
IJMMS 2004:3, 105–115
PII. S0161171204307271

http://ijmms.hindawi.com
© Hindawi Publishing Corp.

A DELAYED MATHEMATICAL MODEL FOR TESTOSTERONE
SECRETION WITH FEEDBACK CONTROL MECHANISM

BANIBRATA MUKHOPADHYAY and RAKHI BHATTACHARYYA

Received 7 July 2003 and in revised form 21 July 2003

A mathematical model describing the biochemical interactions of the luteinizing hormone
(LH), luteinizing hormone–releasing hormone (LHRH), and testosterone (T) is presented. The
model structure consists of a negative feedback mechanism with transportation and secre-
tion delays of different hormones. A comparison of stability and bifurcation analysis in the
presence and absence of delays has been performed. Mathematical implications of castra-
tion and testosterone infusion are also studied.
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1. Introduction. In humans and many other animals, the hormone testosterone (T)

is considered to be an extremely important hormone. Any regular imbalance of this

hormone may cause dramatic behavioral changes. Men have a T level of between 10–35

nanomoles per litre of blood. Reduced levels of T are often accompanied by personality

changes—the individual tends to become less forceful and commanding. Increased lev-

els of T, on the other hand, induce the converse. In men, T is primarily generated from

the interstitial cells of the testis, which produces about ninety percent with the rest

coming from other parts of the endocrine system. Though the physiological process of

generation is not yet fully understood, there is general agreement on certain key ele-

ments. The luteinizing hormone-releasing hormone (LHRH) is normally secreted by the

hypothalamus and is carried to the pituitary in the blood. The anterior pituitary, under

the influence of LHRH, secretes the luteinizing hormone (LH). LH, in turn, stimulates

the interstitial cells of the testis and generates the hormone T. This hormone is thought

to have a feedback effect on the secretion of its precursor hormones LH and LHRH.

There are several reviews of the experimental data regarding the validity of the LHRH-

LH-T system [1, 3, 4, 6]. An important recurrent observation in many experiments on

intact adult animals is that the serum concentration of both LH and T undergo rapid

cyclic fluctuations of roughly the same period in each individual, but varying slightly

between individuals. This is called the phenomenon of pulsatile or episodic hormone

release. Katongole et al. [9] measured LH and T concentrations in the peripheral plasma

of bulls and observed cyclic fluctuations of varying periods from animal to animal

ranging from 2 to 5 hours. They concluded that the cyclic pattern of LH release is

due to some inherent rhythm, and each transient LH peak results in transient maximal

stimulation of testicular T secretion. Nankin and Troen [12] measured LH concentration

in men and found regular cyclic periods of 1–3 hours.
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Experiments in which the natural state of the animals has been disturbed have also

been conducted. Bolt [2] found that the cyclic fluctuations of LH in rams could be sup-

ported by infusion of T. Moger and Armstrong [10] observed elevations of T concen-

trations in rats following acute LH treatment and found differences between immature

and mature animals. Pelletier [13] observed the elevation of LH levels in rams following

castration and found that subsequent injection of T caused these levels to decrease [14].

The purpose of the present paper is concerned primarily with analyzing the phe-

nomenon of periodic fluctuations in serum concentration of the hormone testosterone

referred to in the literature as pulsatile or episodic release. This is accomplished by

establishing the existence of periodic solutions of systems of autonomous differential

equations which describe biochemical systems exhibiting negative feedback. Next, we

introduce delays in the system arising from the time taken by the hormones to travel

from source to destination through blood circulation and the time required for the

synthesis of T and compare the oscillatory behaviour of the system with and without

delays. Finally, we consider the biological implications of castration and T infusion into

the system.

2. Description of the model. In the present study, a mathematical model concern-

ing the LHRH-LH-T system is considered. There are three active components of the

system—the hypothalamus, the anterior pituitary, and the testis. The hypothalamus

secretes LHRH into the hypophyseal portal vessels which causes pituitary to secrete LH

into the general circulation which in turn causes the gonadal secretion of T. This hor-

mone has a negative feedback effect on the hypothalamic LHRH secretion rate. The long

feedback loop from testis to hypothalamus is considered. The exclusion of the short

feedback loop from gonads to the pituitary is supported by experimental evidences.

We also exclude the short pituitary to hypothalamus loop for simplicity. Experimental

results obtained by Carmel et al. [5] suggest the existence of a neural clock, a pulse

generator which forces the hypothalamic secretion of LHRH and thus driving the entire

system. In this paper, we neglect these neural input terms and consider only the au-

tonomous LHRH-LH-T system for the well–known fact that the autonomous system may

still principally govern the total system behaviour with the forcing terms only produce

small perturbations.

The rate of LH release from the pituitary is assumed to depend linearly on the local

concentration of LHRH, and the rate of T synthesis by the testis depends linearly on

the local LH concentration. The synthesis of T takes a fixed finite time. Thus there is

a time delay between the stimulation of the interstitial cells of the testis by LH and

the eventual release of T into the blood stream. There are also transport delays owing

to the time taken for the hormones to travel from source to destination across the

body due to the spatial separation of different components of the model. Each of the

hormones is cleared from the bloodstream at a rate proportional to its concentration,

that is, according to first–order kinetics. Thus the concentration of each hormone is

affected by the complementary process of synthesis and clearance. We have not also

included, in our model, sources of T other than the gonads. The adrenals, for example,

are an important extragonadal source of this hormone. In adult animals, however, the

principal source is the testis and we thus consider this source only in our model.
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We give a mathematical realization of all these considerations into the following

model:

dR
dt

= f(T)−d1R(t),

dL
dt

= r2R
(
t−τ1

)−d2L(t),

dT
dt

= r3L
(
t−τ0−τ2

)−d3T(t),

(2.1)

where R(t) is the concentration of LHRH at the hypothalamus at time t, L(t) is the

concentration of LH at the pituitary at time t, T(t) is the serum concentration of T in the

vicinity of testis at time t, and d1, d2, and d3 are the decay rates of the three hormones

in the bloodstream. Moreover, r2 and r3 are the response rates for the production of

LH and T, τ1 and τ2 are the time taken by the hormones to be transported between

the hypothalamus and pituitary (τ1) and between the pituitary and the testis (τ2), τ0 is

the time interval between testis stimulation and T secretion, and f(T) is the feedback

function which is positive monotone decreasing in nature.

Theorem 2.1. All the solutions of system (2.1) are bounded.

Proof. From system (2.1),

d
dt
(R+L+T)= f(T)−d1R+r2R−d2L+r3L−d3T ≤ f(T)+r2R+r3L. (2.2)

Since f(T) is positive monotone decreasing, there exists a positive number F such that

f(T)≤ F . Therefore,

d
dt
(R+L+T)≤ F+r2R+r3L≤ F+r(R+L), (2.3)

where r =min(r2,r3). Hence the theorem follows.

The biological significance of Theorem 2.1 is that the blood concentration of different

hormones in an individual cannot exceed a certain limit which ensures the biological

validity of the model considered.

The only interior equilibrium point E∗(R∗,L∗,T∗) of the system is given by

L∗ = d3T∗

r3
, R∗ = d2d3T∗

r2r3
, f

(
T∗
)− d1d2d3T∗

r2r3
= 0. (2.4)

3. Stability and bifurcation analysis in the absence of delays. In Section 2, we have

considered an LHRH-LH-T model given by (2.1). We now study the stability of the steady

state and its bifurcation behaviour. We linearise the model with the following transfor-

mations:

x = R−R∗, y = L−L∗, z = T −T∗. (3.1)
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The linearised model is

dx
dt

= f ′(T∗)z(t)−d1x(t),

dy
dt

= r2x
(
t−τ1

)−d2y(t),

dz
dt

= r3y
(
t−τ2−τ0

)−d3z(t).

(3.2)

We look for solutions of (3.2) in the form

x =α1eλt, y =α2eλt, z =α3eλt. (3.3)

The corresponding characteristic equation will be given by

λ3+A1λ2+A2λ+A3+A4e−λ(τ0+τ1+τ2) = 0, (3.4)

where

A1 = d1+d2+d3, A2 = d1d2+d2d3+d3d1,

A3 = d1d2d3, A4 =−f ′
(
T∗
)
r2r3.

(3.5)

In the absence of delays, (3.4) becomes

λ3+A1λ2+A2λ+A3+A4 = 0. (3.6)

Theorem 3.1. In absence of delays, system (2.1) will be unstable if

A1A2

A3
≥ 9. (3.7)

Proof. The condition of unstability of system (2.1) is

A1A2−A3−A4 < 0 (3.8)

asA1 andA3+A4 are both positive. Applying the following inequality of Hardy et al. [8]:

1
3

(
d1+d2+d3

)≥ 1
3

[
d1d2+d2d3+d3d1

]1/2 ≥ (d1d2d3
)1/3

(3.9)

for d1,d2,d3 > 0 (equality sign holds only for d1 = d2 = d3), we get

A1A2

A3
−1≥ 8, (3.10)

that is, A1A2/A3 ≥ 9 which completes the proof.
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We consider the feedback function as (see [11])

f(T)= A
k+Tm , (3.11)

where A and k are positive constants, and m is a positive number known as Hill coef-

ficient. From the model equation and from the feedback function f(T), it follows that,

for small k, the rate of production of LHRH will be high.

Using the form of f(T) as mentioned above, we get from Theorem 3.1 that the con-

dition for unstability of the system, for small k, is m> 8.

Theorem 3.2. In absence of delays, system (2.1) with f(T) as in (3.11) will undergo

a Hopf bifurcation at the parametric value k= kc .
Proof. Let λ= a+ib be a root of (3.6). Putting the value of λ in (3.6) and separating

real and imaginary parts, we get

a3−3ab2+A1a2−A1b2+A2a+A3+A4 = 0, (3.12)

3a2b−b3+A1ab+A2b = 0. (3.13)

The condition for change of stability of E∗ is that (3.6) has a purely imaginary solution,

that is,

λ= ib, (3.14)

which implies a= 0. Using this value of a in (3.12) and (3.13), we get

−A1b2+A3+A4 = 0, (3.15)

−b3+A2b = 0. (3.16)

Equations (3.15) and (3.16) together give

A1A2 =A3+A4. (3.17)

Using (2.4), (3.5), and (3.11), we get from (3.17)

A1A2−d1d2d3 = d1d2d3m
(
T∗
)m

k+(T∗)m (3.18)

which gives the value of “k” as

k= A1A2
(
T∗
)m−d1d2d3(m+1)

(
T∗
)m

d1d2d3−A1A2

= A1A2
(
T∗
)m−A3(m+1)

(
T∗
)m

A3−A1A2

≡ kc.

(3.19)

From the above analysis, we see that as “k” passes through the value kc , the system

changes from unstable to stable state, that is, k= kc is a bifurcation point.



110 B. MUKHOPADHYAY AND R. BHATTACHARYYA

In order to establish Hopf-bifurcation, we have to show that

[
da
dk

]
k=kc

≠ 0. (3.20)

Differentiating (3.12) and (3.13) with respect to “k” and solving for da/dk, we get

da
dk

=− 2A2A3m
(
T∗
)m(

k+T∗)m(E2+F2
) . (3.21)

Thus

[
da
dk

]
k=kc

=−2A2
(
A1A2−A3

)2

A3mT∗
(
E2+F2

) < 0. (3.22)

Consequently, Hopf-bifurcation occurs near the equilibrium point k= kc . Hence the

theorem follows.

From Theorems 3.1 and 3.2, it follows that system (2.1) without delays, with f(T) as

in (3.11), will become unstable for m> 8 and will undergo a Hopf-bifurcation at k= kc
given by (3.19).

4. Bifurcation analysis in the presence of delays. We now study the stability of

the interior equilibrium point E∗ in the presence of delays. The stability of E∗ can be

determined by the sign of the real parts of the roots of (3.4). Let τ = τ0+τ1+τ2 and let

λ= p+iq. Substituting the value of λ in (3.4) and separating real and imaginary parts,

we get

p3−3pq2+A1
(
p2−q2)+A2p+A3+A4e−pτ cosqτ = 0, (4.1)

3p2q−q3+2A1pq+A2q−A4e−pτ sinqτ = 0. (4.2)

The necessary condition for a change of behaviour in the stability of E∗ is that one

of the characteristic roots of system (3.2) is purely imaginary.

Let τ̂ be such that

p(τ̂)= 0, q(τ̂)= q̂. (4.3)

Then we can reduce (4.1) and (4.2) to

A1q̂2−A3 =A4 cos q̂τ̂, (4.4)

−q̂3+A2q̂ =A4 sin q̂τ̂. (4.5)

Equations (4.4) and (4.5) together can be reduced to an equation in q̂2 of the form

Ψ(q̂)2 ≡ (q̂2)3+(A2
1−2A2

)(
q̂2)2+(A2

2−2A1A3
)
q̂2+(A2

3−A2
4

)
. (4.6)

We may rewrite (4.6) as a cubic equation in q̂2 as

H(η)≡ η3+b1η2+b2η+b3 = 0, (4.7)
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where

b1 =A2
1−2A2, b2 =A2

2−2A1A3, b3 =A2
3−A2

4, η= q̂2. (4.8)

Now, b1 = d2
1+d2

2+d2
3 is obviously positive.

Also, b2 =A2
2−2A1A3 = d2

1d
2
2+d2

2d
2
3+d2

3d
2
1 is also positive. Again,

b3 =A2
3−A2

4 = d2
1d

2
2d

2
3−
[
f ′
(
T∗
)]2r 2

2 r
2
3 . (4.9)

Lemma 4.1. (i) If b3 < 0, then (4.7) has at least one positive root.

(ii) If b3 ≥ 0 and ∆≡ b2
1−3b2 < 0, then (4.7) has no positive roots.

(iii) If b3 ≥ 0, then (4.7) has positive roots if and only if η+ = (1/3)(−b1+
√
∆) > 0 and

H(η+)≤ 0.

Proof. (i) We have H(η)= η3+b1η2+b2η+b3. Obviously, H(0)= b3 < 0 and

lim
n→∞H(η)=∞. (4.10)

Since H(η) is continuous, there exists an η0 with 0< η0 <∞ so that H(η0)= 0, that is,

η0 is a positive root of H(η)= 0.

(ii) We have H′(η)= 3η2+2b1η+b2. Since b1 and b2 are positive, then H′(η) > 0 for

η > 0. But the roots of H′(η)= 0 are

η± =
−2b1±

√
4b2

1−12b2

6
= −b1±

√
∆

3
. (4.11)

Therefore, for ∆ < 0, (4.7) must not have real roots, that is, H′(η) ≠ 0 for any real η.

Consequently, H′(η), being a continuous function, is always positive, that is, H(η) is

monotone increasing and H(0)= b3 ≥ 0. Therefore, (4.7) has no positive real roots.

(iii) The sufficiency part is obvious.

We assume that η+ ≤ 0 or η+ > 0 and H(η+) > 0. Now, if ∆≥ 0, H(η) has a local min-

imum at η+. Thus H(η) is increasing for η > η+. If η+ ≤ 0, then the equation H(η)= 0

cannot have any positive real root as H(0)= b3 ≥ 0.

If η+ > 0 and H(η+) > 0, it follows that H(η+) < H(η−) as H(η) has a local maxima

at η− and H(η) is decreasing for η− ≤ η. Hence, from H(0)= b3 ≥ 0, we may conclude

that H(η)= 0 has no positive roots.

We assume that (4.7) has positive roots. Let

τ̂n = 1
q̂

[
arctan

−q̂3+A2q̂
A1q̂2−A3

+nπ
]
, n= 0,1,2, . . . . (4.12)

Then, limn→∞ τ̂n =∞. Suppose that τ0 =min{τ̂n} and the corresponding q̂ is q̂0.

Theorem 4.2. If system (2.1) without delay is asymptotically stable, then

(i) the stability of the system will remain unchanged for all τ ≥ 0 provided that

b3 ≥ 0 and ∆< 0;

(ii) the stability of the system will change for an infinite number of different values

of τ given by (4.12) provided that b3 < 0 or b3 ≥ 0, η+ > 0, and H(η+)≤ 0;
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(iii) moreover,

d
dτ

Reλ
(
τ0
)
> 0, (4.13)

where τ0 is the minimum value of τ for which stability change occurs, that is, the

system exhibits Hopf-bifurcation provided that the conditions of (ii) are satisfied.

Proof. (i) For τ = 0, the system is asymptotically stable and consequently all the

roots of (3.4) have negative real parts. For τ > 0, from Lemma 4.1(ii), we can say that

(3.4) will have no roots with zero real part and there will be no change in the stability

of the system.

(ii) If b3 < 0 or b3 ≥ 0, η+ > 0, and H(η+)≤ 0, then by Lemma 4.1(i) and (iii), equation

(4.7) has positive roots and consequently (3.4) has roots with zero real parts, that is, a

stability change will take place. The values of delays at which the stability change will

occur are given by (4.12) and for τ ≠ τ̂n, where q̂2 is a positive root of (4.7), equation

(3.4) has no roots with zero real part. The value τ0 is the minimum value for which (3.4)

has purely imaginary roots. It can also be proved that the system will be asymptotically

stable for τ < τ0.

(iii) Differentiating (3.4) with respect to τ , we get

dλ
dτ

= A4λe−λτ

3λ2+2A1λ+A2−A4τe−λτ
. (4.14)

Therefore,

d
dτ
[
Reλ

(
τ0
)]= q2

0

∆
H′(q̂2

0

)
, (4.15)

where

∆= (A2−3q̂2
0−A4τ0 cos q̂0τ0

)2+(2A1q̂0+A−4τ0 sin q̂0τ0
)2

(4.16)

and H(q̂2
0)= 3(q̂2

0)2+2b1q̂2
0+b2 > 0 as b1,b2 > 0.

Hence, by Hopf-bifurcation theorem, we can say that the system will undergo a Hopf-

bifurcation at τ = τ0.

From the above analysis, we see that if b3 < 0, then the condition (ii) of Theorem 4.2

is satisfied and the system will exhibit Hopf-bifurcation at τ = τ0. But b3 < 0 implies

that for small k,m> 1, where m is the Hill-coefficient, taking f(T) as in (3.11).

5. Effects of castration and T infusion. In this section, we first consider the hor-

monal changes of the system due to castration. After castration, the response rate for

the production of T reduces to zero and hence the equilibrium points are

R = f(0)
d1

, L= r2f(0)
d1d2

, T = 0. (5.1)



A DELAYED MATHEMATICAL MODEL FOR TESTOSTERONE SECRETION . . . 113

Here

L= f(0)
f
(
T∗
)L∗, R = f(0)

f
(
T∗
)R∗. (5.2)

Considering f(T) as in (3.11), we get

f(0)
f
(
T∗
) =

[
1+

(
T∗
)m
k

]
. (5.3)

Therefore, R > R∗ and L > L∗ by a factor 1+(T∗)m/k. Now for small k, we know that

the necessary condition for the pulsatile release prior to castration is m> 1. Thus for

small k, the postcastration LHRH and LH concentrations will be much higher than that

of precastration concentrations. This result agrees with the experimental observations

in many individuals [7].

Linearising system (2.1) about (R,L,T) and considering r3 = 0, we get the correspond-

ing characteristic equation as

λ3+(d1+d2+d3
)
λ2+(d1d2+d2d3+d1d3

)
λ+d1d2d3 = 0. (5.4)

Proposition 5.1. System (2.1), after castration, is always asymptotically stable.

Proof. As the characteristic roots of (5.2) are all negative, namely, −d1, −d2, and

−d3, the proof is obvious.

Next, we consider the effect of exogenous administration of T into the system. With

this modification, the system becomes,

dR
dt

= f(T)−d1R,

dL
dt

= r2R
(
t−τ1

)−d2L,

dT
dt

= r3L
(
t−τ2−τ0

)−d3T +π,

(5.5)

where π is the constant input of T. The new steady-state concentrations are

R0 = f
(
T0
)

d1
, L0 = r2f

(
T0
)

d1d2
, T0 = r2r3f

(
T0
)

d1d2d3
+ π
d3
. (5.6)

The corresponding characteristic equation will be

λ3+C1λ2+C2λ+C3+C4e−λ(τ0+τ1+τ2) = 0, (5.7)

where

C1 = d1+d2+d3, C2 = d1d2+d2d3+d3d1,

C3 = d1d2d3, C4 =−f ′
(
T0
)
r2r3.

(5.8)
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Taking f(T) = A/(k+Tm) and using Theorem 4.2(i), we conclude that there will be

no stability change if

d1d2d3T0

r2r3
≥ AmTm0(

k+Tm0
)2 , (5.9)

where T0 is the root of the equation

Tm+1d1d2d3+Tmπd2d3+kd1d2d3T +kπd2d3−Ar2r3 = 0. (5.10)

From this, we may conclude that proper infusion of T at a constant rate may cause

the suppression of the pulsatile or episodic release.

6. Discussion. In this paper, we have considered a complete LHRH-LH-T system

model based on certain qualitative experimental observations. The model partly shows

its utility in predicting several known results but mainly provides a concrete frame-

work in which one’s understanding of the physicochemical system is made explicit.

The most important feature of the model is its “built-in” clock-like biochemical oscil-

lator. Some other models of the reproductive system incorporate an external driving

function to mimic the oscillations. Such types of models, we feel, will be of limited value

in understanding the system.

In Section 3, we have performed the stability analysis of the system in the absence

of delays and found that unstability will occur for m> 8 approximately, where “m” is

the Hill coefficient of the feedback function. It has also been shown that the unstability

leads to the oscillation of the system at the bifurcation value k= kc .
In Section 4, we have considered the delay effects, namely, the transportation delays

of LHRH and LH into the bloodstream and synthesis delay of T. The stability analysis, in

this case, reveals that the system will be unstable for m> 1 approximately. From this

analysis, we conclude that, in the absence of delays, the system will be unstable form>
8 which is unnaturally high [11], whereas the same condition reduces to m> 1 when

delays are considered. Hence, the introduction of different delays makes the system

much more realistic as the conclusion in this case conforms with the experimental

observations more closely.

We have also shown that periodic fluctuation of T level in the bloodstream occurs

for an infinite number of values of the parameter τ which represents the sum of the

system delays. The transportation delays of different hormones in the bloodstream and

the synthesis delay of T (that is the interval between testis stimulation and T release)

vary among individuals. But the phenomenon of periodic fluctuations of blood levels of

T is present in all individuals though the periods may be different. This experimental

observation also supports our findings, as the sum of transportation and synthesis

delays for any particular individual may be taken as one of the infinite number of

values we have found for which oscillation of T level in the blood takes place and hence

establishes the phenomenon of periodic oscillation of T for all individuals.

Lastly, we have studied the effects of castration and T infusion. Our findings in the

first case showed that for small values of “k,” the serum concentration of LHRH and

LH will be much higher than normal in castrated animals. This result is in accordance

with the experimental observations of Dierschke et al. [7]. Regarding hormone therapy,
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our analysis revealed that the pulsatile release of different hormones into the blood-

stream can be suppressed by infusion of T at a specified constant rate—a phenomenon

observed experimentally by Bolt [2].
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