IJMMS 2004:3, 117-134
PIL. S0161171204208080
http://ijmms.hindawi.com
© Hindawi Publishing Corp.

ON VOLTERRA INEQUALITIES AND THEIR APPLICATIONS

LECHOStAW HACIA

Received 14 August 2002

We present certain variants of two-dimensional and n-dimensional Volterra integral inequal-
ities. In particular, generalizations of the Gronwall inequality are obtained. These results are
applied in various problems for differential and integral equations.
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1. Introduction. Many authors have considered integral inequalities in two variables
of the form

u(x,y) Sf(x,y)+I:J;b(s,t)u(s,t)dsdt (1.1)

in domain D = {(x,y):x >0, v >0} (see [1, 2, 3]). They have got the following result.

THEOREM 1.1. If'b and f are nonnegative continuous functions in D and f is nonde-
creasing with respect to each variable, then inequality (1.1) implies the following Gron-
wall inequality:

u(x,y) sf(x,y)exp[J:Lyb(s,t)dsdt]. (1.2)

Our aim is to consider special cases of two-dimensional inequalities of the Volterra
type:

ulx,y) < f(x,y)+ J: J? k(x,v,s,t)u(s,t)dsdt, (1.3)

where f is a given function in D and k is defined in domain Q = {(x,y,s,t):0<s <
X <o, 0<t<y<oo}.

The obtained results for integral inequalities in two variables are applied in various
differential and integral problems.

Some similar problems were considered in [4] for integral inequalities of the Volterra-
Fredholm type:

t rb
u(x,y) < f(x,t) +LJ kix,t;y,s)u(y,s)dyds. (1.4)

In this paper, we obtain better estimations than in [4], because in (1.3) double Volterra
operator which plays there a dominant role arises. Moreover, integral inequalities in n
independent variables are considered and applied to study boundedness and stability
of solutions to n-dimensional nonlinear integral equation of the Volterra type.
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2. Two-dimensional Volterra inequalities. From the theory of Volterra linear inte-
gral equations, the following result follows.

LEMMA 2.1. Let f and k be continuous functions in D and Q, respectively. If k is
nonnegative, and continuous function u satisfies inequality (1.3) in D, then

X [y
u(x,y) sf(x,y)+J0 JO r(x,y,s,t)f(s,t)dsdt, (2.1)
where
r(x,y,5,t) = > kn(x,y,s,t) (2.2)
n=1

is the resolvent kernel defined by formulas

X [y
kn(x,y,s,t):j J; k(x,v,&,mMkn-1(&,n,s,t)déEdn forn=2,3,...,

(2.3)
ki(x,y,s,t) = k(x,y,s,t).
Moreover, if f is nondecreasing with respect to every variable, then
X ¥
u(x,y) sf(x,y)[l+f J r(x,y,s,t)dsdt]. (2.4)
0 Jo

Using this lemma we can prove the following theorem.

THEOREM 2.2. Leta, b, and f be nonnegative continuous functions in D. If the con-
tinuous function u satisfies the inequality

x ry
u(x,y) sf(x,y)+a(x,y)JO L b(s,tHu(s,t)dsdt, (2.5)

then

u(x,y) < f(x,y)

+a<x,y>J: joyb(s,nexp Ux Lya(E.n)b(E,n)dEdn]f(s,t)dsdt. =0

If f is nondecreasing, then

u(x,y) < f(x,y) [1 +a(x,y)J: Joyh(s,t)exp [Lx Lya(E,n)b(E,n)dEdndsdtH.

(2.7)
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PROOF. We notice that inequality (2.5) is a special case of (1.3) with k(x,y,s,t) =
a(x,y)b(s,t). In virtue of formula (2.4), we have

ki(x,y,s,t) =a(x,y)b(s,t),
X ry
k2(x,y,s,1) :L L kix,y,p,a)ki(p,q,s,t)dpdq
X ry
:L L a(x,y)b(p,q)a(p,q)b(s,t)dpdq (2.8)

X ry
=a(x,y)b(s,t)J L a(p,a)b(p,q)dpdq
=a(x,y)b(s,t)M(x,y,s,t),

where
X ¥
M(x,y,s,t) =J L a(p,a)b(p,q)dpdaq,
02M
oxdy =a(x,y)b(x,y),
X ¥
ks (x,7,5,1) =j L k(x,y.p. k2 (p.a.s,Odpda
X ¥
:j L a(x,»)b(p.q)a(p,a)b(s,H)M(p,q)dpdq
: Xy (2.9)
:a(x,y)b(s,t)J L b(p,q)a(p,q)M(p,q)dpdq
X ry aZM
:a<x,y>b<s,t>J J Soae
Y102 M2
a(x,y)b(s, t)J J 2 apaq dpdq
sa(x,y)b(s,t)w,
since
2(M2) 1 92(M?)
0x0y = 2! 0xoy (2.10)
By induction, we obtain
i—1
ki(x,v,s,t) < a(x,y)b(s,t)w(x(‘iy_—’i')f)] 2.11)
Then from (2.2), we get
r(x,y,s,t) <alx,y)b(s, t)ZM
= (i—1)!
=a(x,y)b(s,t)exp[M(x,y,s,t)] (2.12)

=a(x,y)b(s,t)exp st Ly a(p,a)b(p,q)dp dq]-

Hence, using Lemma 2.1, the proof is finished. |
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The results were obtained by estimating the iterated kernels k;. We can get stronger
inequality in the following case.

REMARK 2.3. If a(x,y) =ai(x)a»(y) and b(s,t) = by (s)b2(t), then

il g b b: dpdql"
0,58 = @ ()a () by ()ba (D) S He “1(”)“2(‘1()11,1)2”) 2(a)dp da]

i=0 (2.13)
Xy
<ai(x)a (b ()b (D e | L a1 (p)az(@)b: (p)b (@)dp da

(if a1, a», b1, by are positive, then this inequality is strict).

COROLLARY 2.4. If the assumptions of Theorem 2.2 are satisfied, then the following
inequality holds:

X (¥
u(x,y)sF(x,y)[l+a(x,y)JO JO b(s,t)
(2.14)

Xy
XeXPU J a(v,q)b(p,q)dpdq]dsdt],
s Jt
where
F(x,y)=sup{f(s,t):0<s<x<o00,0<t<y<owl (2.15)

LEMMA 2.5. If b is nonnegative continuous function in D, then

1+J:onb(5,t)eXpUijb(PyQ)dvdq]dsdtsepo:J:b(s,t)dsdt] (2.16)

(if b is positive, then this inequality is strict).
Using Lemma 2.5 in Corollary 2.4, we get the following result.

COROLLARY 2.6. If the assumptions of Corollary 2.4 are fulfilled and a is nonincreas-
ing with respect to each variable, then inequality (2.14) leads to

X ry
u(x,y) sF(x,y)exp[J0 L a(s,t)b(s,t)dsdt]. (2.17)

REMARK 2.7. If f is nondecreasing with respect to each variable, then F(x,y) =
f(x,y) and the Gronwall-type inequality

X ry
u(x,y) sf(x,y)exp[L JO a(s,t)b(s,t)dsdt] (2.18)

follows, which is a generalization of the results obtained in [1, 2, 3] (if a = 1, we get
(1.2)).
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REMARK 2.8. If f =c > 0 and a is nonincreasing with respect to each variable, then
the inequality

u(x,y)<c+alx,y) JX be(s,t)u(s,t)dsdt (2.19)
0 Jo
implies that
X [y
u(x,y)scexp[J J a(s,t)b(s,t)dsdt]. (2.20)
0 Jo

THEOREM 2.9. Leta, b, and f be nonnegative and continuous in D. If the continuous
function u satisfies inequality (2.5) and a(x,y) + 0, then

X (¥
u(x,y) sa(x,y)T(x,y)exp[JO .[o a(s,t)b(s,t)dsdt], (2.21)
where
L
T(x,y)=sup{££j—’t;:0535x<oo,Ostsy<oo}. (2.22)

PROOF. From (2.5), we get

u(x,y) u(s,t)

< T(x, +Jja5tbst dsdt. 2.23
20, y) (x,%) (s,0)b(s,t)——— aGs.0) (2.23)
Using Theorem 2.2, we obtain the inequality
ux,y) <T(x, y)exp[J J a(s,t)b(s, t)dsdt] (2.24)
a(x,y)
which finishes the proof. |

COROLLARY 2.10. If the assumptions of Theorem 2.9 are satisfied and f | a is nonde-
creasing in D, then inequality (2.5) implies (2.18).

REMARK 2.11. If a = 1, we get the Gronwall inequality in two variables (1.2).

THEOREM 2.12. Let u, a, and b be nonnegative continuous functions in D and let f
be positive and continuous in D. If a/ f is nonincreasing with respect to each variable,
then inequality (2.5) implies (2.18).

PROOF. From (2.5), we obtain

u(x,y) alx,y) (¥~ u(s,t)
<1 b . 2.2
Foe = Fe o (S DF 8,0 F Ty dsat (225
Using Remark 2.8, we get
u(x,y) * (Y a(s,t)
Flx.y) seXp[JO L f(s’t)h(s,t)f(s,t)dsdt]. (2.26)

Hence (2.21) follows. O
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THEOREM 2.13. If f, a, and b are nonnegative continuous functions in D, then in-
equality (2.5) implies

u(x,y) < W(X,y)expj: JjW(s,t)b(s,t)dsdt, (2.27)
where
W(x,y) =max[a(x,»), f(x,3)] 0. (2.28)

PROOF. From (2.5), we get

X ry
u(x,y) sW(x,y)[1+J J b(s,t)u(s,t)dsdt] (2.29)
0 Jo
or
u(x,y) J" r’ u(s,t)
7W(x,y) <1+ o o W(s,t)b(s,t)W(S,t)dsdt. (2.30)
In virtue of Theorem 1.1, we have
u(x,y) J" Jy
7W(x,y) < exp o o Wi(s,t)b(s,t)dsdt. (2.31)
That finishes the proof. |

COROLLARY 2.14. If the assumptions of Theorem 2.13 are fulfilled, then

Xty
u(x,y) < a(x,y)exp[Jo JO a(s,t)b(s,t)dsdt] fora(x,y) < f(x,y),
(2.32)
X v

u(x,y) sf(x,y)exp[JO Jo f(s,t)b(s,t)dsdt] for a(x,y) = f(x,y).

THEOREM 2.15. Let f be nonnegative continuous function in D and nondecreasing
with respect to each variable, and let k be nonnegative function in Q such that

k(x,y,s,t) < k(s,t,s,t) (2.33)

for0 <s < x,0 <t <y.Ifthe nonnegative and continuous function u satisfies inequality
(1.3), then

X [y
u(x,y) Sf(x,y)exp[JO L k(s,t,s,t)dsdt]. (2.34)
PROOF. From (1.3), we obtain
X ry
u(x,y) sf(x,y)+fO JO k(s,t,s,t)u(s,t)dsdt. (2.35)

The proof follows using Theorem 1.1. |
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THEOREM 2.16. Let f be nonnegative continuous function in D and let k be positive
function in Q such that

k(x,y,s,t) <k(x,y,x,¥) (2.36)
forO<s<x,0<t=<y.If f(x,y)/k(x,y,x,y) is nondecreasing with respect to vari-

ables x and y, then inequality (1.3) implies (2.34) for nonnegative and continuous func-
tionu inD.

PROOF. In virtue of the assumptions of Theorem 2.16, inequality (1.3) leads to

x v
u(x,y) < f(x,y) +k(x,y,x,y)JO L u(s,t)dsdt. (2.37)

Using Corollary 2.10, we get (2.34). O

THEOREM 2.17. Let f be positive continuous function in D and let k be nonnegative
continuous function in Q such that k(x,y,s,t) < f(x,y). If the continuous and nonneg-
ative function u satisfies inequality (1.3), then

X v
u(x,y) sf(x,y)expjo Jo f(s,t)dsdt. (2.38)

PROOF. We notice that inequality (1.3) leads to

X ¥
u(x,y) sf(x,y)[l+J1) JO u(s,t)dsdt] (2.39)
or
u(x, y) u(s,t)
Fix y) J J f(s t) Fis ’t)dsdt. (2.40)

From Theorem 1.1, we obtain the inequality

fg i) < pJ I F(s,t)dsdt, (2.41)

which concludes the proof. O

THEOREM 2.18. Suppose that f is a positive continuous function in D and K/ f is
nonincreasing with respect to each variable, where

K(x,y)=sup{k(x,y,s,t):0<s<x,0<t<y} (2.42)

and let k be nonnegative continuous function in Q. Then inequality (1.3) implies the
following inequality:

u(x,y) sf(x,y)expj: J;K(s,t)dsdt, (2.43)

for nonnegative and continuous function u in D.



124 LECHOSLAW HACIA

PROOF. From inequality (1.3), we get

u(x,y) Sf(x,y)+K(x,y)J: Lyu(s,t)dsdt. (2.44)

Using Theorem 2.12, we obtain (2.43). O

REMARK 2.19. Estimate (2.43) follows from (1.3) if f/K is nondecreasing with re-
spect to each variable and K is positive and f is nonnegative.

REMARK 2.20. Results of this paper can be extended on the class L2.

3. Some applications of two-dimensional inequalities. In this section, we present
some applications of the given inequalities to study the boundedness, stability and
uniqueness solutions of certain nonlinear integral equations, and value boundary prob-

lems for nonlinear hyperbolic partial differential equations. Moreover, the boundedness
of solutions to a system of two-dimensional Volterra integral equations is studied.

3.1. We consider two-dimensional Volterra nonlinear integral equation

x ry
ulx,y) =f(x,y)+J0 Jo Hx,y,s,t,u(s,t)]dsdt (3.1)

with the following assumptions:
(1) f is continuous in D,
(2) H is continuous in domain

W={(x,y,s8t):0<s<x,0<t<y, |ul <o} (3.2)
and satisfying the Lipschitz condition
|H(x,v,s,t,0)—H(x,y,s,t,u)| <a(x,y)b(s,t)|[u-ul, (3.3)

or
(3) H is continuous in W and satisfies the condition

|H(x,v,s,t,u)| <a(x,y)b(s,t)|ul, (3.4)

where a and b are positive continuous functions in D, such that ab € L(R?),
that is,

ro Jma(s,t)b(s,t)dsdt<oo. 3.5)
o Jo

REMARK 3.1. Existence, uniqueness, and stability of solutions to (3.1) follow by as-
sumptions (1) and (2).
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PROPOSITION 3.2 (bounds of solutions). Let assumptions (1) and (3) be satisfied. If
aT is bounded in D, where

|f(s,0)]

aGs.b) :O<s<x,0<t<y}, (3.6)

T(x,y) = sup{
then solutions of (3.1) are bounded in D.
PROOF. Applying (1) and (3) to (3.1), we get the following inequality:
X v
w2 = Lfo] +ate [ b o ut,oldsa. (3.7)

Using Theorem 2.9, we obtain the inequality

x v
[u(x,»)| ga(x,y)T(x,y)epr0 Jo a(s,t)b(s,t)dsdt], (3.8)

which gives the boundedness of solutions of (3.1). O

REMARK 3.3. If |f|/a is nondecreasing in D, then (3.8) leads to the following esti-
mate:

[ulx,y)| <|f(x,v)|exp [J: Joy a(s,t)b(s,t)ds dt] (3.9)
of the solution to (3.1) that is bounded as f is bounded.
3.2. Consider the following partial differential equation of the hyperbolic type:
Uxy = (pU)y+f(x,¥)+F[x,y,u(x,y)] (3.10)
with value boundary conditions
u(x,0) = a(x),  u(0,y)=B). (3.11)

This problem is equivalent to the integral equation

X X ry
u(x,y) =g(x,y)+J0 p(s,y)u(s,y)ds+fo JO F[s,t,u(s,t)]dsdt, (3.12)
where
X X ry
g(X,y)=0<(X)+B(y)—u(0,0)—J p(s,O)a(s)ds+J I f(s,t)dtds. (3.13)
0 o Jo

Let the following assumptions be fulfilled:
(1°) g and p are continuous functions in D,
(2°) F is a continuous function satisfying one of the following conditions:

|F(x,y,w)-F(x,y,u)| <p(x,y)|u-u| in® (3.14)
or

|F(x,v,u)| <@(x,y)|lul in®, (3.15)
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where
O={(x,y,u):x,y=>0, —0 <u <o} (3.16)

and continuous nonnegative function @ € L(R?).
From (3.12), we get

[ulx,»)| <|g(x,»)| +I [p(s,y) | |u(s,y)|ds
0

Xy (3.17)
+JO Jo |Fls,t,u(s,t)]|dsdt.

We notice that

x
rix,y) = Jo ,[o |F[s,t,u(s,t)]|dsdt (3.18)

is nonnegative and nondecreasing function with respect to variables x and y.
Then we have

lu(x,y)| <[g(x,»)| +r(x,y)+J0 lp(s,v)||u(s,y)|ds. (3.19)

Treating (3.19) as one-dimensional inequality for every y € R, and using Gron-
wall inequality (see [5]), we get

lulx,y)| < (G(x,y)+1f(x,y))epr0 |10(S,y)|ds], (3.20)
where
G(x,y)=sup{|g(s,t)|:0<s<x,0<t <y} (3.21)

is nondecreasing function in D.
Using (3.15), we have

X ry X ry
T(x,y)=J J |F[S,t,u(s,t)]|d5dtsJ J @(s,t)|uls,t)|dsdt. (3.22)
o Jo o Jo
Then we obtain the following integral inequality:
x [y
lu(x,y)| SP(x,y)[G(x,yHJ J (p(s,t)|u(5,t)|dsdt], (3.23)
o Jo
where
X
P(x,y) :equo Ip(S,y)|ds). (3.24)
From (3.23), we get

Jute, | Y Jus,0)|
Plx.y) < G(x, y)+J J PG.0) @ (s,t)P(s,t)dsdt, (3.25)
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and using Gronwall inequality we have

Xy
[u(x,y)| sP(x,y)G(x,y)exp[Jo Jo (p(s,t)P(s,t)dsdt]. (3.26)

3.3. Consider the following system of two-dimensional integral equations of the
Volterra type:

noox oy
ui(x,y)=wi(x,y)+ZJ0 L kij(x,y,s,ui(s,tydsdt, i=1,2,...,n, (3.27)
j=1

where functions w; (i = 1,2,...,n) and k;; (i,j = 1,2,...,n) are continuous in D and €,
respectively.
From (3.27), we get

ulx,y) <w(x,y)+ Jj Joy k(x,y,s,t)u(s,t)dsdt, (3.28)

where
ulx,y) = > |uilx,y)|,
i=1

wx,y)=> |wilx,»], (3.29)
i=1

k(x,y,s,t) = > max{|kij(x,y,s,t)]:1<j=<n}.

i=1
Using Corollary 2.6, we obtain the following theorem.
THEOREM 3.4. If
n
> max {|kij(x,y,5,0)|:1<j<n}<a(s,t) (3.30)
i=1

for nonnegative and continuous function a, then the estimate

n n
> uilx,y) | ssup«{z |wi(s,t)]:0<s<x, Ostsy}
i=1

i1 (3.31)
X [y
xexp[J J a(s,t)dsdt]
0 Jo
holds. Moreover, if a € L(R2) and
n
sup<|Z|wi(s,t)|:Osssx<oo,0stsy<oo]><oo, (3.32)
i=1

then the solution {ui(x,y)},i=1,2,...,n, of (3.27) is bounded in D.
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THEOREM 3.5. If

> max {|kij(x,¥,5,0)|:1<j<n}=b(x,y)a(s,t) (3.33)

i=1

for nonnegative and continuous functions a and b in D (b + 0), then

n |wils,t) | x oy
> ui(x,y)| <b(x,y) sup Z exp[J J a(s,t)b(s,t)dsdt].
vt 0ss<x<w iy D(S,1) 0 Jo
O<t< y<oo
(3.34)
Additionally, if ab € L(R2%) and
Jwi(s,t) |
su < 00, (3.35)
0<5<)P<oo ; b(S t
()<t<y<oo
then the solution of (3.27) is bounded.
PROOF. The proof follows from Theorem 2.9. |
By Theorem 2.16, we get the following theorem.
THEOREM 3.6. If
n
sup > max |kij(x,¥,s,0)| <p(x,¥) (3.36)
fsizyinl
for p € L(R2), then
n (S
Z |ui(x,»)| <p(x,y) sup [J J p(s, t)dsdt] (3.37)
: 0<s=x P (S, t
=1 O<t<y
and solution {u;(x,y)},i=1,2,...,n, of (3.27) is bounded, when
w(s,t) )
X, S — < nD, 3.38
p( y)0<151§x P .0 00 (3.38)
O<t<y
where
n
wx,y) = |wilx,»)]. (3.39)

i=1
From Remark 2.19, the next theorem follows.

THEOREM 3.7. Let

n n
Z max |kij(x,v,s,t)| < Z max |kij(s,t,s,t)| (3.40)
<j<n i1 l<j<n

=115/
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for0<s <x,0<t<y. Then the estimate
n X ¢y N
> uix,») | =g(x,y)exp J J > max |kij(s,t,s,t)|dsdt (3.41)
i-1 0 J0 oy tsi=n

holds, where

n
g(x,y)=sup<|Z|wi(s,t){:0<s<x,0<t<y}. (3.42)
i=1
If
o oo N
J J > max |kij(s,t,s,t)|dsdt < oo, (3.43)
0o Jo izllsjsn

then solution {u;(x,y)},i=1,2,...,m, of (3.27) is bounded in D for bounded function g
inD.

4. Integral inequalities of n variables and their applications. In this section, we
establish n-independent variable generalizations of the integral inequalities established
in Section 2. For this purpose, we introduce the following notations.

A point (xy,...,Xx5) in the n-dimensional Euclidean space R" is denoted by x and the
origin of R" is 0 = (0,...,0). For x,y,s € R", we denote that x <y < x; < y; for every
i=1,2,...,n.

A function f is said to be nondecreasing if x <y = f(x) < f(»). An interval [c,d],
where c¢,d € R" (¢ < d), is defined by the inequality ¢ < x < d. Let fff(s)ds be the
n-fold integral taken over [c,d].

Letd>0,I=[0,d],and J = {(x,y):0 <5 <x <d}. Consider the following Volterra
nonlinear integral equation in R™:

u(x) :f(x)+J:h(x,s,u(S))ds. (4.1)
LEMMA 4.1. If f € C(I) and h € C(]J XR) satisfies a Lipschitz condition
|h(x,v,z)-h(x,y,2)| <Llz-Z| inJxR, (4.2)
then (4.1) has a unique solution in (3.14) which depends continuously on f and h.

PROOF. Let C(I) be normed by

lulla =max{|u(x)|e **:x eI}, o(x)= in, o> 0. (4.3)
i-1

Abbreviating (4.1) as

u=Su, (4.4)
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one has S : X — X continuous and, for v,w € C(I),
X X
Sv—Sw|(x) < J Llv(x)-w(s)|ds <Lllv —wII,XJ e %0 g, 4.5)
0 0
The integral is less than or equal to e*?X) =" and one obtains, after division by e*? ),
ISV -Swllq < La™ ||V —w| «- (4.6)
We choose « such that Loc™" = 1/2. When u is the solution,
lu=vle < ISuU-Svia+Su-Svia+ISv-vix= llu-via =215V -vl«, (4.7)

in particular, 1|l < 2]|S(0) ||« which leads to

lu(x) | = 2/[S(0)]| e, [IS(0)]], < H|f(x)\ +J0 |h(x,s,0)| ds

(4.8)
O

04

The theorem now follows. This also answers the existence and uniqueness in the
infinite case, where the “quadrant” Q = R is considered (stability in Q is another
story).

Introduce the notation 0; = 0/0x;, D = 01,0>,...,0n.

LEMMA 4.2 (see [6]). The solution of
pe
u(x) = f(x) +J k(x,s)u(s)ds (4.9)
0
is given by
e
u(x) =f(x)+J r(x,s)f(s)ds, (4.10)
0
where the resolvent kernel v is defined by
r(x,s) = > kn(x,s), 4.11)
n=1
with iterated kernels k,, constructed by formulas

kn (x,5) = j K(x, E)kn_1 (E,5)dE

- JX Ky 1 (x,E)VK(E.)AE forn=1.2,3...., (4.12)
ki(x,s) =k(x,s).

LEMMA 4.3. If'b € C(I) is nonnegative in (3.14), then

X
1+J b(s)efSds < B, (4.13)
0
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where
b
B(x) = J b(s)ds, x>0. (4.14)
0

PROOF. We notice that D;B = B; and D;;B = B;j are nonnegative and
DB(x) =b(x),

DeBX > p(x)eB™

JxDeB(S)dS =B 1, (4.15)
0

P
J b(s)efds <eB —1.

0

In the case n = 3, we have

De® = eB(B1B2B3 + By Bo3 + B2Bi3 + B3B12 + b). (4.16)
O

THEOREM 4.4. If f € C(I) and a nonnegative function k € C(J), then u € C(I) satis-
fving the inequality

u(x) sf(x)+J:k(x,s)u(s)ds (4.17)
has the estimation
u(x) < f(x) +J:r(x,s)f(s)ds, (4.18)

where v is a resolvent kernel (4.11).

PROOF. Abbreviate the right-hand side of (4.9) as f+ Ku = Su. Then S is a monotone
increasing operator (v < w = Sv < Sw). According to (4.9), u is a subsolution, u < Su,
hence the sequence u, = S"u obtained by successive approximation is increasing and
converges to the solution @ = S@. Since @ is the right-hand side of inequality (4.17),
the theorem is proved. |

THEOREM 4.5. Let f be continuous, nonnegative, and nonincreasing function in I and
let b € C(I) be nonnegative. Then for u € C(I), the inequality

u(x) < f(x) +J:b(s)u(s)ds (4.19)
implies
u(x) < f(x)ef™, B(x) = f:b(s)ds. (4.20)

PROOF. We assume first that f(x) = 1. With the same notation (but with k(x,s) =
b(s)), we have u < Su and we show that w = e satisfies s > Sw, that is,

X
eB™ > +J b(s)eB®ds, 4.21)
0
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according to Lemma 4.3. The sequence u,, = S"u is increasing and w;, = S"w is de-
creasing and both have the same limit ¢ = solution of @ = S@. It follows that u < w.

The theorem holds for f(x) = 1 and hence for f(x) = const = ¢ > 0. Now we fix
xo > 0, put ¢ = f(xp), and consider the inequality in I = [0,x(]. We get u(x) < cef®
in I, in particular at xy. Since x is arbitrary, this theorem follows. O

THEOREM 4.6. Ifu,a,b,f € C(I) anda, b, and f are nonnegative, then the inequality

u(x) Sf(x)+j:a(x)b(s)u(s)d5 (4.22)
implies
u(x) < f(x) +J:a(x)lo(s)eM("'”f(s)ds, M(x,s) = Jxa(t)lo(t)dt. (4.23)

PROOF. We notice that DM (x,s)™ > mb(s)M(x,s)™!. Using Lemmas 4.2, 4.3, and
Theorem 4.5 and proceeding similarly as in the case of a two-dimensional inequality,
we get (4.23). O

We get the optimal estimation in the case of a special kernel. That is important since
it allows to give the kernel explicitly and hence gives a much better bound.

REMARK 4.7. In the case k(x,s) = a(x)b(s) with a(x) = H?:lai(xi) and b(s) =
[T, bi(s;), the resolvent kernel is

r(x,s) =a(x)b(s)En(ﬂj:ai(t)bi(tmt), (4.24)
i=1
where
En(z) = : 4.25
(2) go " (4.25)

For the case a(x) = 1, we refer to [6, pages 142-143].

REMARK 4.8. Inequality (4.19), with k(x,s) < k(s,s) for s < x, implies (4.20) with
b(s) =k(s,s).

REMARK 4.9. Inequality (4.22), with k(x,s) < k(x,x) for s < x, implies (4.23) with
a(x) =k(x,x),b(s) =1.

Introducing the function
F(x)=max{f(s):0<s <x}, (4.26)
which is nondecreasing in (3.14), we get the following proposition.

PROPOSITION 4.10. [nequality (4.22) implies

X
w(x) sF(x)(l +a(x)J0 b(s)eM(X'S)ds), 4.27)
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where

u(x) sF(x)exp(J:a(s)b(s)ds) (4.28)
if a is nonincreasing,

u(x) < f(x)exp <J: a(s)b(s)ds) (4.29)

if f/a is nondecreasing,

u(x) <a(x)p(x)exp (Jxa(s)b(s)ds) (4.30)
0
if
cp(x)=max{%:0§ssx} (4.31)
for a positive function a, and
u(x) <Wi(x)exp (J:W(s)b(s)ds>, W(x) =max{a(x), f(x)} > 0. (4.32)

We can use the presented theory of n-dimensional inequalities to study boundedness
and stability of solutions for n-dimensional integral equation (4.1).

EXAMPLE 4.11. In the integral (4.1), the assumption
|h(x,s,2z)| <a(x)b(s)|z| (zisreal) (4.33)

leads immediately to the integral inequality
X
[ux)| < | fx)] +J0 a(x)b(s)|u(s)|ds. (4.34)

By Proposition 4.10, we obtain

| f(5)]

205) :0<s<x}>e><pf0 a(s)b(s)ds. (4.35)

Ju(x)| < a(x)max{

This applies in particular to the linear equation (4.9) with
[k(x,s)| <a(x)b(s). (4.36)

If | f(x)|/a(x) is nondecreasing in (3.14), then we get the estimation

[u(x)| sf(x)eprja(s)b(s)ds. (4.37)
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Stability in a finite interval has been discussed earlier. In Q = R, one has to define what
it means. One possibility is to require that u is an approximate solution that satisfies

u(x)—f(x)- J: h(x,s,w(s))ds| < 6. (4.38)
If the assumption

|h(x,s,2)| - |h(x,s,2)| <@(x)b(s)|z-Z]| (4.39)

is fulfilled, then we have
X
[ —ul(x) 56+J a)b(s)|lu—-ul(s)ds (4.40)
0

and it gives a bound. In the linear case, one can consider two equations with coefficients
f, k and f, k and require | f — f|, |k — k| to derive a bound for [ —u|.
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