ON THE CLASS OF SQUARE PETRIE MATRICES INDUCED BY CYCLIC PERMUTATIONS

BAU-SEN DU

Received 2 September 2003

Let $n \ge 2$ be an integer and let $P = \{1, 2, ..., n, n+1\}$. Let Z_p denote the finite field $\{0, 1, 2, ..., p-1\}$, where $p \ge 2$ is a prime. Then every map σ on P determines a real $n \times n$ Petrie matrix A_{σ} which is known to contain information on the dynamical properties such as topological entropy and the Artin-Mazur zeta function of the linearization of σ . In this paper, we show that if σ is a *cyclic* permutation on P, then all such matrices A_{σ} are similar to one another over Z_2 (but not over Z_p for any prime $p \ge 3$) and their characteristic polynomials over Z_2 are all equal to $\sum_{k=0}^{n} x^k$. As a consequence, we obtain that if σ is a *cyclic* permutation on P, then the coefficients of the characteristic polynomial of A_{σ} are all odd integers and hence nonzero.

2000 Mathematics Subject Classification: 15A33, 15A36.

1. Introduction. Throughout this paper, let $n \ge 2$ be a fixed integer and let $P = \{1, 2, ..., n, n + 1\}$. For every integer $1 \le i \le n$, let $J_i = [i, i + 1]$. Let σ be a map from P into itself. The linearization of σ on P is defined as the continuous map f_{σ} from [1, n + 1] into itself such that $f_{\sigma}(k) = \sigma(k)$ for every integer $1 \le k \le n + 1$ and f_{σ} is linear on J_i for every integer $1 \le i \le n$. Let $A_{\sigma} = (a_{ij})$ be the *real* $n \times n$ matrix defined by $a_{ij} = 1$ if $f_{\sigma}(J_i) \supset J_j$ and $a_{ij} = 0$ otherwise. The definition of A_{σ} may seem opaque. But if we take J_i 's as the vertices of a directed graph and draw an arrow from the vertex J_i to the vertex J_j if $f_{\sigma}(J_i) \supset J_j$, then A_{σ} will be the adjacency matrix [4, page 17] of the resulting directed graph. For example, the adjacency matrix of the cyclic permutation $\sigma : 1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 1$ is given as

$$A_{\sigma} = \begin{bmatrix} 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$
 (1.1)

In the theory of discrete dynamical systems on the interval, this adjacency matrix A_{σ} turns out to contain much information on the dynamical properties of the map f_{σ} . For example, for some special types (including cyclic permutations) of σ , if $x^n + \sum_{k=0}^{n-1} a_k x^k$ is the characteristic polynomial of A_{σ} , then it is shown in [6] that the Artin-Mazur zeta function $\zeta(z)$ [2] of f_{σ} is $\zeta(z) = 1/(1 + \sum_{k=1}^{n} a_{n-k} z^k)$. On the other hand, it follows from [1, Theorem 4.4.5, page 222] or [4, Proposition 19, page 204] that the topological entropy of f_{σ} equals max{0,log}, where λ is the maximal eigenvalue of A_{σ} . Since every cyclic graph defines a communication channel, as defined by Shannon, we can claim that the logarithm of the largest eigenvalue of A_{σ} .

Due to the continuity of f_{σ} , it is clear that such matrices A_{σ} have entries either zeros or ones such that the ones in each *row* occur consecutively. Actually, we have $a_{ij} = 1$ for all $a_i \leq j \leq b_i - 1$, where $a_i = \min\{f_{\sigma}(i), f_{\sigma}(i+1)\}$ and $b_i = \max\{f_{\sigma}(i), f_{\sigma}(i+1)\}$, and $a_{ij} = 0$ elsewhere. For our purpose, we define a Petrie matrix [5] to be a matrix whose entries are either zeros or ones such that the ones in each *row* occur consecutively. So, the matrix A_{σ} induced by a map σ on P is a square Petrie matrix whose determinant is easily seen (by induction) [7] to be either 0 or ± 1 . For any prime number $p \geq 2$, let $Z_p = \{0, 1, 2, ..., p-1\}$ denote the usual finite field and let $W_{Z_p} = \{\sum_{i=1}^n r_i J_i \mid r_i \in Z_p, 1 \leq i \leq n\}$ be the n-dimensional vector space over Z_p with $\{J_i \mid 1 \leq i \leq n\}$ as a set of basis. Then the matrix A_{σ} (mod 2) defines a linear transformation ψ_{σ} on W_{Z_2} such that, for every integer $1 \leq i \leq n$, $\psi_{\sigma}(J_i) = \sum_{i=1}^n a_{ij} J_j$.

If both σ and ρ are just permutations on P, then it is easy to see that A_{σ} may not be similar to A_{ρ} over Z_2 . But if both σ and ρ are *cyclic* permutations on P, then we show, in this paper, that A_{σ} is similar to A_{ρ} over Z_2 (but A_{σ} may not be similar to A_{ρ} over Z_p for any prime $p \ge 3$) and their characteristic polynomials over Z_2 are all equal to $\sum_{k=0}^{n} x^k$. As a consequence, we obtain that if σ is a *cyclic* permutation, then the coefficients of the characteristic polynomial of A_{σ} are all odd integers and hence nonzero (not true in general if σ is not cyclic) with constant term ± 1 .

2. On the Petrie matrix A_{σ} over Z_2 with any map σ on P. In the following, we let [x : y] denote the closed interval on the real line with x and y as endpoints. For integers $1 \le k < j \le n+1$, we let [k, j] denote the element $\sum_{i=k}^{j-1} J_i$ of W_{Z_2} and call k and j the endpoints (this terminology will be used in the proof of Theorem 3.2 in Section 3) of the element $\sum_{i=k}^{j-1} J_i$. Part (2) of the following lemma is proved in [4, pages 22-23], which will be needed in Section 3. Here, we present a different proof (see also [3]).

LEMMA 2.1. Let n, P, J_i 's, σ , f_{σ} , W_{Z_2} , ψ_{σ} , A_{σ} be defined as in Section 1. Let ρ be a map from P into itself and let ψ_{ρ} and A_{ρ} be defined similarly. Then the following hold.

(1) Let $1 \le k < j \le n+1$ be any integers. Then for any element $[k, j] = \sum_{i=k}^{j-1} J_i$ in W_{Z_2} , $\psi_{\sigma}([k, j]) = [f_{\sigma}(k) : f_{\sigma}(j)]$.

(2) $\psi_{\rho} \circ \psi_{\sigma} = \psi_{\rho \circ \sigma}$ and $(A_{\sigma})(A_{\rho}) \equiv A_{\rho \circ \sigma} \pmod{2}$. Consequently, if σ is a permutation on *P*, then ψ_{σ} is invertible with inverse $\psi_{\sigma^{-1}}$ and A_{σ} is nonsingular with determinant ± 1 .

PROOF. It follows from the definition of ψ_{σ} in Section 1 that $\psi_{\sigma}(J_i) = [f_{\sigma}(i) : f_{\sigma}(i+1)]$ for every integer $1 \le i \le n$. Thus, we obtain that $\psi_{\sigma}([k, j]) = \psi_{\sigma}(\sum_{i=k}^{j-1} J_i) = \sum_{i=k}^{j-1} \psi_{\sigma}(J_i) = \sum_{i=k}^{j-1} [f_{\sigma}(i) : f_{\sigma}(i+1)] = [f_{\sigma}(k) : f_{\sigma}(j)]$ since 1 + 1 = 0 in Z_2 . This proves part (1).

By part (1), $\psi_{\sigma}([k, j]) = [f_{\sigma}(k) : f_{\sigma}(j)]$. Similarly, $\psi_{\rho}([k, j]) = [f_{\rho}(k) : f_{\rho}(j)]$. So, $(\psi_{\rho} \circ \psi_{\sigma})(J_i) = \psi_{\rho}([f_{\sigma}(i) : f_{\sigma}(i+1)]) = [f_{\rho}(f_{\sigma}(i)) : f_{\rho}(f_{\sigma}(i+1))] = [(\rho \circ \sigma)(i) :$ $(\rho \circ \sigma)(i+1)] = \psi_{\rho \circ \sigma}(J_i)$ since, on the finite set *P*, $f_{\sigma} = \sigma$ and $f_{\rho} = \rho$. This shows that $\psi_{\rho} \circ \psi_{\sigma} = \psi_{\rho \circ \sigma}$ on W_{Z_2} . Thus, if σ is a permutation on *P*, then $\psi_{\sigma^{-1}} \circ \psi_{\sigma} = \psi_{\sigma^{-1} \circ \sigma}$ is the identity map on W_{Z_2} , and so ψ_{σ} is an invertible linear transformation on W_{Z_2} with inverse $\psi_{\sigma^{-1}}$. The rest of part (2) can be easily proved and is omitted. This proves part (2) and completes the proof of Lemma 2.1. **3.** On the Petrie matrix A_{σ} with any cyclic permutation σ on *P*. We will need the following elementary result. We include its proof for completeness.

LEMMA 3.1. Let $1 \le j \le n$ be any fixed integer and let b denote the greatest common divisor of j and n + 1. Let s = (n + 1)/b. For every integer $1 \le k \le s - 1$, let $1 \le m_k \le n$ be the unique integer such that $kj \equiv m_k \pmod{n+1}$. Then the m_k 's are all distinct and $\{m_k \mid 1 \le k \le s - 1\} = \{kb \mid 1 \le k \le s - 1\}$.

PROOF. Let $B = \{m_k \mid 1 \le k \le s - 1\}$ and $C = \{kb \mid 1 \le k \le s - 1\}$. For every integer $1 \le k \le s - 1$, since j/b and (n+1)/b are relatively prime, the congruence equation $(j/b)x \equiv k(\operatorname{mod}(n+1)/b)$ has a solution in $1 \le x \le s - 1 = (n+1)/b - 1$. Consequently, for every integer $1 \le k \le s - 1$, the congruence equation $jx \equiv kb(\operatorname{mod} n + 1)$ has a solution in $1 \le x \le s - 1$. Since $1 \le kb \le n$ for every $1 \le k \le s - 1$, we obtain that $C \subset B$. Since both *B* and *C* contain exactly s - 1 elements, we have B = C. That is, $\{m_k \mid 1 \le k \le s - 1\} = \{kb \mid 1 \le k \le s - 1\}$. This completes the proof.

THEOREM 3.2. Let n, P, J_i 's, $\sigma, f_{\sigma}, W_{Z_2}, \psi_{\sigma}, A_{\sigma}$ be defined as in Section 1. Assume that σ is also a cyclic permutation on P. Then the following hold.

- (1) For every integer $1 \le i \le n$, $\sum_{k=0}^{n} \psi_{\sigma}^{k}(J_{i}) = 0$. Consequently, $\sum_{k=0}^{n} \psi_{\sigma}^{k}(w) = 0$ for all $w \in W_{Z_{2}}$.
- (2) Let $1 \le i \le n-1$ and $1 \le j \le n$ be two fixed integers such that $1 \le i < f_{\sigma}^{j}(i) \le n$ and let $J = [i, f_{\sigma}^{j}(i)] = \sum_{k=i}^{f_{\sigma}^{j}(i)-1} J_{k}$. Assume that j and n+1 are relatively prime. Then the set $\{\psi_{\sigma}^{k}(J) \mid 0 \le k \le n-1\}$ is a basis for $W_{Z_{2}}$.
- (3) For any cyclic permutations σ and ρ on P, ψ_σ and ψ_ρ are similar on W_{Z2}. Consequently, the Petrie matrices over Z₂ of all cyclic permutations on P are similar to one another and have the same characteristic polynomial Σⁿ_{k=0} x^k.
- (4) The coefficients of the characteristic polynomial of A_σ are all odd integers (and hence nonzero) with constant term ±1.

REMARK 3.3. Part (3) of the above theorem does not hold if the Petrie matrices of cyclic permutations are over the finite field Z_p for any prime $p \ge 3$. For example, if $P = \{1, 2, 3, 4, 5\}$, σ denotes the cyclic permutation $1 \rightarrow 2 \rightarrow 5 \rightarrow 4 \rightarrow 3 \rightarrow 1$, and ρ denotes the cyclic permutation $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1$, then A_{σ} and A_{ρ} are not similar over Z_p for any prime $p \ge 3$ because the characteristic polynomials of A_{σ} and A_{ρ} are $x^4 - x^3 - 3x^2 - 3x - 1$ and $x^4 - x^3 - x^2 - x - 1$, respectively, which are distinct over Z_p for any prime $p \ge 3$.

PROOF. For any fixed integer $1 \le i \le n$, let $1 \le j \le n$ be the unique integer such that $f_{\sigma}^{j}(i) = i+1$, and so $J_i = [i, i+1] = [i, f_{\sigma}^{j}(i)]$. Let b denote the greatest common divisor of j and n+1 and let s = (n+1)/b. For every integer $1 \le k \le s-1$, let $1 \le m_k \le n$ be the unique integer such that $kj \equiv m_k \pmod{n+1}$. Then, by Lemma 3.1, we obtain that $\{m_k \mid 1 \le k \le s-1\} = \{kb \mid 1 \le k \le s-1\}$. Let $m_0 = 0$. Then $\{m_k \mid 0 \le k \le s-1\} = \{kb \mid 1 \le k \le s-1\}$. Let $m_0 = 0$. Then $\{m_k \mid 0 \le k \le s-1\} = \{kb \mid 0 \le k \le s-1\}$. Hence, the set $\{0, 1, 2, 3, \dots, n-1, n\}$ is the disjoint union of the sets $\{m_k + m \mid 0 \le k \le s-1\}$, $0 \le m \le b-1$. Therefore, $\sum_{k=0}^{s-1} \psi_{\sigma}^{m_k}(J_i) = \sum_{k=0}^{s-1} \psi_{\sigma}^{k_j}(J_i)$ (since $kj \equiv m_k \pmod{n+1}$) = $[i : f_{\sigma}^{j}(i)] + [f_{\sigma}^{j}(i) : f_{\sigma}^{2^j}(i)] + [f_{\sigma}^{(s-1)j}(i) : i] = 0$. So, $\sum_{\ell=0}^{n} \psi_{\sigma}^{\ell}(J_i) = \sum_{k=0}^{b-1} \psi_{\sigma}^{m_k}(J_i) = 0$. This proves part (1).

For the proof of part (2), we first show that if *E* is a nonempty subset of $\{1, 2, 3, ..., n-1, n\}$ such that $J + \sum_{k \in E} \psi_{\sigma}^{k}(J) = \mathbf{0}$, then $E = \{1, 2, 3, ..., n-1, n\}$. Indeed, for every integer $1 \le k \le n$, let $1 \le m_k \le n$ be the unique integer such that $kj \equiv m_k \pmod{n+1}$. Assume that $m_1 = j \notin E$. Then, for any $m \in E$, $m \ne 0, j$. Since $\psi_{\sigma}^m(J) = \psi_{\sigma}^m([i, f_{\sigma}^j(i)]) = [f_{\sigma}^m(i) : f_{\sigma}^{m+j}(i)]$, the endpoints of $\psi_{\sigma}^m(J)$ do not contain the point $f_{\sigma}^j(i)$. Thus, in the expression of $\psi_{\sigma}^m(J)$ as a sum of the basis elements J_k 's, it contains either both the basis elements $J_{f_{\sigma}^j(i)-1}$ and $J_{f_{\sigma}^j(i)}$ or none of them. But, since $J = [i, f_{\sigma}^j(i)] = J_i + J_{i+1} + \cdots + J_{f_{\sigma}^j(i)-1}$ contains the element $J_{f_{\sigma}^j(i)-1}$, but not the element $J_{f_{\sigma}^j(i)}$, in its expression as a sum of the basis elements J_k 's, we obtain that in the expression of $J + \sum_{m \in E} \psi_{\sigma}^m(J)$ as a sum of the basis elements J_k 's, the coefficient of $J_{f_{\sigma}^j(i)-1}$ is different from that of $J_{f_{\sigma}^j(i)}$ by 1. This implies that $J + \sum_{m \in E} \psi_{\sigma}^m(J) \ne \mathbf{0}$, which is a contradiction. Therefore, $m_1 = j \in E$.

Thus,

$$\begin{aligned} \mathbf{0} &= J + \sum_{m \in E} \psi_{\sigma}^{m}(J) \\ &= J + \psi_{\sigma}^{j}(J) + \sum_{m \in E \setminus \{m_{1}\}} \psi_{\sigma}^{m}(J) \\ &= [i, f_{\sigma}^{j}(i)] + [f_{\sigma}^{j}(i) : f_{\sigma}^{2j}(i)] + \sum_{m \in E \setminus \{m_{1}\}} \psi_{\sigma}^{m}(J) \\ &= [i : f_{\sigma}^{2j}(i)] + \sum_{m \in E \setminus \{m_{1}\}} \psi_{\sigma}^{m}(J). \end{aligned}$$

$$(3.1)$$

Proceeding in this manner finitely many times, we obtain that $\{m_1, m_2, \dots, m_{n-1}\} \subset E$ and

$$\mathbf{0} = J + \sum_{m \in E} \psi_{\sigma}^{m}(J)$$

$$= [i: f_{\sigma}^{2j}(i)] + \sum_{m \in E \setminus \{m_{1}\}} \psi_{\sigma}^{m}(J)$$

$$= [i: f_{\sigma}^{3j}(i)] + \sum_{m \in E \setminus \{m_{1}, m_{2}\}} \psi_{\sigma}^{m}(J)$$

$$= \cdots = [i: f_{\sigma}^{nj}(i)]$$

$$+ \sum_{m \in E \setminus \{m_{1}, m_{2}, \dots, m_{n-1}\}} \psi_{\sigma}^{m}(J).$$
(3.2)

In particular, $\mathbf{0} = [i: f_{\sigma}^{nj}(i)] + \sum_{m \in E \setminus \{m_1, m_2, \dots, m_{n-1}\}} \psi_{\sigma}^m(J)$. If $m \in E$ and $m \neq m_n$, then, as above, since $m \neq 0$ and $m \neq m_n \equiv nj \pmod{n+1}$, the endpoints of $\psi_{\sigma}^m(J)$ do not contain the point $f_{\sigma}^{nj}(i)$. Hence, in the expression of $\psi_{\sigma}^m(J)$ as a sum of the basis elements J_k 's, it contains either both the basis elements $J_{f_{\sigma}^{nj}(i)-1}$ and $J_{f_{\sigma}^{nj}(i)}$ or none of them. But, since $[i, f_{\sigma}^{nj}(i)] = J_i + J_{i+1} + \dots + J_{f_{\sigma}^{nj}(i)-1}$ contains the element $J_{f_{\sigma}^{nj}(i)-1}$, not the element $J_{f_{\sigma}^{nj}(i)}$, in its expression as a sum of the basis elements J_k 's, we obtain that in the expression of $[i: f_{\sigma}^{nj}(i)] + \sum_{m \in E \setminus \{m_1, m_2, \dots, m_{n-1}\}} \psi_{\sigma}^m(J)$ as a sum of the basis elements J_k 's, the coefficient of $J_{f_{\sigma}^{nj}(i)-1}$ is different from that

of $J_{f_{\sigma}^{nj}(i)}$ by 1. This implies that $[i: f_{\sigma}^{nj}(i)] + \sum_{m \in E \setminus \{m_1, m_2, \dots, m_{n-1}\}} \Psi_{\sigma}^m(J) \neq \mathbf{0}$, which is a contradiction. Thus, $m_n = nj \in E$. Since, by assumption, j and n + 1 are relatively prime, we see that, by Lemma 3.1, $\{m_1, m_2, \dots, m_n\} = \{1, 2, \dots, n-1, n\}$. Since $\{m_1, m_2, \dots, m_n\} \subset E \subset \{1, 2, \dots, n-1, n\}$, we obtain that $E = \{1, 2, \dots, n-1, n\}$. This proves our assertion.

Now, assume that $\sum_{k=0}^{n-1} \alpha(k) \psi_{\sigma}^{k}(J) = 0$, where $\alpha(k) = 0$ or 1 in Z_{2} , $0 \le k \le n-1$. If $\alpha(0) = 0$ and $\alpha(\ell) \ne 0$ for some integer $1 \le \ell < n-1$, let ℓ be the smallest such integer; then, since ψ_{σ} is invertible by Lemma 2.1(2), we obtain that $J + \sum_{k=1}^{n-\ell-1} \alpha(k) \psi_{\sigma}^{k}(J) = 0$. So, without loss of generality, we may assume that $\alpha(0) \ne 0$. That is, we assume that $J + \sum_{k=1}^{n-1} \alpha(k) \psi_{\sigma}^{k}(J) = 0$. Let $E = \{k \mid 1 \le k \le n-1, \alpha(k) \ne 0\}$. Then, we have $J + \sum_{k \in E} \psi_{\sigma}^{k}(J) = 0$. But then it follows from what we have just proved above that $E = \{1, 2, ..., n-1, n\}$. This contradicts the assumption that $E \subset \{1, 2, ..., n-1\}$. So, the set $\{\psi_{\sigma}^{k}(J) \mid 0 \le k \le n-1\}$ is linearly independent and hence, by [8], is a basis for $W_{Z_{2}}$. This proves part (2).

Let θ denote the cyclic permutation $1 \to 2 \to 3 \to \cdots \to i \to i+1 \to \cdots \to n \to n+1 \to 1$ on *P* and let σ be any cyclic permutation on *P*. Choose any fixed integer $1 \le j \le n$ such that *j* and n+1 are relatively prime and let $J = [1, f_{\sigma}^{j}(1)]$. Then, by part (2), the set $\{\psi_{\sigma}^{k}(J) \mid 0 \le k \le n-1\}$ is a basis for W_{Z_2} . Let ϕ be the linear transformation on W_{Z_2} defined by $\phi(J_k) = \psi_{\sigma}^{k-1}(J), 1 \le k \le n$. Then ϕ is an isomorphism on W_{Z_2} . Furthermore, $(\phi \circ \psi_{\theta})(J_n) = \phi(\sum_{k=1}^n J_k) = \sum_{k=1}^n \phi(J_k) = \sum_{k=1}^n \psi_{\sigma}^{k-1}(J) = \psi_{\sigma}^n(J)$ (by part (1)) = $\psi_{\sigma}(\psi_{\sigma}^{n-1}(J)) = \psi_{\sigma}(\phi(J_n)) = (\psi_{\sigma} \circ \phi)(J_n)$ and, for every integer $1 \le k \le n-1$, $(\phi \circ \psi_{\theta})(J_k) = \phi(\psi_{\theta}(J_k)) = \phi(J_{k+1}) = \psi_{\sigma}^k(J) = \psi_{\sigma}(\psi_{\sigma}^{k-1}(J)) = \psi_{\sigma}(\phi(J_k)) = (\psi_{\sigma} \circ \phi)(J_k)$. Thus, ψ_{σ} is similar to ψ_{θ} through ϕ . Since the property of similarity is obviously transitive, we obtain that if ρ is any cyclic permutation on *P*, then ψ_{σ} and ψ_{ρ} are similar to one another and so have the same characteristic polynomial $\sum_{k=0}^n x^k$ since $\sum_{k=0}^n x^k$ is easily verified to be the characteristic polynomial of the Petrie matrix A_{θ} over Z_2 . This proves part (3).

Finally, let σ be a cyclic permutation on *P*. Since A_{σ} is a real $n \times n$ matrix with entries either zeros or ones, the coefficients of the characteristic polynomial of A_{σ} are all integers. By taking every entry in A_{σ} modulo 2 and applying part (3) and the fact that the determinants of Petrie matrices are either 0 or ± 1 , we obtain that the characteristic polynomial of A_{σ} (mod 2) is equal to $\sum_{k=0}^{n} x^{k}$. Consequently, the coefficients of the characteristic polynomial of A_{σ} are all odd integers with constant term ± 1 . This proves part (4) and completes the proof of Theorem 3.2.

ACKNOWLEDGMENT. The author would like to thank Professor Peter Jau-Shyong Shiue for his interest and many helpful suggestions which led to the improvement of this paper.

REFERENCES

- L. Alsedà, J. Llibre, and M. Misiurewicz, *Combinatorial Dynamics and Entropy in Dimen*sion One, 2nd ed., Advanced Series in Nonlinear Dynamics, vol. 5, World Scientific Publishing, New Jersey, 2000.
- [2] M. Artin and B. Mazur, On periodic points, Ann. of Math. (2) 81 (1965), 82-99.

- [3] C. Bernhardt, A proof of Sharkovsky's theorem, J. Difference Equ. Appl. 9 (2003), no. 3-4, 373-379.
- [4] L. S. Block and W. A. Coppel, *Dynamics in One Dimension*, Lecture Notes in Mathematics, vol. 1513, Springer-Verlag, Berlin, 1992.
- [5] R. A. Brualdi and H. J. Ryser, *Combinatorial Matrix Theory*, Encyclopedia of Mathematics and Its Applications, vol. 39, Cambridge University Press, Cambridge, 1991.
- B.-S. Du, *The linearisations of cyclic permutations have rational zeta functions*, Bull. Austral. Math. Soc. 62 (2000), no. 2, 287–295.
- [7] M. Gordon and E. M. Wilkinson, *Determinants of Petrie matrices*, Pacific J. Math. 51 (1974), 451-453.
- [8] I. N. Herstein, *Topics in Algebra*, Blaisdell Publishing, New York, 1964.

Bau-Sen Du: Institute of Mathematics, Academia Sinica, Taipei 11529, Taiwan *E-mail address*: mabsdu@sinica.edu.tw