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ON THE EXTENDIBILITY OF THE DIOPHANTINE TRIPLE {1,5,c}
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We study the problem of extendibility of the triples of the form {1,5,c}. We prove that
if ck = s2

k + 1, where (sk) is a binary recursive sequence, k is a positive integer, and the

statement that all solutions of a system of simultaneous Pellian equations z2−ckx2 = ck−1,
5z2− cky2 = ck−5 are given by (x,y,z) = (0,±2,±sk), is valid for 2 ≤ k ≤ 31, then it is
valid for all positive integer k.

2000 Mathematics Subject Classification: 11D09, 11D25.

1. Introduction. Let n be an integer. A set of positive integers {a1,a2, . . . ,am} is said

to have the property D(n) if aiaj+n is a perfect square for all 1 ≤ i < j ≤m; such a

set is called a Diophantine m-tuple or a Pn set of size m. The problem of construction

of such sets was studied by Diophantus (see [4]). A famous conjecture related to this

problem is as follows.

Conjecture 1.1. There does not exist a Diophantine quadruple with the property

D(−1).

For certain triples {a,b,c} with 1 ∉ {a,b,c}, the validity of this conjecture can be

verified by simple use of congruences (see [5]). The case a= 1 is more involved and the

first important result concerning this conjecture was proved in 1985 by Mohanty and

Ramasamy [8]; they proved that the triple {1,5,10} cannot be extended. Also, Brown

[5] proved the conjecture for the triples {n2 + 1, (n+ 1)2 + 1, (2n+ 1)2 + 1}, where

n �≡ 0(mod4), for the triples {2, 2n2 + 2n+ 1, 2n2 + 6n+ 5}, where n ≡ 1(mod4),
and proved nonextendibility of triples {17,26,68} and {1,2,5}. In 1998, Kedlaya [7]

verified it for the triples {1,2,145}, {1,2,4901}, {1,5,65}, {1,5,20737}, {1,10,17}, and

{1,26,37}. Since Dujella [6] has proved the conjecture for all triples of the form {1,2,c},
the consideration of triples of the form {1,5,c} seems to be the natural next step.

In the present paper, we will study the extendibility of all triples of the form {1,5,c}.
In our proof, we will follow the strategy of [6].

2. Preliminaries. Since the triple {1,5,c} satisfies the property D(−1), therefore

there exist integers s, t such that c−1= s2 and 5c−1= t2 which imply

t2−5s2 = 4. (2.1)

If this triple can be extended to a Diophantine quadruple, then there are integers d, x,

y , z such that

d−1= x2, 5d−1=y2, cd−1= z2. (2.2)
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Eliminating d, we get

z2−cx2 = c−1, z2−cy2 = c−5; (2.3)

it is obvious that if all the solutions of this system are given by (x,y,z)=(0,±2,±√c−1),
then, from (2.2), we get d= 1, so the triple {1,5,c} cannot be extended.

The Pell equation (2.1) has three classes of solutions and all the solutions are given

by

t′k+s′k =
(
3+

√
5
)(

9+4
√

5
)k,

t′′k +s′′k =
(−3+

√
5
)(

9+4
√

5
)k,

t′′′k +s′′′k = 2
(
9+4

√
5
)k.

(2.4)

Hence, if the triple {1,5,c} is a Diophantine triple with the property D(−1), then there

exists a positive integer k such that the integer c has the following three formulas (see

[3]):

c = c′k =
1
10

[(
7+3

√
5
)2(

161+72
√

5
)k+(7−3

√
5
)2(

161−72
√

5
)k+6

]
, (2.5)

c = c′′k =
1

10

[(
7−3

√
5
)2(

161+72
√

5
)k+(7+3

√
5
)2(

161−72
√

5
)k+6

]
, (2.6)

c = c′′′k = 1
5

[(
161+72

√
5
)k+(161−72

√
5
)k+3

]
. (2.7)

The main result of this paper is in the following theorem, where ck denotes one of

the formulas in (2.5), (2.6), and (2.7).

Theorem 2.1. Let k be a positive integer and let ck = s2
k +1, where (sk) is a binary

recursive sequence. If the statement that all solutions of a system of simultaneous Pellian

equations

z2−ckx2 = ck−1, 5z2−cky2 = ck−5 (2.8)

are given by (x,y,z) = (0,±2,±sk) is valid for k ≤ 31, then it is valid for all positive

integer k.

Remark 2.2. The theorem is true when k= 0 [5] and k= 1 (see [1, 7, 8]). So we will

suppose that k≥ 2. For simplicity, we will omit the index k and we will divide the proof

of the theorem into many lemmas.

3. A system of Pellian equations. There are finite sets

{
z(i)0 +x(i)0

√
c : i= 1,2, . . . , i0

}
,{

z(j)1

√
5+y(j)1

√
c : j = 1,2, . . . ,j0

}
,

(3.1)
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of elements of Z�√c� and Z�√5c�, respectively, such that all solutions of (2.8) are given

by

z+x√c =
(
z(i)0 +x(i)0

√
c
)(

2c−1+2s
√
c
)m, i= 1, . . . ,m≥ 0, (3.2)

z
√

5+y√c =
(
z(j)1

√
5+y(j)1

√
c
)(

10ck−1+2t
√

5c
)n, i= 1, . . . ,n≥ 0, (3.3)

respectively (see [6]).

From (3.2), we conclude that z = v(i)m for some index i and integer m, where

v(i)0 = z(i)0 , v(i)1 = (2c−1)z(i)0 +2scx(i)0 , v(i)m+2 = (4c−2)v(i)m+1−v(i)m , (3.4)

and from (3.3), we conclude that z =w(j)
n for some index j and integer n, where

w(j)
0 = z(j)1 , w(j)

1 = (10c−1)z(j)1 +2tcy(j)1 , w(j)
n+2 = (20c−2)w(j)

n+1−w(j)
n . (3.5)

Thus we reformulated system (2.8) to finitely many Diophantine equations of the form

v(i)m =w(j)
n . (3.6)

If we choose representatives z(i)0 +x(i)0
√
c and z(j)1

√
5+y(j)1

√
c such that |z(i)0 | and |z(j)1 |

are minimal, then, by [9, Theorem 108a], we have the following estimates:

0<
∣∣∣z(i)0

∣∣∣≤
√

1
2

2c(c−1) < c,

0<
∣∣∣z(i)0

∣∣∣≤ √c ·(c−5) < c.

(3.7)

4. Application of congruence relations. In the following lemma, we prove that if

(2.2) has a nontrivial solution, then the initial terms of sequences v(i)m and w(j)
n are

restricted.

Lemma 4.1. Let k≥ 2 be the least positive integer (if it exists) for which the statement of

Theorem 2.1 is not valid. Let 1≤ i≤ i0, 1≤ j ≤ j0, and let v(i)m andw(j)
n be the sequences

defined in (3.4) and (3.5). If the equation v(i)m =w(j)
n has a solution, then |z(i)0 | = |z(j)1 | = s.

Proof. From (3.4) and (3.5), it follows easily by induction that

v(i)2m ≡ z(i)0 (mod2c),

w(j)
2n ≡ z(j)1 (mod2c),

v(i)2m+1 ≡−z(i)0 (mod2c),

w(j)
2n+1 ≡−z(j)1 (mod2c).

(4.1)
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Therefore, if the equation v(i)m =w(j)
n has a solution in integers m and n, then we must

have |z(i)0 | = |z(j)1 |. Now, let d0 = ((z(i)0 )2+1)/c; then we have

d0−1=
(
x(i)0

)2
, 5d0−1=

(
y(j)1

)2
, cd0−1=

(
z(i)0

)2
,

d0 ≤ c
2−c+1
c

< c.
(4.2)

Assume that d0 > 1. It follows from (4.2) that there exists a positive integer l < k such

that d0 = cl. But now the system

z2−clx2 = cl−1, 5z2−cly2 = cl−5 (4.3)

has a nontrivial solution (x,y,z) = (sk,tk,z(i)0 ), contradicting the minimality of k. So,

d0 = 1 and |z(i)0 | = s.
The following lemma can be proved easily by induction (we will omit the superscripts

(i) and (j)).

Lemma 4.2. Let {vm} and {wn} be the sequences which have the initial terms in

Lemma 4.1; then

vm ≡ (−1)m
(
z0−2cm2z0−2csmx0

)(
mod8c2),

wn ≡ (−1)n
(
z1−10cn2z1−2ctny1

)(
mod8c2). (4.4)

Remark 4.3. Since we may restrict ourselves to positive solutions of system (2.8),

we may assume that z0 = z1 = s. Notice that x0 = 0 and y1 =±2.

Lemma 4.4. If vm =wn, then m and n are both even or odd.

Proof. Suppose m is odd and n is even and let m = 2r and n= 2l+1. Lemma 4.2

and the relation z0 = z1 = s imply

s ≡ cs(2l+1)2+20cr 2s±4ctr
(
mod4c2) (4.5)

and we have a contradiction to the fact that c does not divide s.
The same proof holds for the case where m is even and n odd.

Lemma 4.5. If vm =wn, then n≤m≤n√5.

Proof. From relations (3.4) and (3.5), w1 >v1. Let wl > vl, where l > 0; then

wl+2 < (20c−2)wl+1−vl = (20c−2)wl+1−
[
(4c−2)vl+1−vl+2

]
, (4.6)

hence

wl+2−vl+2 < (20c−2)wl+1−(4c−2)vl+1. (4.7)

But (20c−2)wl+1−(4c−2)vl+1 > 0, which implieswl+2 < vl+2. So, if the equation vm =
wn has a solution and n≠ 0, then vn < vm =wn. But the sequence vm is increasing, so

m>n.
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Now, from (3.4), we have

vm = s
2

[(
2c−1+2s

√
c
)m+(2c−1−2s

√
c
)m]> 1

2

(
2c−1+2s

√
c
)m, (4.8)

and from (3.5), we have

wn = 1

2
√

5

(
s
√

5±2
√
c
)[(

10c−1+2t
√

5c
)n+(10c−1−2t

√
5c
)n]

<
s
√

5+2
√
c+1

2
√

5

(
10c−1+2t

√
5c
)n < 1

2

(
10c−1+2t

√
5c
)n+1/2.

(4.9)

Since k ≥ 2, therefore from (2.5), (2.6), and (2.7), we have c ≥ 3026. Thus vm = wn

implies

m
n+1/2

<
ln
(
10c−1+2t

√
5c
)

ln
(
2c−1+2s

√
c
) < 1.1712. (4.10)

If n= 0, then m= 0, and if n≥ 1, then (4.10) implies

m< 1.1712n+0.5856<n
√

5. (4.11)

Lemma 4.6. If vm =wn and n≠ 0, then n> (1/2) 4
√
c.

Proof. (1) The case where m and n are both even.

We assume that n< (1/2) 4
√
c. Using Lemma 4.2 and from vm =wn, we get

2c(2m)2s+2cs(2m)x0 ≡ 10c(2n)2s−2ct(2n)y1
(
mod8c2). (4.12)

But x0 = 0 and y1 =±2, so

8cm2s ≡ 40cn2s±8ctn
(
mod8c2), (4.13)

which implies

s
(
5n2−m2)≡±tn(modc). (4.14)

On the other hand, we have, from Lemma 4.5,

∣∣s(5n2−m2)∣∣≤√c4n2 < 4
√
c
(

1
2

4√c
)2

= c. (4.15)

Also, since c >
√

5/4 4√c3, then

tn <
√

5cn <
√

5
√
c

1
2

4√c =
√

5
4

4
√
c3 < c. (4.16)

So, from (4.14), (4.15), and (4.16), we get

s
(
5n2−m2)=±tn. (4.17)
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Also, from (4.14), we have

s2(5n2−m2)2 ≡ t2n2(modc). (4.18)

But s2 ≡ t2(modc), so (4.18) becomes

(
m2−5n2)2 ≡n2(modc). (4.19)

Now, since

(
5n2−m2)2 ≤ (4n2)2 = 16n4 ≤ 16·

(
1
2

4√c
)4

= c,

n <
1
2

4√c �⇒n2 <
1
4

√
c < c,

(4.20)

so, from (4.19), (4.20), we get

(
5n2−m2)2 =n2. (4.21)

Finally, from (4.17) and (4.21), we get t2 = s2, which is impossible.

(2) The case where m and n are both odd.

We assume that n < (1/2) 4
√
c. Using Lemma 4.2 and from vm = wn, where x0 = 0

and y1 =±2, we get

s
(
5n2−m2)≡±2tn(modc). (4.22)

As above,

∣∣s(5n2−m2)∣∣< c, (4.23)

and since

2tn < 2
√

5cn <
√

5c 4√c < c, (4.24)

therefore (4.22), (4.23), and (4.24) imply

s
(
5n2−m2)=±2tn. (4.25)

Also, from (4.22), we have

s2(5n2−m2)2 ≡ 4t2n2(modc), (4.26)

which implies (m2−5n2)2 ≡ 4n2(modc). But (5n2−m2)2 < c and 4n2 < c, so

(
5n2−m2)2 = 4n2. (4.27)

Finally, from (4.25) and (4.27), we get t2 = s2, which is impossible.
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5. Linear forms in logarithms

Lemma 5.1. If vm =wn, then

0<n log
(
10c−1+2t

√
5c
)−m log

(
10c−1+2t

√
5c
)+log

s
√

5±2
√
c√

5c
< (4c)1−n. (5.1)

Proof. We suppose that

p = s(2c−1+2s
√
c
)m, q = 1√

5

(
s
√

5±2
√
c
)(

10c−1+2t
√

5c
)n. (5.2)

If vm =wn, then, from (4.8) and (4.9), we get

p+s2p−1 = q+ c−5
5
q−1. (5.3)

It is clear that p > 1 and q > 1; also

p−q = c−5
5
q−1−s2p−1 < (c−1)q−1−(c−1)p−1 = (c−1)(p−q)p−1q−1. (5.4)

If p > q, then from (5.4), we get pq < c−1, which is impossible since q > 1 and p >
(4s

√
c)s = 4s2√c = 4(c−1)

√
c > c > c−1. Hence q > p, and we may assume thatm≥ 1.

Furthermore

0< log
(
p
q

)−1

=− log
(
p
q

)
=− log

(
1− q−p

q

)
. (5.5)

Since − log(1−x) < x+x2, therefore, from (5.5), we get

0< log
(
q
p

)
<
q−p
q

+
(
q−p
q

)2

. (5.6)

But from (5.3), we deduce that p > q−(c−1)p−1 > q−(c−1), so

p−1 <
(
q−(c−1)

)−1
; (5.7)

hence, from (5.3) and (5.7), we get

q−p < (c−1)
(
q−(c−1)

)−1− c−5
5
q−1 <

4cq+c2+5
q(5q−5c+5)

<
4cq+c2+5

q
. (5.8)

But q > (s
√

5−2
√
c)(4c) implies

c2

q
<

c2(
s
√

5−2
√
c
)
(4c)

<
c2

4c
= c

4
, (5.9)

so (5.8) becomes

q−p
q

<
[

4c+ c
2

q
+ 5
q

]
q−1 <

[
4c+ c

4
+5
]
q−1 =

(
17
4
c+5

)
q−1. (5.10)
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From (5.6) and (5.10), we get

0< log
q
p
<
(

17
4
c+5

)
q−1+

(
17
4
c+5

)2

q−2. (5.11)

Now, we will estimate ((17/4)c+5)q−1. From (2.5), (2.6), and (2.7), we have c > 20, so

(
17
4
c+5

)
q−1 <

(
17
4
c+5

)
c−1 = 17

4
+ 5
c
<

17
4
+ 1

4
= 9

2
. (5.12)

Thus (5.11) becomes

0< log
q
p
<
(

17
4
c+5

)
q−1+

(
17
4
c+5

)2

q−2

=
(

17
4
c+5

)
q−1

[
1+

(
17
4
c+5

)
q−1

]
<

11
2

(
17
4
c+5

)
q−1

= 11
2

(
17
4
c+5

) √
5

s
√

5±2
√
c
(
10c−1+2t

√
5c
)−n

< 11
√

5
(

17
8
c+ 5

2

)(
10c−1+2t

√
5c
)−n

< 11
(√

5
)(

3c+ 5
2

)(
4
√

5c−1
√

5c
)−n

< 11
(√

5
)(

3c+ 5
2

)
(4c)−n

< 4c(4c)−n.

(5.13)

But

log
q
p
=n log

(
10c−1+2t

√
5c
)−m log

(
10c−1+2t

√
5c
)+ log

s
√

5±2
√
c√

5c
. (5.14)

So, (5.13) and (5.14) complete the proof of the lemma.

Now, to prove the theorem, we apply the following theorem.

Theorem 5.2 [2]. For a linear form Ω �= 0 in logarithms of l algebraic numbers

α1, . . . ,αl with rational coefficients b1, . . . ,bl,

log |Ω| ≥ −18(l+1)!ll+1(32d)l+2h′
(
α1
)···h′(αl) log(2ld) logB, (5.15)

where B =max(|b1|, . . . ,|bl |) and where d is the degree of the number field generated

by α1, . . . ,αl.
Here

h′(α)= 1
r

max
(
h(α),|logα|,1) (5.16)

and h(α) denotes the standard logarithmic Weil height of α.
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6. Proof of Theorem 2.1. (1) The case where m and n are both even.

We consider the equation v2m = w2n with n �= 0. We apply the above theorem and

we have l= 3, d= 4, B = 2m, where

α1 = 10c−1+2t
√

5c,

α2 = 2c−1+2s
√
c,

α3 = s
√

5+2
√
c√

5s
.

(6.1)

The equations satisfied by α1, α2, α3 are

α2
1−(20c−2)α1+1= 0,

α2
2−(4c−2)α2+1= 0,

(5c−5)α2
3−(10c−10)α3+c−5= 0⇐⇒α2

3−2α3+ c−5
5c−5

= 0.

(6.2)

Hence

h′
(
α1
)= 1

2
logα1 <

1
2

log20c,

h′
(
α2
)= 1

2
logα2 <

1
2

log4c,

h′
(
α3
)= 1

2
log

s
√

5+2
√
c√

5s
<

1
2

log(1+2c).

(6.3)

From Lemma 5.1, where n is even, we have

logΩ < (4c)1−2n =−(2n−1) log4c. (6.4)

So, from Theorem 5.2, we get

(2n−1)log4c≤18×4!×34(32×4)5× 1
2

log(20c)×1
2

log(4c)×1
2

log(2c+1)log24×log2m.
(6.5)

Now, using Lemmas 4.5 and 4.6, we get

(2n−1)≤ 2.07431×1014× log8000n4× log
(
800n4+1

)×( log2
√

5n
)
, (6.6)

which implies that

n< 2×1019, (6.7)

and finally,

c < 256
(
1076). (6.8)
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To find k in the first class, substitute in (2.5); hence

k log
(
161+72

√
5
)
< log256+77log10− log

(
7−3

√
5
)
, (6.9)

which implies k≤ 31. Similarly, we find that in the other two classes, k≤ 31.

(2) The case where m and n are both odd.

In this case, using Lemma 5.1, where n is odd, relation (6.4) becomes

logΩ < (4c)−2n =−(2n−1) log4c. (6.10)

Hence (6.6) becomes

2n≤ 2.07431×1014× log8000n4× log
(
800n4+1

)×( log2
√

5n
)
, (6.11)

which implies that n< 2×1019, and finally c < 256(1076), hence k≤ 31.
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