follows from (3.8) and (3.9).

4. Principal functions. Suppose that (3.18) holds. Let λ+1 , . . . ,λ+p and λ−1 , . . . ,λ
−
k denote

the zeros of the functions g+ in C+ and g− in C−, with multiplicities m+
1 , . . . ,m+

p and

m−
1 , . . . ,m

−
k , respectively. Moreover, let λ1, . . . ,λl and λl+1, . . . ,λr be the zeros of g+ and

g− in R∗ with multiplicities n1, . . . ,nl and nl+1, . . . ,nr , respectively. From (3.4) we get

that

ϕ+(x,λ+i ),{ ∂∂λϕ+(x,λ)
}
λ=λ+i

, . . . ,
{
∂m

+
i −1

∂λm
+
i −1
ϕ+(x,λ)

}
λ=λ+i

,

ϕ−(x,λ−i ),{ ∂∂λϕ−(x,λ)
}
λ=λ−i

, . . . ,
{
∂m

−
i −1

∂λm
−
i −1
ϕ−(x,λ)

}
λ=λ−i

(4.1)
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are the principal functions corresponding to the eigenvalues

λ= λ+i , i= 1,2, . . . ,p, λ= λ−i , i= 1,2, . . . ,k of Lλ, (4.2)

respectively. Similarly, from (3.5),

ϕ
(
x,λi

)
,
{
∂
∂λ
ϕ(x,λ)

}
λ=λi

, . . . ,
{
∂ni−1

∂λni−1
ϕ(x,λ)

}
λ=λi

, (4.3)

i= 1, . . . , l, l+1, . . . ,r are the principal functions corresponding to the spectral singular-

ities of Lλ.
Obviously we find from (2.3), (3.4), and (3.8) that the principal functions correspond-

ing to the eigenvalues of Lλ are in L2(R+).
Now we recall the Hilbert spaces

H+ =
{
f :
∫∞

0
(1+x)2n0

∣∣f(x)∣∣2dx <∞
}
,

H− =
{
g :
∫∞

0
(1+x)−2n0

∣∣g(x)∣∣2dx <∞
} (4.4)

with norms

‖f‖2
+ =

∫∞
0
(1+x)2n0

∣∣f(x)∣∣2dx, ‖g‖2
− =

∫∞
0
(1+x)−2n0

∣∣g(x)∣∣2dx, (4.5)

respectively, where n0 =max{n1, . . . ,nl,nl+1, . . . ,nr}+1. Obviously,

H+ � L2(R+)�H− (4.6)

and H− ∼H′+ (which is the dual of H+) [7, 8].

Theorem 4.1. The principal functions for the spectral singularities do not belong to

the space L2(R+); these functions belong to the space H−, in general,

{
∂n

∂λn
ϕ(x,λ)

}
λ=λi

∉ L2(R+), n= 0,1, . . . ,ni−1, i= 1, . . . , l, l+1, . . . ,r ,{
∂n

∂λn
ϕ(x,λ)

}
λ=λi

∈H−, n= 0,1, . . . ,ni−1, i= 1, . . . , l, l+1, . . . ,r .
(4.7)

Proof. Let 0≤n≤ni−1 and i= 1, . . . , l. From (3.5), we obtain

{
∂n

∂λn
ϕ(x,λ)

}
λ=λi

=−
n∑
k=1

(
n
k

){
∂n−k

∂λn−k
g−(λ)

}
λ=λi

{
∂k

∂λk
f+(x,λ)

}
λ=λi

. (4.8)

From (2.3), (2.8), and (4.8), the proof is obtained. Similarly, we can prove the result for

0≤n≤ni−1 and i= l+1, . . . ,r .
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