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ON THE CLASS OF SQUARE PETRIE MATRICES
INDUCED BY CYCLIC PERMUTATIONS
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Let n≥ 2 be an integer and let P = {1,2, . . . ,n,n+1}. Let Zp denote the finite field {0,1,2, . . . ,
p−1}, where p ≥ 2 is a prime. Then every map σ on P determines a real n×n Petrie matrix
Aσ which is known to contain information on the dynamical properties such as topological
entropy and the Artin-Mazur zeta function of the linearization of σ . In this paper, we show
that if σ is a cyclic permutation on P , then all such matrices Aσ are similar to one another
over Z2 (but not over Zp for any prime p ≥ 3) and their characteristic polynomials over Z2

are all equal to
∑n
k=0xk. As a consequence, we obtain that if σ is a cyclic permutation on P ,

then the coefficients of the characteristic polynomial of Aσ are all odd integers and hence
nonzero.

2000 Mathematics Subject Classification: 15A33, 15A36.

1. Introduction. Throughout this paper, let n ≥ 2 be a fixed integer and let P =
{1,2, . . . ,n,n+1}. For every integer 1 ≤ i ≤ n, let Ji = [i,i+1]. Let σ be a map from

P into itself. The linearization of σ on P is defined as the continuous map fσ from

[1,n+1] into itself such that fσ (k) = σ(k) for every integer 1 ≤ k ≤ n+1 and fσ is

linear on Ji for every integer 1≤ i≤n. Let Aσ = (aij) be the real n×n matrix defined

by aij = 1 if fσ (Ji)⊃ Jj and aij = 0 otherwise. The definition of Aσ may seem opaque.

But if we take Ji’s as the vertices of a directed graph and draw an arrow from the vertex

Ji to the vertex Jj if fσ (Ji)⊃ Jj , then Aσ will be the adjacency matrix [4, page 17] of the

resulting directed graph. For example, the adjacency matrix of the cyclic permutation

σ : 1→ 2→ 5→ 4→ 3→ 1 is given as

Aσ =




0 1 1 1
1 1 1 1
1 1 0 0
0 0 1 0


 . (1.1)

In the theory of discrete dynamical systems on the interval, this adjacency matrix Aσ
turns out to contain much information on the dynamical properties of the map fσ . For

example, for some special types (including cyclic permutations) of σ , if xn+∑n−1
k=0 akxk

is the characteristic polynomial of Aσ , then it is shown in [6] that the Artin-Mazur zeta

function ζ(z) [2] of fσ is ζ(z) = 1/(1+∑nk=1an−kzk). On the other hand, it follows

from [1, Theorem 4.4.5, page 222] or [4, Proposition 19, page 204] that the topological

entropy of fσ equals max{0, logλ}, where λ is the maximal eigenvalue of Aσ . Since

every cyclic graph defines a communication channel, as defined by Shannon, we can

claim that the logarithm of the largest eigenvalue of Aσ gives its channel capacity. This

motivates further investigation of such matrices Aσ .
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Due to the continuity of fσ , it is clear that such matrices Aσ have entries either zeros

or ones such that the ones in each row occur consecutively. Actually, we have aij = 1 for

all ai ≤ j ≤ bi−1, where ai =min{fσ (i),fσ (i+1)} and bi =max{fσ (i),fσ (i+1)}, and

aij = 0 elsewhere. For our purpose, we define a Petrie matrix [5] to be a matrix whose

entries are either zeros or ones such that the ones in each row occur consecutively. So,

the matrix Aσ induced by a map σ on P is a square Petrie matrix whose determinant

is easily seen (by induction) [7] to be either 0 or ±1. For any prime number p ≥ 2, let

Zp = {0,1,2, . . . ,p−1} denote the usual finite field and letWZp = {
∑n
i=1 riJi | ri ∈ Zp,1≤

i≤n} be the n-dimensional vector space over Zp with {Ji | 1≤ i≤n} as a set of basis.

Then the matrix Aσ(mod2) defines a linear transformation ψσ on WZ2 such that, for

every integer 1≤ i≤n, ψσ(Ji)=
∑n
j=1aijJj .

If both σ and ρ are just permutations on P , then it is easy to see that Aσ may not be

similar toAρ over Z2. But if both σ and ρ are cyclic permutations on P , then we show, in

this paper, that Aσ is similar to Aρ over Z2 (but Aσ may not be similar to Aρ over Zp for

any prime p ≥ 3) and their characteristic polynomials over Z2 are all equal to
∑n
k=0xk.

As a consequence, we obtain that if σ is a cyclic permutation, then the coefficients of

the characteristic polynomial of Aσ are all odd integers and hence nonzero (not true in

general if σ is not cyclic) with constant term ±1.

2. On the Petrie matrix Aσ over Z2 with any map σ on P . In the following, we

let [x : y] denote the closed interval on the real line with x and y as endpoints. For

integers 1≤ k < j ≤n+1, we let [k,j] denote the element
∑j−1
i=k Ji ofWZ2 and call k and

j the endpoints (this terminology will be used in the proof of Theorem 3.2 in Section 3)

of the element
∑j−1
i=k Ji. Part (2) of the following lemma is proved in [4, pages 22-23],

which will be needed in Section 3. Here, we present a different proof (see also [3]).

Lemma 2.1. Let n, P , Ji’s, σ , fσ , WZ2 , ψσ , Aσ be defined as in Section 1. Let ρ be a

map from P into itself and let ψρ and Aρ be defined similarly. Then the following hold.

(1) Let 1≤ k < j ≤n+1 be any integers. Then for any element [k,j]=∑j−1
i=k Ji in WZ2 ,

ψσ([k,j])= [fσ (k) : fσ (j)].
(2)ψρ ◦ψσ =ψρ◦σ and (Aσ)(Aρ)≡Aρ◦σ (mod2). Consequently, if σ is a permutation

on P , then ψσ is invertible with inverse ψσ−1 and Aσ is nonsingular with determinant

±1.

Proof. It follows from the definition of ψσ in Section 1 that ψσ(Ji) = [fσ (i) :

fσ (i+1)] for every integer 1≤ i≤ n. Thus, we obtain that ψσ([k,j])=ψσ(
∑j−1
i=k Ji)=∑j−1

i=k ψσ(Ji)=
∑j−1
i=k[fσ (i) : fσ (i+1)]= [fσ (k) : fσ (j)] since 1+1= 0 in Z2. This proves

part (1).

By part (1), ψσ([k,j]) = [fσ (k) : fσ (j)]. Similarly, ψρ([k,j]) = [fρ(k) : fρ(j)]. So,

(ψρ ◦ψσ)(Ji) = ψρ([fσ (i) : fσ (i+ 1)]) = [fρ(fσ (i)) : fρ(fσ (i+ 1))] = [(ρ ◦σ)(i) :

(ρ◦σ)(i+1)]=ψρ◦σ (Ji) since, on the finite set P , fσ = σ and fρ = ρ. This shows that

ψρ ◦ψσ =ψρ◦σ on WZ2 . Thus, if σ is a permutation on P , then ψσ−1 ◦ψσ =ψσ−1◦σ is

the identity map on WZ2 , and so ψσ is an invertible linear transformation on WZ2 with

inverse ψσ−1 . The rest of part (2) can be easily proved and is omitted. This proves part

(2) and completes the proof of Lemma 2.1.
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3. On the Petrie matrix Aσ with any cyclic permutation σ on P . We will need the

following elementary result. We include its proof for completeness.

Lemma 3.1. Let 1≤ j ≤n be any fixed integer and let b denote the greatest common

divisor of j and n+1. Let s = (n+1)/b. For every integer 1 ≤ k ≤ s−1, let 1 ≤mk ≤ n
be the unique integer such that kj ≡mk(modn+1). Then the mk’s are all distinct and

{mk | 1≤ k≤ s−1} = {kb | 1≤ k≤ s−1}.
Proof. Let B = {mk | 1 ≤ k ≤ s−1} and C = {kb | 1 ≤ k ≤ s−1}. For every integer

1 ≤ k ≤ s−1, since j/b and (n+1)/b are relatively prime, the congruence equation

(j/b)x ≡ k(mod(n+1)/b) has a solution in 1≤ x ≤ s−1= (n+1)/b−1. Consequently,

for every integer 1 ≤ k ≤ s − 1, the congruence equation jx ≡ kb(modn+ 1) has a

solution in 1 ≤ x ≤ s − 1. Since 1 ≤ kb ≤ n for every 1 ≤ k ≤ s − 1, we obtain that

C ⊂ B. Since both B and C contain exactly s − 1 elements, we have B = C . That is,

{mk | 1≤ k≤ s−1} = {kb | 1≤ k≤ s−1}. This completes the proof.

Theorem 3.2. Let n, P , Ji’s, σ , fσ , WZ2 , ψσ , Aσ be defined as in Section 1. Assume

that σ is also a cyclic permutation on P . Then the following hold.

(1) For every integer 1 ≤ i ≤ n,
∑n
k=0ψkσ(Ji) = 0. Consequently,

∑n
k=0ψkσ(w) = 0 for

all w ∈WZ2 .

(2) Let 1 ≤ i ≤ n−1 and 1 ≤ j ≤ n be two fixed integers such that 1 ≤ i < f jσ (i) ≤ n
and let J = [i,f jσ (i)]=

∑fjσ (i)−1
k=i Jk. Assume that j and n+1 are relatively prime.

Then the set {ψkσ(J) | 0≤ k≤n−1} is a basis for WZ2 .

(3) For any cyclic permutations σ and ρ on P , ψσ and ψρ are similar on WZ2 . Con-

sequently, the Petrie matrices over Z2 of all cyclic permutations on P are similar

to one another and have the same characteristic polynomial
∑n
k=0xk.

(4) The coefficients of the characteristic polynomial of Aσ are all odd integers (and

hence nonzero) with constant term ±1.

Remark 3.3. Part (3) of the above theorem does not hold if the Petrie matrices of

cyclic permutations are over the finite field Zp for any prime p ≥ 3. For example, if

P = {1,2,3,4,5}, σ denotes the cyclic permutation 1 → 2 → 5 → 4 → 3 → 1, and ρ
denotes the cyclic permutation 1→ 2→ 3→ 4→ 5→ 1, then Aσ and Aρ are not similar

over Zp for any prime p ≥ 3 because the characteristic polynomials of Aσ and Aρ are

x4−x3−3x2−3x−1 and x4−x3−x2−x−1, respectively, which are distinct over Zp
for any prime p ≥ 3.

Proof. For any fixed integer 1≤ i≤n, let 1≤ j ≤n be the unique integer such that

f jσ (i)= i+1, and so Ji = [i,i+1]= [i,f jσ (i)]. Let b denote the greatest common divisor

of j and n+1 and let s = (n+1)/b. For every integer 1 ≤ k ≤ s−1, let 1 ≤mk ≤ n be

the unique integer such that kj ≡mk(modn+1). Then, by Lemma 3.1, we obtain that

{mk | 1≤ k≤ s−1} = {kb | 1≤ k≤ s−1}. Let m0 = 0. Then {mk | 0≤ k≤ s−1} = {kb |
0≤ k≤ s−1}. Hence, the set {0,1,2,3, . . . ,n−1,n} is the disjoint union of the sets {mk+
m | 0 ≤ k ≤ s−1}, 0 ≤m ≤ b−1. Therefore,

∑s−1
k=0ψ

mk
σ (Ji) =

∑s−1
k=0ψ

kj
σ (Ji) (since kj ≡

mk(modn+ 1)) = [i : f jσ (i)]+ [f jσ (i) : f 2j
σ (i)]+ [f 2j

σ (i) : f 3j
σ (i)]+ ··· + [f (s−2)j

σ (i) :

f (s−1)j
σ (i)]+ [f (s−1)j

σ (i) : i] = 0. So,
∑n
�=0ψ�σ(Ji) =

∑b−1
m=0ψmσ (

∑s−1
k=0ψ

mk
σ (Ji)) = 0. This

proves part (1).
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For the proof of part (2), we first show that if E is a nonempty subset of {1,2,3, . . . ,
n−1,n} such that J+∑k∈E ψkσ (J) = 0, then E = {1,2,3, . . . ,n−1,n}. Indeed, for every

integer 1≤ k≤ n, let 1≤mk ≤ n be the unique integer such that kj ≡mk(modn+1).
Assume thatm1 = j ∉ E. Then, for anym∈ E,m 	= 0,j. Sinceψmσ (J)=ψmσ ([i,f jσ (i)])=
[fmσ (i) : fm+jσ (i)], the endpoints of ψmσ (J) do not contain the point f jσ (i). Thus, in the

expression of ψmσ (J) as a sum of the basis elements Jk’s, it contains either both the

basis elements J
fjσ (i)−1

and J
fjσ (i)

or none of them. But, since J = [i,f jσ (i)]= Ji+Ji+1+
···+J

fjσ (i)−1
contains the element J

fjσ (i)−1
, but not the element J

fjσ (i)
, in its expression

as a sum of the basis elements Jk’s, we obtain that in the expression of J+∑m∈E ψmσ (J)
as a sum of the basis elements Jk’s, the coefficient of J

fjσ (i)−1
is different from that of

J
fjσ (i)

by 1. This implies that J+∑m∈E ψmσ (J) 	= 0, which is a contradiction. Therefore,

m1 = j ∈ E.

Thus,

0= J+
∑

m∈E
ψmσ (J)

= J+ψjσ (J)+
∑

m∈E\{m1}
ψmσ (J)

= [i,f jσ (i)
]+[f jσ (i) : f 2j

σ (i)
]+

∑

m∈E\{m1}
ψmσ (J)

= [i : f 2j
σ (i)

]+
∑

m∈E\{m1}
ψmσ (J).

(3.1)

Proceeding in this manner finitely many times, we obtain that {m1,m2, . . . ,mn−1} ⊂ E
and

0= J+
∑

m∈E
ψmσ (J)

= [i : f 2j
σ (i)

]+
∑

m∈E\{m1}
ψmσ (J)

= [i : f 3j
σ (i)

]+
∑

m∈E\{m1,m2}
ψmσ (J)

= ··· = [i : fnjσ (i)
]

+
∑

m∈E\{m1,m2,...,mn−1}
ψmσ (J).

(3.2)

In particular, 0 = [i : fnjσ (i)]+
∑
m∈E\{m1,m2,...,mn−1}ψ

m
σ (J). If m ∈ E and m 	= mn,

then, as above, since m 	= 0 and m 	=mn ≡ nj(modn+1), the endpoints of ψmσ (J)
do not contain the point fnjσ (i). Hence, in the expression of ψmσ (J) as a sum of the

basis elements Jk’s, it contains either both the basis elements J
fnjσ (i)−1

and J
fnjσ (i)

or

none of them. But, since [i,fnjσ (i)] = Ji + Ji+1 + ··· + Jfnjσ (i)−1
contains the element

J
fnjσ (i)−1

, not the element J
fnjσ (i)

, in its expression as a sum of the basis elements

Jk’s, we obtain that in the expression of [i : fnjσ (i)]+
∑
m∈E\{m1,m2,...,mn−1}ψ

m
σ (J) as

a sum of the basis elements Jk’s, the coefficient of J
fnjσ (i)−1

is different from that
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of J
fnjσ (i)

by 1. This implies that [i : fnjσ (i)]+
∑
m∈E\{m1,m2,...,mn−1}ψ

m
σ (J) 	= 0, which

is a contradiction. Thus, mn = nj ∈ E. Since, by assumption, j and n+ 1 are rela-

tively prime, we see that, by Lemma 3.1, {m1,m2, . . . ,mn} = {1,2, . . . ,n− 1,n}. Since

{m1,m2, . . . ,mn} ⊂ E ⊂ {1,2, . . . ,n− 1,n}, we obtain that E = {1,2, . . . ,n− 1,n}. This

proves our assertion.

Now, assume that
∑n−1
k=0 α(k)ψkσ (J) = 0, where α(k) = 0 or 1 in Z2, 0 ≤ k ≤ n−1. If

α(0)= 0 and α(�) 	= 0 for some integer 1≤ � < n−1, let � be the smallest such integer;

then, since ψσ is invertible by Lemma 2.1(2), we obtain that J+∑n−�−1
k=1 α(k)ψkσ (J) =

0. So, without loss of generality, we may assume that α(0) 	= 0. That is, we assume

that J +∑n−1
k=1 α(k)ψkσ (J) = 0. Let E = {k | 1 ≤ k ≤ n− 1,α(k) 	= 0}. Then, we have

J +∑k∈E ψkσ (J) = 0. But then it follows from what we have just proved above that

E = {1,2, . . . ,n−1,n}. This contradicts the assumption that E ⊂ {1,2, . . . ,n−1}. So, the

set {ψkσ(J) | 0≤ k≤n−1} is linearly independent and hence, by [8], is a basis for WZ2 .

This proves part (2).

Let θ denote the cyclic permutation 1→ 2→ 3→ ··· → i→ i+1→ ··· →n→n+1→ 1

on P and let σ be any cyclic permutation on P . Choose any fixed integer 1≤ j ≤n such

that j and n+1 are relatively prime and let J = [1,f jσ (1)]. Then, by part (2), the set

{ψkσ(J) | 0 ≤ k ≤ n−1} is a basis for WZ2 . Let φ be the linear transformation on WZ2

defined by φ(Jk) = ψk−1
σ (J), 1 ≤ k ≤ n. Then φ is an isomorphism on WZ2 . Further-

more, (φ◦ψθ)(Jn) =φ(
∑n
k=1 Jk) =

∑n
k=1φ(Jk) =

∑n
k=1ψk−1

σ (J) =ψnσ(J) (by part (1)) =
ψσ(ψn−1

σ (J)) = ψσ(φ(Jn)) = (ψσ ◦φ)(Jn) and, for every integer 1 ≤ k ≤ n−1, (φ ◦
ψθ)(Jk) =φ(ψθ(Jk)) =φ(Jk+1) =ψkσ(J) =ψσ(ψk−1

σ (J)) =ψσ(φ(Jk)) = (ψσ ◦φ)(Jk).
Thus, ψσ is similar to ψθ through φ. Since the property of similarity is obviously tran-

sitive, we obtain that if ρ is any cyclic permutation on P , then ψσ and ψρ are similar

on WZ2 . Consequently, by [8], the Petrie matrices (over Z2) of all cyclic permutations on

P are similar to one another and so have the same characteristic polynomial
∑n
k=0xk

since
∑n
k=0xk is easily verified to be the characteristic polynomial of the Petrie matrix

Aθ over Z2. This proves part (3).

Finally, let σ be a cyclic permutation on P . Since Aσ is a real n×n matrix with

entries either zeros or ones, the coefficients of the characteristic polynomial of Aσ are

all integers. By taking every entry inAσ modulo 2 and applying part (3) and the fact that

the determinants of Petrie matrices are either 0 or ±1, we obtain that the characteristic

polynomial of Aσ(mod2) is equal to
∑n
k=0xk. Consequently, the coefficients of the

characteristic polynomial of Aσ are all odd integers with constant term ±1. This proves

part (4) and completes the proof of Theorem 3.2.
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