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We present certain variants of two-dimensional andn-dimensional Volterra integral inequal-
ities. In particular, generalizations of the Gronwall inequality are obtained. These results are
applied in various problems for differential and integral equations.
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1. Introduction. Many authors have considered integral inequalities in two variables

of the form

u(x,y)≤ f(x,y)+
∫ x

0

∫ y
0
b(s,t)u(s,t)dsdt (1.1)

in domain D = {(x,y) : x ≥ 0, y ≥ 0} (see [1, 2, 3]). They have got the following result.

Theorem 1.1. If b and f are nonnegative continuous functions in D and f is nonde-

creasing with respect to each variable, then inequality (1.1) implies the following Gron-

wall inequality:

u(x,y)≤ f(x,y)exp
[∫ x

0

∫ y
0
b(s,t)dsdt

]
. (1.2)

Our aim is to consider special cases of two-dimensional inequalities of the Volterra

type:

u(x,y)≤ f(x,y)+
∫ x

0

∫ y
0
k(x,y,s,t)u(s,t)dsdt, (1.3)

where f is a given function in D and k is defined in domain Ω = {(x,y,s,t) : 0 ≤ s ≤
x <∞, 0≤ t ≤y <∞}.

The obtained results for integral inequalities in two variables are applied in various

differential and integral problems.

Some similar problems were considered in [4] for integral inequalities of the Volterra-

Fredholm type:

u(x,y)≤ f(x,t)+
∫ t

0

∫ b
a
k(x,t;y,s)u(y,s)dyds. (1.4)

In this paper, we obtain better estimations than in [4], because in (1.3) double Volterra

operator which plays there a dominant role arises. Moreover, integral inequalities in n
independent variables are considered and applied to study boundedness and stability

of solutions to n-dimensional nonlinear integral equation of the Volterra type.
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2. Two-dimensional Volterra inequalities. From the theory of Volterra linear inte-

gral equations, the following result follows.

Lemma 2.1. Let f and k be continuous functions in D and Ω, respectively. If k is

nonnegative, and continuous function u satisfies inequality (1.3) in D, then

u(x,y)≤ f(x,y)+
∫ x

0

∫ y
0
r(x,y,s,t)f (s,t)dsdt, (2.1)

where

r(x,y,s,t)=
∞∑
n=1

kn(x,y,s,t) (2.2)

is the resolvent kernel defined by formulas

kn(x,y,s,t)=
∫ x
s

∫ y
t
k(x,y,ξ,η)kn−1(ξ,η,s,t)dξdη for n= 2,3, . . . ,

k1(x,y,s,t)= k(x,y,s,t).
(2.3)

Moreover, if f is nondecreasing with respect to every variable, then

u(x,y)≤ f(x,y)
[

1+
∫ x

0

∫ y
0
r(x,y,s,t)dsdt

]
. (2.4)

Using this lemma we can prove the following theorem.

Theorem 2.2. Let a, b, and f be nonnegative continuous functions in D. If the con-

tinuous function u satisfies the inequality

u(x,y)≤ f(x,y)+a(x,y)
∫ x

0

∫ y
0
b(s,t)u(s,t)dsdt, (2.5)

then

u(x,y)≤ f(x,y)

+a(x,y)
∫ x

0

∫ y
0
b(s,t)exp

[∫ x
s

∫ y
t
a(ξ,η)b(ξ,η)dξdη

]
f(s,t)dsdt.

(2.6)

If f is nondecreasing, then

u(x,y)≤ f(x,y)
[

1+a(x,y)
∫ x

0

∫ y
0
b(s,t)exp

[∫ x
s

∫ y
t
a(ξ,η)b(ξ,η)dξdηdsdt

]]
.

(2.7)
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Proof. We notice that inequality (2.5) is a special case of (1.3) with k(x,y,s,t) =
a(x,y)b(s,t). In virtue of formula (2.4), we have

k1(x,y,s,t)= a(x,y)b(s,t),

k2(x,y,s,t)=
∫ x
s

∫ y
t
k(x,y,p,q)k1(p,q,s,t)dpdq

=
∫ x
s

∫ y
t
a(x,y)b(p,q)a(p,q)b(s,t)dpdq

= a(x,y)b(s,t)
∫ x
s

∫ y
t
a(p,q)b(p,q)dpdq

= a(x,y)b(s,t)M(x,y,s,t),

(2.8)

where

M(x,y,s,t)=
∫ x
s

∫ y
t
a(p,q)b(p,q)dpdq,

∂2M
∂x∂y

= a(x,y)b(x,y),

k3(x,y,s,t)=
∫ x
s

∫ y
t
k(x,y,p,q)k2(p,q,s,t)dpdq

=
∫ x
s

∫ y
t
a(x,y)b(p,q)a(p,q)b(s,t)M(p,q)dpdq

= a(x,y)b(s,t)
∫ x
s

∫ y
t
b(p,q)a(p,q)M(p,q)dpdq

= a(x,y)b(s,t)
∫ x
s

∫ y
t

∂2M
∂p∂q

M(p,q)dpdq

= a(x,y)b(s,t)
∫ x
s

∫ y
t

1
2
∂2
(
M2
)

∂p∂q
dpdq

≤ a(x,y)b(s,t)
[
M(x,y,s,t)

]2
2!

,

(2.9)

since

M
∂2
(
M2
)

∂x∂y
≤ 1

2!
∂2
(
M2
)

∂x∂y
. (2.10)

By induction, we obtain

ki(x,y,s,t)≤ a(x,y)b(s,t)
[
M(x,y,s,t)

]i−1

(i−1)!
. (2.11)

Then from (2.2), we get

r(x,y,s,t)≤ a(x,y)b(s,t)
∞∑
i=1

[
M(x,y,s,t)

]i−1

(i−1)!

= a(x,y)b(s,t)exp
[
M(x,y,s,t)

]
= a(x,y)b(s,t)exp

[∫ x
s

∫ y
t
a(p,q)b(p,q)dpdq

]
.

(2.12)

Hence, using Lemma 2.1, the proof is finished.
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The results were obtained by estimating the iterated kernels ki. We can get stronger

inequality in the following case.

Remark 2.3. If a(x,y)= a1(x)a2(y) and b(s,t)= b1(s)b2(t), then

r(x,y,s,t)= a1(x)a2(y)b1(s)b2(t)
∞∑
i=0

[∫ x
s
∫y
t a1(p)a2(q)b1(p)b2(q)dpdq

]n
(n!)2

≤ a1(x)a2(y)b1(s)b2(t)exp
[∫ x

s

∫ y
t
a1(p)a2(q)b1(p)b2(q)dpdq

] (2.13)

(if a1, a2, b1, b2 are positive, then this inequality is strict).

Corollary 2.4. If the assumptions of Theorem 2.2 are satisfied, then the following

inequality holds:

u(x,y)≤ F(x,y)
[

1+a(x,y)
∫ x

0

∫ y
0
b(s,t)

×exp
[∫ x

s

∫ y
t
a(p,q)b(p,q)dpdq

]
dsdt

]
,

(2.14)

where

F(x,y)= sup
{
f(s,t) : 0≤ s ≤ x <∞, 0≤ t ≤y <∞}. (2.15)

Lemma 2.5. If b is nonnegative continuous function in D, then

1+
∫ x

0

∫ y
0
b(s,t)exp

[∫ x
s

∫ y
t
b(p,q)dpdq

]
dsdt ≤ exp

[∫ x
0

∫ y
0
b(s,t)dsdt

]
(2.16)

(if b is positive, then this inequality is strict).

Using Lemma 2.5 in Corollary 2.4, we get the following result.

Corollary 2.6. If the assumptions of Corollary 2.4 are fulfilled and a is nonincreas-

ing with respect to each variable, then inequality (2.14) leads to

u(x,y)≤ F(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
. (2.17)

Remark 2.7. If f is nondecreasing with respect to each variable, then F(x,y) =
f(x,y) and the Gronwall-type inequality

u(x,y)≤ f(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
(2.18)

follows, which is a generalization of the results obtained in [1, 2, 3] (if a = 1, we get

(1.2)).
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Remark 2.8. If f = c > 0 and a is nonincreasing with respect to each variable, then

the inequality

u(x,y)≤ c+a(x,y)
∫ x

0

∫ y
0
b(s,t)u(s,t)dsdt (2.19)

implies that

u(x,y)≤ c exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
. (2.20)

Theorem 2.9. Let a, b, and f be nonnegative and continuous in D. If the continuous

function u satisfies inequality (2.5) and a(x,y)≠ 0, then

u(x,y)≤ a(x,y)T(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
, (2.21)

where

T(x,y)= sup

{
f(s,t)
a(s,t)

: 0≤ s ≤ x <∞, 0≤ t ≤y <∞
}
. (2.22)

Proof. From (2.5), we get

u(x,y)
a(x,y)

≤ T(x,y)+
∫ x

0

∫ y
0
a(s,t)b(s,t)

u(s,t)
a(s,t)

dsdt. (2.23)

Using Theorem 2.2, we obtain the inequality

u(x,y)
a(x,y)

≤ T(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
, (2.24)

which finishes the proof.

Corollary 2.10. If the assumptions of Theorem 2.9 are satisfied and f/a is nonde-

creasing in D, then inequality (2.5) implies (2.18).

Remark 2.11. If a= 1, we get the Gronwall inequality in two variables (1.2).

Theorem 2.12. Let u, a, and b be nonnegative continuous functions in D and let f
be positive and continuous in D. If a/f is nonincreasing with respect to each variable,

then inequality (2.5) implies (2.18).

Proof. From (2.5), we obtain

u(x,y)
f(x,y)

≤ 1+ a(x,y)
f(x,y)

∫ x
0

∫ y
0
b(s,t)f (s,t)

u(s,t)
f (s,t)

dsdt. (2.25)

Using Remark 2.8, we get

u(x,y)
f(x,y)

≤ exp
[∫ x

0

∫ y
0

a(s,t)
f (s,t)

b(s,t)f (s,t)dsdt
]
. (2.26)

Hence (2.21) follows.
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Theorem 2.13. If f , a, and b are nonnegative continuous functions in D, then in-

equality (2.5) implies

u(x,y)≤W(x,y)exp
∫ x

0

∫ y
0
W(s,t)b(s,t)dsdt, (2.27)

where

W(x,y)=max
D

[
a(x,y),f (x,y)

]
≠ 0. (2.28)

Proof. From (2.5), we get

u(x,y)≤W(x,y)
[

1+
∫ x

0

∫ y
0
b(s,t)u(s,t)dsdt

]
(2.29)

or

u(x,y)
W(x,y)

≤ 1+
∫ x

0

∫ y
0
W(s,t)b(s,t)

u(s,t)
W(s,t)

dsdt. (2.30)

In virtue of Theorem 1.1, we have

u(x,y)
W(x,y)

≤ exp
∫ x

0

∫ y
0
W(s,t)b(s,t)dsdt. (2.31)

That finishes the proof.

Corollary 2.14. If the assumptions of Theorem 2.13 are fulfilled, then

u(x,y)≤ a(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
for a(x,y)≤ f(x,y),

u(x,y)≤ f(x,y)exp
[∫ x

0

∫ y
0
f(s,t)b(s,t)dsdt

]
for a(x,y)≥ f(x,y).

(2.32)

Theorem 2.15. Let f be nonnegative continuous function in D and nondecreasing

with respect to each variable, and let k be nonnegative function in Ω such that

k(x,y,s,t)≤ k(s,t,s,t) (2.33)

for 0≤ s ≤ x, 0≤ t ≤y . If the nonnegative and continuous function u satisfies inequality

(1.3), then

u(x,y)≤ f(x,y)exp
[∫ x

0

∫ y
0
k(s,t,s,t)dsdt

]
. (2.34)

Proof. From (1.3), we obtain

u(x,y)≤ f(x,y)+
∫ x

0

∫ y
0
k(s,t,s,t)u(s,t)dsdt. (2.35)

The proof follows using Theorem 1.1.
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Theorem 2.16. Let f be nonnegative continuous function in D and let k be positive

function in Ω such that

k(x,y,s,t)≤ k(x,y,x,y) (2.36)

for 0 ≤ s ≤ x, 0 ≤ t ≤ y . If f(x,y)/k(x,y,x,y) is nondecreasing with respect to vari-

ables x and y , then inequality (1.3) implies (2.34) for nonnegative and continuous func-

tion u in D.

Proof. In virtue of the assumptions of Theorem 2.16, inequality (1.3) leads to

u(x,y)≤ f(x,y)+k(x,y,x,y)
∫ x

0

∫ y
0
u(s,t)dsdt. (2.37)

Using Corollary 2.10, we get (2.34).

Theorem 2.17. Let f be positive continuous function in D and let k be nonnegative

continuous function in Ω such that k(x,y,s,t)≤ f(x,y). If the continuous and nonneg-

ative function u satisfies inequality (1.3), then

u(x,y)≤ f(x,y)exp
∫ x

0

∫ y
0
f(s,t)dsdt. (2.38)

Proof. We notice that inequality (1.3) leads to

u(x,y)≤ f(x,y)
[

1+
∫ x

0

∫ y
0
u(s,t)dsdt

]
(2.39)

or

u(x,y)
f(x,y)

≤ 1+
∫ x

0

∫ y
0
f(s,t)

u(s,t)
f (s,t)

dsdt. (2.40)

From Theorem 1.1, we obtain the inequality

u(x,y)
f(x,y)

≤ exp
∫ x

0

∫ y
0
f(s,t)dsdt, (2.41)

which concludes the proof.

Theorem 2.18. Suppose that f is a positive continuous function in D and K/f is

nonincreasing with respect to each variable, where

K(x,y)= sup
{
k(x,y,s,t) : 0≤ s ≤ x, 0≤ t ≤y}, (2.42)

and let k be nonnegative continuous function in Ω. Then inequality (1.3) implies the

following inequality:

u(x,y)≤ f(x,y)exp
∫ x

0

∫ y
0
K(s,t)dsdt, (2.43)

for nonnegative and continuous function u in D.
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Proof. From inequality (1.3), we get

u(x,y)≤ f(x,y)+K(x,y)
∫ x

0

∫ y
0
u(s,t)dsdt. (2.44)

Using Theorem 2.12, we obtain (2.43).

Remark 2.19. Estimate (2.43) follows from (1.3) if f/K is nondecreasing with re-

spect to each variable and K is positive and f is nonnegative.

Remark 2.20. Results of this paper can be extended on the class L2.

3. Some applications of two-dimensional inequalities. In this section, we present

some applications of the given inequalities to study the boundedness, stability and

uniqueness solutions of certain nonlinear integral equations, and value boundary prob-

lems for nonlinear hyperbolic partial differential equations. Moreover, the boundedness

of solutions to a system of two-dimensional Volterra integral equations is studied.

3.1. We consider two-dimensional Volterra nonlinear integral equation

u(x,y)= f(x,y)+
∫ x

0

∫ y
0
H
[
x,y,s,t,u(s,t)

]
dsdt (3.1)

with the following assumptions:

(1) f is continuous in D,

(2) H is continuous in domain

W = {(x,y,s,t) : 0≤ s ≤ x, 0≤ t ≤y, |u|<∞} (3.2)

and satisfying the Lipschitz condition

∣∣H(x,y,s,t,u)−H(x,y,s,t,u)∣∣≤ a(x,y)b(s,t)∣∣u−u∣∣, (3.3)

or

(3) H is continuous in W and satisfies the condition

∣∣H(x,y,s,t,u)∣∣≤ a(x,y)b(s,t)|u|, (3.4)

where a and b are positive continuous functions in D, such that ab ∈ L(R2+),
that is,

∫∞
0

∫∞
0
a(s,t)b(s,t)dsdt <∞. (3.5)

Remark 3.1. Existence, uniqueness, and stability of solutions to (3.1) follow by as-

sumptions (1) and (2).
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Proposition 3.2 (bounds of solutions). Let assumptions (1) and (3) be satisfied. If

aT is bounded in D, where

T(x,y)= sup

{∣∣f(s,t)∣∣
a(s,t)

: 0≤ s ≤ x, 0≤ t ≤y
}
, (3.6)

then solutions of (3.1) are bounded in D.

Proof. Applying (1) and (3) to (3.1), we get the following inequality:

∣∣u(x,y)∣∣≤ ∣∣f(x,y)∣∣+a(x,y)
∫ x

0

∫ y
0
b(s,t)

∣∣u(s,t)∣∣dsdt. (3.7)

Using Theorem 2.9, we obtain the inequality

∣∣u(x,y)∣∣≤ a(x,y)T(x,y)exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
, (3.8)

which gives the boundedness of solutions of (3.1).

Remark 3.3. If |f |/a is nondecreasing in D, then (3.8) leads to the following esti-

mate:

∣∣u(x,y)∣∣≤ ∣∣f(x,y)∣∣exp
[∫ x

0

∫ y
0
a(s,t)b(s,t)dsdt

]
(3.9)

of the solution to (3.1) that is bounded as f is bounded.

3.2. Consider the following partial differential equation of the hyperbolic type:

uxy = (pu)y+f(x,y)+F
[
x,y,u(x,y)

]
(3.10)

with value boundary conditions

u(x,0)=α(x), u(0,y)= β(y). (3.11)

This problem is equivalent to the integral equation

u(x,y)= g(x,y)+
∫ x

0
p(s,y)u(s,y)ds+

∫ x
0

∫ y
0
F
[
s,t,u(s,t)

]
dsdt, (3.12)

where

g(x,y)=α(x)+β(y)−u(0,0)−
∫ x

0
p(s,0)α(s)ds+

∫ x
0

∫ y
0
f(s,t)dtds. (3.13)

Let the following assumptions be fulfilled:

(1�) g and p are continuous functions in D,

(2�) F is a continuous function satisfying one of the following conditions:

∣∣F(x,y,u)−F(x,y,u)∣∣≤ϕ(x,y)∣∣u−u∣∣ in Θ (3.14)

or

∣∣F(x,y,u)∣∣≤ϕ(x,y)|u| in Θ, (3.15)
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where

Θ= {(x,y,u) : x,y ≥ 0, −∞<u<∞} (3.16)

and continuous nonnegative function ϕ ∈ L(R2+).
From (3.12), we get

∣∣u(x,y)∣∣≤ ∣∣g(x,y)∣∣+
∫ x

0

∣∣p(s,y)∣∣∣∣u(s,y)∣∣ds
+
∫ x

0

∫ y
0

∣∣F[s,t,u(s,t)]∣∣dsdt.
(3.17)

We notice that

r(x,y)=
∫ x

0

∫ y
0

∣∣F[s,t,u(s,t)]∣∣dsdt (3.18)

is nonnegative and nondecreasing function with respect to variables x and y .

Then we have

∣∣u(x,y)∣∣≤ ∣∣g(x,y)∣∣+r(x,y)+
∫ x

0

∣∣p(s,y)∣∣∣∣u(s,y)∣∣ds. (3.19)

Treating (3.19) as one-dimensional inequality for every y ∈ R+ and using Gron-

wall inequality (see [5]), we get

∣∣u(x,y)∣∣≤ (G(x,y)+r(x,y))exp
[∫ x

0

∣∣p(s,y)∣∣ds], (3.20)

where

G(x,y)= sup
{∣∣g(s,t)∣∣ : 0≤ s ≤ x, 0≤ t ≤y} (3.21)

is nondecreasing function in D.

Using (3.15), we have

r(x,y)=
∫ x

0

∫ y
0

∣∣F[s,t,u(s,t)]∣∣dsdt ≤
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u(s,t)∣∣dsdt. (3.22)

Then we obtain the following integral inequality:

∣∣u(x,y)∣∣≤ P(x,y)[G(x,y)+
∫ x

0

∫ y
0
ϕ(s,t)

∣∣u(s,t)∣∣dsdt], (3.23)

where

P(x,y)= exp
(∫ x

0

∣∣p(s,y)∣∣ds). (3.24)

From (3.23), we get

∣∣u(x,y)∣∣
P(x,y)

≤G(x,y)+
∫ x

0

∫ y
0

∣∣u(s,t)∣∣
P(s,t)

ϕ(s,t)P(s,t)dsdt, (3.25)
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and using Gronwall inequality we have

∣∣u(x,y)∣∣≤ P(x,y)G(x,y)exp
[∫ x

0

∫ y
0
ϕ(s,t)P(s,t)dsdt

]
. (3.26)

3.3. Consider the following system of two-dimensional integral equations of the

Volterra type:

ui(x,y)=wi(x,y)+
n∑
j=1

∫ x
0

∫ y
0
kij(x,y,s,t)ui(s,t)dsdt, i= 1,2, . . . ,n, (3.27)

where functionswi (i= 1,2, . . . ,n) and kij (i,j = 1,2, . . . ,n) are continuous in D and Ω,

respectively.

From (3.27), we get

u(x,y)≤w(x,y)+
∫ x

0

∫ y
0
k(x,y,s,t)u(s,t)dsdt, (3.28)

where

u(x,y)=
n∑
i=1

∣∣ui(x,y)∣∣,

w(x,y)=
n∑
i=1

∣∣wi(x,y)
∣∣,

k(x,y,s,t)=
n∑
i=1

max
{∣∣kij(x,y,s,t)∣∣ : 1≤ j ≤n}.

(3.29)

Using Corollary 2.6, we obtain the following theorem.

Theorem 3.4. If

n∑
i=1

max
{∣∣kij(x,y,s,t)∣∣ : 1≤ j ≤n}≤ a(s,t) (3.30)

for nonnegative and continuous function a, then the estimate

n∑
i=1

∣∣ui(x,y)∣∣≤ sup




n∑
i=1

∣∣wi(s,t)
∣∣ : 0≤ s ≤ x, 0≤ t ≤y




×exp
[∫ x

0

∫ y
0
a(s,t)dsdt

] (3.31)

holds. Moreover, if a∈ L(R2+) and

sup




n∑
i=1

∣∣wi(s,t)
∣∣ : 0≤ s ≤ x <∞, 0≤ t ≤y <∞


<∞, (3.32)

then the solution {ui(x,y)}, i= 1,2, . . . ,n, of (3.27) is bounded in D.
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Theorem 3.5. If

n∑
i=1

max
{∣∣kij(x,y,s,t)∣∣ : 1≤ j ≤n}= b(x,y)a(s,t) (3.33)

for nonnegative and continuous functions a and b in D (b ≠ 0), then

n∑
i=1

∣∣ui(x,y)∣∣≤ b(x,y) sup
0≤s≤x<∞
0≤t≤y<∞

n∑
i=1

∣∣wi(s,t)
∣∣

b(s,t)
exp

[∫ x
0

∫ y
0
a(s,t)b(s,t)dsdt

]
.

(3.34)

Additionally, if ab ∈ L(R2+) and

sup
0≤s≤x<∞
0≤t≤y<∞

n∑
i=1

∣∣wi(s,t)
∣∣

b(s,t)
<∞, (3.35)

then the solution of (3.27) is bounded.

Proof. The proof follows from Theorem 2.9.

By Theorem 2.16, we get the following theorem.

Theorem 3.6. If

sup
0≤s≤x
0≤t≤y

n∑
i=1

max
∣∣kij(x,y,s,t)∣∣≤ p(x,y) (3.36)

for p ∈ L(R2+), then

n∑
i=1

∣∣ui(x,y)∣∣≤ p(x,y) sup
0≤s≤x
0≤t≤y

w(s,t)
p(s,t)

exp
[∫ x

0

∫ y
0
p(s,t)dsdt

]
, (3.37)

and solution {ui(x,y)}, i= 1,2, . . . ,n, of (3.27) is bounded, when

p(x,y) sup
0≤s≤x
0≤t≤y

w(s,t)
p(s,t)

<∞ in D, (3.38)

where

w(x,y)=
n∑
i=1

∣∣wi(x,y)
∣∣. (3.39)

From Remark 2.19, the next theorem follows.

Theorem 3.7. Let

n∑
i=1

max
1≤j≤n

∣∣kij(x,y,s,t)∣∣≤
n∑
i=1

max
1≤j≤n

∣∣kij(s,t,s,t)∣∣ (3.40)
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for 0≤ s ≤ x, 0≤ t ≤y . Then the estimate

n∑
i=1

∣∣ui(x,y)∣∣≤ g(x,y)exp


∫ x

0

∫ y
0

n∑
i=1

max
1≤j≤n

∣∣kij(s,t,s,t)∣∣dsdt

 (3.41)

holds, where

g(x,y)= sup




n∑
i=1

∣∣wi(s,t)
∣∣ : 0≤ s ≤ x, 0≤ t ≤y


. (3.42)

If

∫∞
0

∫∞
0

n∑
i=1

max
1≤j≤n

∣∣kij(s,t,s,t)∣∣dsdt <∞, (3.43)

then solution {ui(x,y)}, i= 1,2, . . . ,n, of (3.27) is bounded in D for bounded function g
in D.

4. Integral inequalities of n variables and their applications. In this section, we

establishn-independent variable generalizations of the integral inequalities established

in Section 2. For this purpose, we introduce the following notations.

A point (x1, . . . ,xn) in the n-dimensional Euclidean space Rn is denoted by x and the

origin of Rn is 0= (0, . . . ,0). For x,y,s ∈Rn, we denote that x ≤y� xi ≤yi for every

i= 1,2, . . . ,n.

A function f is said to be nondecreasing if x ≤y ⇒ f(x)≤ f(y). An interval [c,d],
where c,d ∈ Rn (c ≤ d), is defined by the inequality c ≤ x ≤ d. Let

∫ d
c f (s)ds be the

n-fold integral taken over [c,d].
Let d> 0, I = [0,d], and J = {(x,y) : 0≤ s ≤ x ≤ d}. Consider the following Volterra

nonlinear integral equation in Rn:

u(x)= f(x)+
∫ x

0
h
(
x,s,u(s)

)
ds. (4.1)

Lemma 4.1. If f ∈ C(I) and h∈ C(J×R) satisfies a Lipschitz condition

∣∣h(x,y,z)−h(x,y,z)∣∣≤ L|z−z| in J×R, (4.2)

then (4.1) has a unique solution in (3.14) which depends continuously on f and h.

Proof. Let C(I) be normed by

‖u‖α =max
{∣∣u(x)∣∣e−ασ(x) : x ∈ I}, σ(x)=

n∑
i=1

xi, α > 0. (4.3)

Abbreviating (4.1) as

u= Su, (4.4)
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one has S :X →X continuous and, for v,w ∈ C(I),

|Sv−Sw|(x)≤
∫ x

0
L
∣∣v(x)−w(s)∣∣ds ≤ L‖v−w‖α

∫ x
0
e−ασ(x)ds. (4.5)

The integral is less than or equal to eασ(x)α−n, and one obtains, after division by eασ(x),

‖Sv−Sw‖α ≤ Lα−n‖v−w‖α. (4.6)

We choose α such that Lα−n = 1/2. When u is the solution,

‖u−v‖α ≤ ‖Su−Sv‖α+‖Su−Sv‖α+‖Sv−v‖α �⇒‖u−v‖α ≤ 2‖Sv−v‖α, (4.7)

in particular, ‖u‖α ≤ 2‖S(0)‖α which leads to

∣∣u(x)∣∣≤ 2
∥∥S(0)∥∥αeασ(x), ∥∥S(0)∥∥α ≤

∥∥∥∥∣∣f(x)∣∣+
∫ x

0

∣∣h(x,s,0)∣∣ds
∥∥∥∥
α
. (4.8)

The theorem now follows. This also answers the existence and uniqueness in the

infinite case, where the “quadrant” Q = Rn+ is considered (stability in Q is another

story).

Introduce the notation ∂i = ∂/∂xi, D = ∂1,∂2, . . . ,∂n.

Lemma 4.2 (see [6]). The solution of

u(x)= f(x)+
∫ x

0
k(x,s)u(s)ds (4.9)

is given by

u(x)= f(x)+
∫ x

0
r(x,s)f (s)ds, (4.10)

where the resolvent kernel r is defined by

r(x,s)=
∞∑
n=1

kn(x,s), (4.11)

with iterated kernels kn constructed by formulas

kn(x,s)=
∫ x
s
k(x,ξ)kn−1(ξ,s)dξ

=
∫ x
s
kn−1(x,ξ)k(ξ,s)dξ for n= 1,2,3, . . . ,

k1(x,s)= k(x,s).

(4.12)

Lemma 4.3. If b ∈ C(I) is nonnegative in (3.14), then

1+
∫ x

0
b(s)eB(s)ds ≤ eB(x), (4.13)
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where

B(x)=
∫ x

0
b(s)ds, x > 0. (4.14)

Proof. We notice that DiB = Bi and DijB = Bij are nonnegative and

DB(x)= b(x),
DeB(x) ≥ b(x)eB(x),∫ x

0
DeB(s)ds = eB(x)−1,

∫ x
0
b(s)eB(s)ds ≤ eB(s)−1.

(4.15)

In the case n= 3, we have

DeB = eB(B1B2B3+B1B23+B2B13+B3B12+b
)
. (4.16)

Theorem 4.4. If f ∈ C(I) and a nonnegative function k∈ C(J), then u∈ C(I) satis-

fying the inequality

u(x)≤ f(x)+
∫ x

0
k(x,s)u(s)ds (4.17)

has the estimation

u(x)≤ f(x)+
∫ x

0
r(x,s)f (s)ds, (4.18)

where r is a resolvent kernel (4.11).

Proof. Abbreviate the right-hand side of (4.9) as f+Ku= Su. Then S is a monotone

increasing operator (v ≤w ⇒ Sv ≤ Sw). According to (4.9), u is a subsolution, u≤ Su,

hence the sequence un = Snu obtained by successive approximation is increasing and

converges to the solution ϕ = Sϕ. Since ϕ is the right-hand side of inequality (4.17),

the theorem is proved.

Theorem 4.5. Let f be continuous, nonnegative, and nonincreasing function in I and

let b ∈ C(I) be nonnegative. Then for u∈ C(I), the inequality

u(x)≤ f(x)+
∫ x

0
b(s)u(s)ds (4.19)

implies

u(x)≤ f(x)eB(x), B(x)=
∫ x

0
b(s)ds. (4.20)

Proof. We assume first that f(x) = 1. With the same notation (but with k(x,s) =
b(s)), we have u≤ Su and we show that w = eB(x) satisfies s ≥ Sw, that is,

eB(x) ≥ 1+
∫ x

0
b(s)eB(s)ds, (4.21)
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according to Lemma 4.3. The sequence un = Snu is increasing and wn = Snw is de-

creasing and both have the same limit ϕ = solution of ϕ = Sϕ. It follows that u≤w.

The theorem holds for f(x) = 1 and hence for f(x) = const = c ≥ 0. Now we fix

x0 > 0, put c = f(x0), and consider the inequality in I = [0,x0]. We get u(x) ≤ ceB(x)
in I, in particular at x0. Since x0 is arbitrary, this theorem follows.

Theorem 4.6. Ifu,a,b,f ∈ C(I) and a, b, and f are nonnegative, then the inequality

u(x)≤ f(x)+
∫ x

0
a(x)b(s)u(s)ds (4.22)

implies

u(x)≤ f(x)+
∫ x

0
a(x)b(s)eM(x,s)f (s)ds, M(x,s)=

∫ x
s
a(t)b(t)dt. (4.23)

Proof. We notice that DM(x,s)m ≥mb(s)M(x,s)m−1. Using Lemmas 4.2, 4.3, and

Theorem 4.5 and proceeding similarly as in the case of a two-dimensional inequality,

we get (4.23).

We get the optimal estimation in the case of a special kernel. That is important since

it allows to give the kernel explicitly and hence gives a much better bound.

Remark 4.7. In the case k(x,s) = a(x)b(s) with a(x) = ∏n
i=1ai(xi) and b(s) =∏n

i=1bi(si), the resolvent kernel is

r(x,s)= a(x)b(s)En

 n∏
i=1

∫ x
0
ai(t)bi(t)dt


, (4.24)

where

En(z)=
∞∑
p=0

zp

(p!)n
. (4.25)

For the case a(x)= 1, we refer to [6, pages 142-143].

Remark 4.8. Inequality (4.19), with k(x,s) ≤ k(s,s) for s ≤ x, implies (4.20) with

b(s)= k(s,s).
Remark 4.9. Inequality (4.22), with k(x,s) ≤ k(x,x) for s ≤ x, implies (4.23) with

a(x)= k(x,x), b(s)= 1.

Introducing the function

F(x)=max
{
f(s) : 0≤ s ≤ x}, (4.26)

which is nondecreasing in (3.14), we get the following proposition.

Proposition 4.10. Inequality (4.22) implies

u(x)≤ F(x)
(

1+a(x)
∫ x

0
b(s)eM(x,s)ds

)
, (4.27)
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where

u(x)≤ F(x)exp
(∫ x

0
a(s)b(s)ds

)
(4.28)

if a is nonincreasing,

u(x)≤ f(x)exp
(∫ x

0
a(s)b(s)ds

)
(4.29)

if f/a is nondecreasing,

u(x)≤ a(x)ϕ(x)exp
(∫ x

0
a(s)b(s)ds

)
(4.30)

if

ϕ(x)=max
{
f(s)
a(s)

: 0≤ s ≤ x
}

(4.31)

for a positive function a, and

u(x)≤W(x)exp
(∫ x

0
W(s)b(s)ds

)
, W(x)=max

{
a(x),f (x)

}
> 0. (4.32)

We can use the presented theory ofn-dimensional inequalities to study boundedness

and stability of solutions for n-dimensional integral equation (4.1).

Example 4.11. In the integral (4.1), the assumption

∣∣h(x,s,z)∣∣≤ a(x)b(s)|z| (z is real) (4.33)

leads immediately to the integral inequality

∣∣u(x)∣∣≤ ∣∣f(x)∣∣+
∫ x

0
a(x)b(s)

∣∣u(s)∣∣ds. (4.34)

By Proposition 4.10, we obtain

∣∣u(x)∣∣≤ a(x)max

{∣∣f(s)∣∣
a(s)

: 0≤ s ≤ x
}

exp
∫ x

0
a(s)b(s)ds. (4.35)

This applies in particular to the linear equation (4.9) with

∣∣k(x,s)∣∣≤ a(x)b(s). (4.36)

If |f(x)|/a(x) is nondecreasing in (3.14), then we get the estimation

∣∣u(x)∣∣≤ f(x)exp
∫ x

0
a(s)b(s)ds. (4.37)
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Stability in a finite interval has been discussed earlier. InQ=Rn+, one has to define what

it means. One possibility is to require that u is an approximate solution that satisfies

∣∣∣∣u(x)−f(x)−
∫ x

0
h
(
x,s,u(s)

)
ds
∣∣∣∣< δ. (4.38)

If the assumption

∣∣h(x,s,z)∣∣−∣∣h(x,s,z)∣∣≤ a(x)b(s)|z−z| (4.39)

is fulfilled, then we have

|u−u|(x)≤ δ+
∫ x

0
a(x)b(s)|u−u|(s)ds (4.40)

and it gives a bound. In the linear case, one can consider two equations with coefficients

f , k and f , k and require |f −f |, |k−k| to derive a bound for |u−u|.
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