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ON THE CLASS OF SQUARE PETRIE MATRICES
INDUCED BY CYCLIC PERMUTATIONS
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Letn > 2 be aninteger and let P = {1,2,...,n,n+1}. Let Z, denote the finite field {0,1,2,...,
p—1},where p > 2 is a prime. Then every map o on P determines a real n X n Petrie matrix
Ay which is known to contain information on the dynamical properties such as topological
entropy and the Artin-Mazur zeta function of the linearization of ¢. In this paper, we show
that if o is a cyclic permutation on P, then all such matrices A, are similar to one another
over Z» (but not over Z, for any prime p > 3) and their characteristic polynomials over Z»
are all equal to >} xk. As a consequence, we obtain that if o is a cyclic permutation on P,
then the coefficients of the characteristic polynomial of A, are all odd integers and hence
nonzero.

2000 Mathematics Subject Classification: 15A33, 15A36.

1. Introduction. Throughout this paper, let n > 2 be a fixed integer and let P =
{1,2,...,m,n + 1}. For every integer 1 <i <mn, let J; = [i,i+ 1]. Let 0 be a map from
P into itself. The linearization of o on P is defined as the continuous map f, from
[1,n+ 1] into itself such that f; (k) = o (k) for every integer 1 <k <mn+1 and f is
linear on J; for every integer 1 < i < n. Let Ay = (a;;) be the real n x n matrix defined
by a;j = 11if f,(Ji) D Jj and a;; = 0 otherwise. The definition of A, may seem opaque.
But if we take J;’s as the vertices of a directed graph and draw an arrow from the vertex
Ji to the vertex J; if f; (Ji) D Jj, then A, will be the adjacency matrix [4, page 17] of the
resulting directed graph. For example, the adjacency matrix of the cyclic permutation
0:1-2-5-4-3-1Iisgivenas

01 1 1
111 1 1

A"*1100 (LD
0 01 0

In the theory of discrete dynamical systems on the interval, this adjacency matrix A,
turns out to contain much information on the dynamical properties of the map f,,. For
example, for some special types (including cyclic permutations) of o, if x™ + ZQ;& agxk
is the characteristic polynomial of A, then it is shown in [6] that the Artin-Mazur zeta
function €(z) [2] of f is C(z) = 1/(1+ X1 an-kz*). On the other hand, it follows
from [1, Theorem 4.4.5, page 222] or [4, Proposition 19, page 204] that the topological
entropy of f; equals max{0,logA}, where A is the maximal eigenvalue of A,. Since
every cyclic graph defines a communication channel, as defined by Shannon, we can
claim that the logarithm of the largest eigenvalue of A, gives its channel capacity. This
motivates further investigation of such matrices Ag-.
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Due to the continuity of f, itis clear that such matrices A, have entries either zeros
or ones such that the ones in each row occur consecutively. Actually, we have a;; = 1 for
all a; < j < b;—1,where a; = min{ f; (i), fo(i+ 1)} and b; = max{f, (i), fs(i+1)}, and
aij = 0 elsewhere. For our purpose, we define a Petrie matrix [5] to be a matrix whose
entries are either zeros or ones such that the ones in each row occur consecutively. So,
the matrix A, induced by a map o on P is a square Petrie matrix whose determinant
is easily seen (by induction) [7] to be either O or +1. For any prime number p > 2, let
Zy =1{0,1,2,...,p—1} denote the usual finite field and let Wz, = {Z?zl rviJilvi€e Zy,1<
i < n} be the n-dimensional vector space over Z, with {J; | 1 <i <mn} as a set of basis.
Then the matrix A, (mod2) defines a linear transformation , on W, such that, for
every integer 1 <i<mn, Yy (Ji) = X7 aijJj.

If both o and p are just permutations on P, then it is easy to see that A, may not be
similar to A, over Z,. Butif both o and p are cyclic permutations on P, then we show, in
this paper, that A, is similar to A, over Z; (but A, may not be similar to A, over Z,, for
any prime p > 3) and their characteristic polynomials over Z» are all equal to > ;_,xk.
As a consequence, we obtain that if o is a cyclic permutation, then the coefficients of
the characteristic polynomial of A, are all odd integers and hence nonzero (not true in
general if ¢ is not cyclic) with constant term =+1.

2. On the Petrie matrix A, over Z, with any map o on P. In the following, we
let [x : ] denote the closed interval on the real line with x and y as endpoints. For
integers 1 <k < j <mn+1, welet [k, j] denote the element 2{:,1 Ji of Wz, and call k and
J the endpoints (this terminology will be used in the proof of Theorem 3.2 in Section 3)
of the element Z{;,i Ji. Part (2) of the following lemma is proved in [4, pages 22-23],
which will be needed in Section 3. Here, we present a different proof (see also [3]).

LEMMA 2.1. Letn, P, Ji’s, 0, fo, Wz,, Wo, Ay be defined as in Section 1. Let p be a
map from P into itself and let , and A, be defined similarly. Then the following hold.
(1) Let 1 <k < j <n+1 be any integers. Then for any element [k, j] = Z{;,l JiinWz,,
Q) YpoWo =Wpeo and (Ay)(Ap) = Apee (mod 2). Consequently, if o is a permutation
on P, then  is invertible with inverse Y -1 and A, is nonsingular with determinant

+1.

PROOF. It follows from the definition of y, in Section 1 that @, (J;) = [fs (i) :
fo(i+1)] for every integer 1 < i <n. Thus, we obtain that @ ([k,j]) = (/J(,(Z{;,l Ji) =
ST WeUn) = SI0Ufo (i) foli+1)] = [fo (k) : fo(j)] since 1+1 = 0in Z,. This proves
part (1).

By part (1), @o ([k,j]) = [fo (k) : fo(j)]. Similarly, @, ([k,j]) = [fp (k) : f,(j)]. So,
(Wpowe)Ji) = Yplfo (i) : fo(i+1)]) = [fp(fo (D)) : fo(fo(i+1))] = [(poo)(@):
(poo)(i+1)] = Wp.o(Ji) since, on the finite set P, f, = o and f, = p. This shows that
WYpoWy = Yoo 0N Wyz,. Thus, if o is a permutation on P, then @ -1 oYy = Yy-1,, IS
the identity map on Wz,, and so /. is an invertible linear transformation on W, with
inverse 1. The rest of part (2) can be easily proved and is omitted. This proves part
(2) and completes the proof of Lemma 2.1. O



ON THE CLASS OF SQUARE PETRIE MATRICES ... 1619

3. On the Petrie matrix A, with any cyclic permutation o on P. We will need the
following elementary result. We include its proof for completeness.

LEMMA 3.1. Let 1 < j <n be any fixed integer and let b denote the greatest common
divisor of j and n+ 1. Let s = (n+1)/b. For every integer 1 <k <s—1,letl <my<n
be the unique integer such that kj = my(modn + 1). Then the my’s are all distinct and
Mmpll<k=<s-1}={kb|1<k<s-1}.

PROOF. letB={my|1l<k=<s—1}and C={kb|1 <k <s-1}.For every integer
1 <k<s-1,since j/b and (n+1)/b are relatively prime, the congruence equation
(j/b)x = k(mod(n+1)/b) hasasolutioninl <x <s—1=(n+1)/b—1.Consequently,
for every integer 1 < k < s — 1, the congruence equation jx = kb(modn + 1) has a
solution in 1 < x < s—1. Since 1 < kb < n for every 1 < k < s — 1, we obtain that
C C B. Since both B and C contain exactly s — 1 elements, we have B = C. That is,
{mp|l1<k<s—1}=1{kb|1 <k <s—1}. This completes the proof. O

THEOREM 3.2. Letn, P, Ji’s, 0, fo, Wz,, Yo, As be defined as in Section 1. Assume
that o is also a cyclic permutation on P. Then the following hold.

(1) For every integer 1 <i <n, >¢_oWwk(J;) = 0. Consequently, > ;_,wk (w) = 0 for
allw € Wyz,.

(2) Letl<i<m-landl < J < n be two fixed integers such that 1 < i < f(J;(i) n
and let J = [i,f(J}(L) Zf" - ljk. Assume that j and n+ 1 are relatively prime.
Then the set {t//’f,(]) |0 <k <n-1} is a basis for Wg,.

(3) For any cyclic permutations o and p on P, Y, and y, are similar on W,. Con-
sequently, the Petrie matrices over Z» of all cyclic permutations on P are similar
to one another and have the same characteristic polynomial > }_, x*.

(4) The coefficients of the characteristic polynomial of A, are all odd integers (and
hence nonzero) with constant term +1.

REMARK 3.3. Part (3) of the above theorem does not hold if the Petrie matrices of
cyclic permutations are over the finite field Z, for any prime p > 3. For example, if
P = {1,2,3,4,5}, o denotes the cyclic permutation 1 - 2 -5 -4 -3 - 1, and p
denotes the cyclic permutation 1 - 2 - 3 - 4 - 5 — 1, then A, and A, are not similar
over Z, for any prime p > 3 because the characteristic polynomials of A, and A, are
x*—x3-3x2-3x -1 and x* - x3 — x% — x — 1, respectively, which are distinct over Z,
for any prime p > 3.

PROOF. For any fixed integer 1 <i <n, let 1 < j < n be the unique integer such that
chr'(i) =i+1,and so J; = [i,i+1] = [, f,I )1. Let b denote the greatest common divisor
of jand n+1 and let s = (n+1)/b. For every integer 1 <k <s—1,let 1 <my <n be
the unique integer such that kj = my(modn + 1). Then, by Lemma 3.1, we obtain that
mpll<k=<s—-1}={kb|1<k=<s—1}.Letmo=0.Then {my |0<k=<s-1}={kb|
0 <k <s—1}.Hence, theset {0,1,2,3,...,n—1,n} is the disjoint union of the sets {my +
m|0<k<s—1}, O <m<b-1. Therefore Sic Owak(JL) = Zk LWk (Ji) (since kj =
mk(modn+1)) = fU(l) LA fF D1+ (l) S+ + 50
f(S UJ ]+[f((1371)j( :1] = 0. So, ZB OWO' (Ji) = Zm OWO' Zk Owgk(]l)) = 0. This
proves part (1).
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For the proof of part (2), we first show that if E is a nonempty subset of {1,2,3,...,
n—1,n} such that J + > gk (J) =0, then E = {1,2,3,...,n—1,n}. Indeed, for every
integer 1 < k <mn, let 1 < my < n be the unique integer such that kj = my(modn+1).
Assume that m; = j ¢ E. Then, forany m € E, m # 0, j. Since ¢ (J) = (pg‘([i,fcj}(i)]) =
[Lfm (i) : fo¥*7 (i)], the endpoints of ¢ (J) do not contain the point 3 (i). Thus, in the
expression of ¢/ (J) as a sum of the basis elements Ji’s, it contains either both the
basis elements ffg,’(iH and Jfﬂ;(i) or none of them. But, since J = [i,fﬂ}(i)] =Ji+Jis1+
cee JrJf(JT'(i)i1 contains the element Jfg(i)—l‘ but not the element Jfﬂ,'u)’ in its expression
as a sum of the basis elements Ji’'s, we obtain that in the expression of J+>,,cx W& (J)
as a sum of the basis elements Ji’s, the coefficient of J 1 is different from that of
Jf{}(i) by 1. This implies that J + > ,,,cr ¢ (J) # 0, which is a contradiction. Therefore,
m; =j€E.

Thus,

0=J+ > W)

mekE
=J+yusD+ > wr)

meE\{mq}
S J 2j . (3.1
=L, O+ O D1+ D i)

meE\{my }

=li:fF D]+ > wr.

meE\{my}

Proceeding in this manner finitely many times, we obtain that {m,,m»,...,my_1} CE
and

0=J+ > @)

meE
=i fF O+ > wr)
meE\{mq}
=li:fFl+ > wry) (3.2)
meE\{my,mp}
== [ YD)
+ > wa ().

meE\{my,my,...mu_1}

then, as above, since m # 0 and m # my = nj(modn + 1), the endpoints of Y (J)
do not contain the point £ (i). Hence, in the expression of W (J) as a sum of the

basis elements J’s, it contains either both the basis elements J 191 and J 1y OF
Jo - Jo

none of them. But, since [i,félj(i)] =Ji+ Jis1+--- +anj(i) 1 contains the element
1 (1)
n,

J U not the element J e in its expression as a sum of the basis elements
o - o

a sum of the basis elements J;’s, the coefficient of J M is different from that
1 (1)
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is a contradiction. Thus, m,, = nj € E. Since, by assumption, j and n + 1 are rela-
tively prime, we see that, by Lemma 3.1, {m,m,...,m,} = {1,2,...,n—1,n}. Since
{my,mp,....mu} C EC{1,2,...,n—1,n}, we obtain that £ = {1,2,...,n—1,n}. This
proves our assertion.

Now, assume that >/ a(k) @k (J) = 0, where (k) =0 or 1in Z,, 0 <k <n—1.If
x(0) = 0 and «(¥) # 0 for some integer 1 < ¢ < n—1, let £ be the smallest such integer;
then, since , is invertible by Lemma 2.1(2), we obtain that J + >7={ " a(k) @k (J) =
0. So, without loss of generality, we may assume that «(0) # 0. That is, we assume
that J + 37 (k) @k (J) = 0. Let E = {k |1 < k <n—1,a(k) # 0}. Then, we have
J+ > ker @k (J) = 0. But then it follows from what we have just proved above that
E=1{1,2,...,n—1,n}. This contradicts the assumption that E C {1,2,...,n—1}. So, the
set {Lp’[,(]) |0 <k <n-1} is linearly independent and hence, by [8], is a basis for Wy,.
This proves part (2).

Let 6 denote the cyclic permutationl - 2-3—---->i—-i+l—->--->n-n+1-1
on P and let o be any cyclic permutation on P. Choose any fixed integer 1 < j < n such
that j and n + 1 are relatively prime and let J = [1,fzJ}(1)]. Then, by part (2), the set
{(,Uf‘,(]) |0 <k <mn—1} is a basis for Wg,. Let ¢ be the linear transformation on W,
defined by ¢ (Jx) = (";1(J), 1 < k < n. Then ¢ is an isomorphism on Wz,. Further-
more, (¢poWo)(Jn) = P(Sr_1Ji) = ko1 PUk) = Xpo Wk 1)) = wi(J) (by part (1)) =
Yo (Wit () = Yo (db(Un)) = (Yo o P)(Jn) and, for every integer 1 <k <n -1, (¢po
Wo) (Ji) = p(Wo(Jx) = pUks1) = Wh () = wo (W) = W (bUi)) = (Wo o P) (k).
Thus, Y is similar to e through ¢. Since the property of similarity is obviously tran-
sitive, we obtain that if p is any cyclic permutation on P, then y, and ¢, are similar
on Wyz,. Consequently, by [8], the Petrie matrices (over Z») of all cyclic permutations on
P are similar to one another and so have the same characteristic polynomial > ;_, x*
since >} o x* is easily verified to be the characteristic polynomial of the Petrie matrix
Agp over Z». This proves part (3).

Finally, let o be a cyclic permutation on P. Since A, is a real n X n matrix with
entries either zeros or ones, the coefficients of the characteristic polynomial of A, are
all integers. By taking every entry in A, modulo 2 and applying part (3) and the fact that
the determinants of Petrie matrices are either O or +1, we obtain that the characteristic
polynomial of A, (mod?2) is equal to > ;_,x*. Consequently, the coefficients of the
characteristic polynomial of A, are all odd integers with constant term +1. This proves
part (4) and completes the proof of Theorem 3.2. 0
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