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Fixed-point theory of one-dimensional maps of R does not completely address the issue of
nonhyperbolic fixed points. This note generalizes the existing tests to completely classify
all such fixed points. To do this, a family of operators are exhibited that are analogous
to generalizations of the Schwarzian derivative. In addition, a family of functions f are
exhibited such that the Maclaurin series of f(f(x)) and x are identical.
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1. Introduction. The study of dynamics of maps fromR toR is central to many fields

including discrete dynamical systems [1, 3, 5, 12], difference equations [4, 7, 9, 10], and

differential equations via Poincaré [11] and Lorenz maps [1, 5, 8]. It is well known that

a fixed point of such a map can be of three types. A stable fixed point attracts nearby

points towards it, under iteration. An unstable fixed point repels nearby points, whereas

a semistable fixed point attracts nearby points on one side (say, to the left), and repels

nearby points on the other side.

Until recently, the classification of fixed points has been incomplete. Specifically,

no test existed if f(x∗) = x∗, f ′(x∗) = 1, f ′′(x∗) = 0, and f ′′′(x∗) = 0. Also, no

test existed if f(x∗) = x∗, f ′(x∗) = −1, Sf(x∗) = 0, where Sf(x) is the Schwarzian

derivative, defined in this case as Sf(x)=−f ′′′(x∗)−1.5(f ′′(x∗))2. This situation was

recently remedied in [2], which demonstrated a sequence of tests that fill both gaps.

However, the tests for the second gap have certain inadequacies. This note restates and

improves on the solution for the second gap. This is summarized in Figure 1.1.

The gray area to the lower left is from [2], and the gray boxed area marked “NEW” is

from this note.

2. Summary of previously known results. Let f :R→R be a continuous map, and

x∗ such that f(x∗) = x∗. We say that x∗ is semistable from the left (resp., right) if,

given ε > 0, there is δ > 0 such that x∗ −δ < x < x∗ (resp., x∗ < x < x∗ +δ) implies

that |f(f(···(f (x))···))−x∗| < ε, for any positive number of iterations of f . If x∗

is semistable from both sides, we say that x∗ is stable, whereas if it is semistable from

neither side, we say that x∗ is unstable. In the sequel, when we say a fixed point is

semistable, we imply that it is not stable.

Theorem 2.1 [2]. Let f : R→ R be continuous with f(x∗) = x∗ and f ′(x∗) = 1. Let

k > 1 be minimal such that f (k)(x∗)=A≠ 0. Then x∗ is classified as follows.
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Figure 1.1. Classification of fixed points of a one-dimensional map.

(1) If k is even and A> 0, then x∗ is semistable from the left.

(2) If k is even and A< 0, then x∗ is semistable from the right.

(3) If k is odd and A> 0, then x∗ is unstable.

(4) If k is odd and A< 0, then x∗ is stable.

This classification of nonoscillatory nonhyperbolic fixed points (i.e., where f ′(x∗)=
1) was used in [2] to generate a test for oscillatory nonhyperbolic fixed points (where
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f ′(x∗) = −1), which satisfy Sf(x∗) = 0 and therefore were previously unclassified.

This test is due to the following classical theorem.

Theorem 2.2. Let f : R→ R be continuous with f(x∗) = x∗, and f ′(x∗) = −1. Set

g(x)= f(f(x)). Then x∗ is classified under f in the same way as under g.

Observe that for oscillatory nonhyperbolic fixed points,g(x∗)= f(f(x∗))= f(x∗)=
x∗, and that g′(x∗) = f ′(f (x∗))f ′(x∗) = f ′(x∗)f ′(x∗) = (−1)(−1) = 1. This allows

us to classify g (and, hence, f ) using Theorem 2.1. Furthermore, [2] contains the fol-

lowing result, proved using Taylor’s theorem.

Theorem 2.3 [2]. Let f : R → R be continuous with f(x∗) = x∗, and f ′(x∗) = −1.

Then x∗ is either stable or unstable; it cannot be semistable.

This method can be improved, as we will see in the sequel.

3. Another method. One of the drawbacks of the previous algorithm for the case

of a fixed point with f ′(x∗)=−1 is the need to pass to g(x). To study an nth degree

polynomial with coefficients bounded by N, we need to consider an n2-d degree poly-

nomial with coefficients bounded by NNn
( n
n/2
)∼ 2nNn+1/

√
n. A test using f(x) would

avoid this difficulty.

Example 3.1. Consider f(x)=−x+2x2−4x3. To classify the fixed point f(0)= 0,

we compute the derivatives of f : f ′(0) = −1, f ′′(0) = 4, f ′′′(0) = −24, and zero from

then on. We first find Sf(0) = −f ′′′(0)−1.5(f ′′(0))2 = 0. Unfortunately, this falls in

the gap of the classical theory. Therefore, to classify 0, the previous algorithm requires

us to pass to the substantially more complicated g(x) = f(f(x)) = −x+4x2−8x3+
64x5 − 192x6 + 384x7 − 384x8 + 256x9, to find that g(5)(0) = (64)(5!) = 7680 > 0,

making 0 an unstable fixed point.

An improvement to the algorithm is made possible by a formula published in the

mid-nineteenth century by Faà di Bruno. For a history of this result as well as some

biographical information, see [6].

Theorem 3.2 (Faà di Bruno).

dn

dxn
f
(
f(x)

)=∑ n!
a1!a2!···an!

f (a)
(
f(x)

)(f ′(x)
1!

)a1

···
(
f (n)(x)
n!

)an
(3.1)

for f ∈ Cn and where a= a1+a2+···+an and the sum extends over all possible integer

ai such that 0≤ ai ≤n and n= a1+2a2+3a3+···+nan.

In our context, we are evaluating it all at the fixed point x∗, with g(x) = f(f(x))
and f ′(x∗)=−1. The sum then becomes

g(n)
(
x∗
)=∑ (−1)a1n!f (a)

(
x∗
)

a1!a2!···an!

(
f (2)

(
x∗
)

2!

)a2

···
(
f (n)

(
x∗
)

n!

)an
. (3.2)

The character of this result will be more evident with several examples.
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Example 3.3. For n = 2, there are two summands: {a1 = 2, a2 = 0} and {a1 =
0, a2 = 1}. Hence g(2)(x∗) = ((−1)22!/2!)f ′′(x∗)+ ((−1)02!/1!)f ′(x∗)(f ′′(x∗)/2!) =
f ′′(x∗)− f ′′(x∗) = 0. This is no coincidence; Theorem 2.3 does not allow the first

nonzero derivative of g to be even-numbered.

For n= 3, there are three terms: {a1=3, a2=a3=0}, {a1=a2=1, a3=0}, and {a1=
a2=0, a3=1}. Hence g(3)(x∗)=((−1)33!/3!)f (3)(x∗)+((−1)13!/1!1!)f ′′(x∗)(f ′′(x∗)/
2!)+((−1)03!/1!)f ′(x∗)(f (3)(x∗)/3!)=−f (3)(x∗)−3(f ′′(x∗))2−f (3)(x∗)= 2Sf(x∗).
This confirms the classical test.

4. Generalized Schwarzian-type derivatives. Using formula (3.2), we can calculate

generalized analogues of the Schwarzian derivative to use in our classification. We take

Skf(x) = (1/2)g(2k+1)(x), and simplify using the assumption that Sif (x) = 0 for all

i < k:

S1f(x)= Sf(x)=−f (3)(x)− 3
2

(
f ′′(x)

)2,

S2f(x)=−f (5)(x)− 15
2
f ′′(x)f (4)(x)+15

(
f ′′(x)

)4,

S3f(x)=−f (7)(x)−14f ′′(x)f (6)(x)+ 945
2

(
f ′′(x)

)3f (4)(x)

− 35
4

(
f (4)(x)

)2− 9045
4

(
f ′′(x)

)6,

S4f(x)=−f (9)(x)− 45
2
f ′′(x)f (8)(x)+2205

(
f ′′(x)

)3f (6)(x)

− 208845
2

(
f ′′(x)

)5f (4)(x)+ 411075
2

(
f ′′(x)

)8

−105f (4)(x)f (6)(x)+7875
(
f ′′(x)

)2(f (4)(x))2,

S5f(x)=−f (11)(x)−90748350
(
f ′′(x)

)10− 495
2
f (4)(x)f (8)(x)

− 21881475
4

(
f ′′(x)

)4(f (4)(x))2+ 30195
4

(
f ′′(x)

)3f (8)(x)

+ 201611025
4

(
f ′′(x)

)7f (4)(x)+ 317625
4

f ′′(x)
(
f (4)(x)

)3

−33f ′′(x)f (10)(x)+ 197505
2

(
f ′′(x)

)2f (4)(x)f (6)(x)

− 1943865
2

(
f ′′(x)

)5f (6)(x)−231
(
f (6)(x)

)2.

(4.1)

This allows a simpler algorithm to classify oscillatory nonhyperbolic fixed points of

a one-dimensional map.

Theorem 4.1. Let f : R → R be continuous with f(x∗) = x∗ and f ′(x∗) = −1. Let

k≥ 1 be minimal such that Skf(x∗)=A≠ 0. Then x∗ is classified as follows:

(1) if A> 0, then x∗ is unstable,

(2) if A< 0, then x∗ is stable.

Theorem 4.1 allows classification of fixed points with simpler calculation. Additional

Schwarzian-type derivatives are simple to calculate using formula (3.2). However, in
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general this will not be necessary, as each generalized derivative is only needed if all

earlier ones are zero.

Example 4.2. Consider again f(x) = −x+2x2−4x3, and recall that f ′(0) = −1,

f ′′(0) = 4 and f (3)(0) = −24. We see that S1f(0) = −(−24)− (3/2)(4)2 = 0 and that

S2f(0)= 0−0+15(4)4 = 3840> 0. Hence, 0 is an unstable fixed point of f(x).

Example 4.3. Consider the function f(x) = −x+x2−x3+ (2/3)x4. Observe that

f ′(0) = −1, f ′′(0) = 2, f (3)(0) = −6, and f (4)(0) = 16. We see that S1f(0) = −(−6)−
(3/2)(2)2 = 0, S2f(0)=−0−(15/2)(2)(16)+15(2)4 = 0, and S3f(0)=−0−14(2)(0)+
(945/2)(2)3(16)−(35/4)(16)2−(9045/4)(2)6 =−86480< 0. Hence, 0 is a stable fixed

point of f(x).

Several properties of these Skf(x) are described in the following result.

Theorem 4.4. Skf(x) has exactly one term containing an odd derivative of f , and

that term is −f (2k+1)(x).

Proof. First, recall that Skf(x) = (1/2)g(2k+1)(x). We now use formula (3.2) with

n = 2k+1. Observe that the highest derivative that can appear is f (n)(x∗). This can

appear in a term in only two ways: if a = n or if an > 0. The restrictions on the sum

force exactly two terms containing f (n)(x∗) : {a1 = n, a2 = ··· = an = 0} and {a1 =
··· = an−1 = 0, an = 1}. Each of these terms simplifies to −f (2k+1)(x∗). Hence, Skf(x)
has the required term −f (2k+1)(x).

Now, we prove by strong induction that no other terms appear with odd derivatives

of f . The case k = 1 corresponds to the classical Schwarzian derivative. For k > 1, we

observe that we are simplifying under the assumption that Sif (x) = 0 for all i < k.

The result holds for these Sif (x) by the induction hypothesis. Hence, we can solve for

each odd derivative f (2i+1)(x) in terms of even derivatives, and substitute into Skf(x).

We now use these Schwarzian-type derivatives to generate a class of functions, each

of which is analytically a “square root” of the identity at the origin.

5. A special class of functions. The function h(x) = x has a natural square root,

namely, f(x) = −x. By this we mean that f(f(x)) = h(x) = x. However, we can con-

struct an infinite class of other functions f , each of which is analytically a square root

of h(x) at the origin. That is, (f ◦f)(n)(0)= h(n)(0) for all n≥ 0.

The most general square root is given by the following power series:

f(x)=−x+ a2

2!
x2+ a3

3!
x3+ a4

4!
x4+···+ an

n!
xn+··· . (5.1)

We observe that f(0)= 0, f ′(0)=−1, and otherwise f (n)(x)= an. In order to ensure

that (f ◦f)(n)(0)= h(n)(0)= 0, we must ensure that Sfk(0)= 0 for each k. We can do

this inductively by choosing the odd derivatives (a2j+1) as per Theorem 4.4. The even

derivatives (a2j ) may be chosen freely. For example, we may choose a2 freely, but then

a3 =−(3/2)a2
2 to have S1f(x)= 0.
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If we choose the even coefficients growing not too fast, the odd coefficients will also

grow not too fast, by the following result.

Theorem 5.1. Suppose that |ai| ≤ 1 for 2 ≤ i ≤ n. Then (assuming n is sufficiently

large), |an/n!| ≤ 1.

Proof. In formula (3.2), there is exactly one term for each partition of n. Hence,

there are at most eπ
√

2n/3 terms (for a proof of this bound, see [13]).

We will now show that each term has a coefficient bounded above by n!/2
n/2�. If any

of a
n/2�+1, . . . ,an is positive, then the coefficient of that term is at most n!/(
n/2�+
1)! < n!/2
n/2� for n ≥ 4. Otherwise, we have 0 = a
n/2�+1 = a
n/2�+2 = ··· = an. In this

case, we havea1+a2+···+a
n/2� =n, and the coefficient is at mostn!/a1!a2!···a
n/2�!.
This is maximized when 2 = a1 = a2 = ··· = a
n/2�. Hence, in any case, the coefficient

of each term is bounded above by n!/2
n/2�.
So, putting together the two bounds above with the hypothesis that each derivative

|f (i)(x∗)| ≤ 1, we get |an/n!| ≤ eπ
√

2n/3/2
n/2� ≤ eπ
√

2/3
√
n−(ln2/2)n ≤ 1 forn sufficiently

large (it turns out that n≥ 55 is sufficient).

This bound is not sharp. The terms of formula (3.2) are of both signs, which is not

exploited by this result. Also, the lower derivatives appear as multiple powers, and so

there could be a further improvement that way, if we insist they are strictly less than

one in absolute value. Calculation of polynomial approximations to these power series

suggests that they can be made to have a positive radius of convergence, but this is

unproven.

6. Open problems. This work has created more questions than it has answered.

Conjecture 6.1. Given M > 0, there are infinitely many square roots of the identity

that converge on [−M,M].
Conjecture 6.2. The terms of Skf(x), except for the unique highest-derivative term,

are all of the form α(f (a1))b1 ···(f (aj))bj , where 4α∈ Z and 2n=∑j
i=1bi(ai−1).

Problem 6.3. Find a combinatorial proof that if f ′(x∗) = −1 and g′′(x∗) = ··· =
g(2k−1)(x∗)= 0, then g(2k)(x∗)= 0.

Problem 6.4. Find a simple expression for the coefficients of Skf(x).
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