ON THE EXTENDIBILITY OF THE DIOPHANTINE TRIPLE $\{1,5, c\}$

FADWA S. ABU MURIEFAH and AMAL AL-RASHED

Received 15 May 2003

We study the problem of extendibility of the triples of the form $\{1,5, c\}$. We prove that if $c_{k}=s_{k}^{2}+1$, where $\left(s_{k}\right)$ is a binary recursive sequence, k is a positive integer, and the statement that all solutions of a system of simultaneous Pellian equations $z^{2}-c_{k} x^{2}=c_{k}-1$, $5 z^{2}-c_{k} y^{2}=c_{k}-5$ are given by $(x, y, z)=\left(0, \pm 2, \pm s_{k}\right)$, is valid for $2 \leq k \leq 31$, then it is valid for all positive integer k.
2000 Mathematics Subject Classification: 11D09, 11D25.

1. Introduction. Let n be an integer. A set of positive integers $\left\{a_{1}, a_{2}, \ldots, a_{m}\right\}$ is said to have the property $D(n)$ if $a_{i} a_{j}+n$ is a perfect square for all $1 \leq i<j \leq m$; such a set is called a Diophantine m-tuple or a P_{n} set of size m. The problem of construction of such sets was studied by Diophantus (see [4]). A famous conjecture related to this problem is as follows.

Conjecture 1.1. There does not exist a Diophantine quadruple with the property $D(-1)$.

For certain triples $\{a, b, c\}$ with $1 \notin\{a, b, c\}$, the validity of this conjecture can be verified by simple use of congruences (see [5]). The case $a=1$ is more involved and the first important result concerning this conjecture was proved in 1985 by Mohanty and Ramasamy [8]; they proved that the triple $\{1,5,10\}$ cannot be extended. Also, Brown [5] proved the conjecture for the triples $\left\{n^{2}+1,(n+1)^{2}+1,(2 n+1)^{2}+1\right\}$, where $n \not \equiv 0(\bmod 4)$, for the triples $\left\{2,2 n^{2}+2 n+1,2 n^{2}+6 n+5\right\}$, where $n \equiv 1(\bmod 4)$, and proved nonextendibility of triples $\{17,26,68\}$ and $\{1,2,5\}$. In 1998, Kedlaya [7] verified it for the triples $\{1,2,145\},\{1,2,4901\},\{1,5,65\},\{1,5,20737\},\{1,10,17\}$, and $\{1,26,37\}$. Since Dujella [6] has proved the conjecture for all triples of the form $\{1,2, c\}$, the consideration of triples of the form $\{1,5, c\}$ seems to be the natural next step.

In the present paper, we will study the extendibility of all triples of the form $\{1,5, c\}$. In our proof, we will follow the strategy of [6].
2. Preliminaries. Since the triple $\{1,5, c\}$ satisfies the property $D(-1)$, therefore there exist integers s, t such that $c-1=s^{2}$ and $5 c-1=t^{2}$ which imply

$$
\begin{equation*}
t^{2}-5 s^{2}=4 \tag{2.1}
\end{equation*}
$$

If this triple can be extended to a Diophantine quadruple, then there are integers d, x, y, z such that

$$
\begin{equation*}
d-1=x^{2}, \quad 5 d-1=y^{2}, \quad c d-1=z^{2} . \tag{2.2}
\end{equation*}
$$

Eliminating d, we get

$$
\begin{equation*}
z^{2}-c x^{2}=c-1, \quad z^{2}-c y^{2}=c-5 ; \tag{2.3}
\end{equation*}
$$

it is obvious that if all the solutions of this system are given by $(x, y, z)=(0, \pm 2, \pm \sqrt{c-1})$, then, from (2.2), we get $d=1$, so the triple $\{1,5, c\}$ cannot be extended.

The Pell equation (2.1) has three classes of solutions and all the solutions are given by

$$
\begin{align*}
t_{k}^{\prime}+s_{k}^{\prime} & =(3+\sqrt{5})(9+4 \sqrt{5})^{k} \\
t_{k}^{\prime \prime}+s_{k}^{\prime \prime} & =(-3+\sqrt{5})(9+4 \sqrt{5})^{k} \tag{2.4}\\
t_{k}^{\prime \prime \prime}+s_{k}^{\prime \prime \prime} & =2(9+4 \sqrt{5})^{k}
\end{align*}
$$

Hence, if the triple $\{1,5, c\}$ is a Diophantine triple with the property $D(-1)$, then there exists a positive integer k such that the integer c has the following three formulas (see [3]):

$$
\begin{align*}
& c=c_{k}^{\prime}=\frac{1}{10}\left[(7+3 \sqrt{5})^{2}(161+72 \sqrt{5})^{k}+(7-3 \sqrt{5})^{2}(161-72 \sqrt{5})^{k}+6\right], \tag{2.5}\\
& c=c_{k}^{\prime \prime}=\frac{1}{10}\left[(7-3 \sqrt{5})^{2}(161+72 \sqrt{5})^{k}+(7+3 \sqrt{5})^{2}(161-72 \sqrt{5})^{k}+6\right], \tag{2.6}\\
& c=c_{k}^{\prime \prime \prime}=\frac{1}{5}\left[(161+72 \sqrt{5})^{k}+(161-72 \sqrt{5})^{k}+3\right] . \tag{2.7}
\end{align*}
$$

The main result of this paper is in the following theorem, where c_{k} denotes one of the formulas in (2.5), (2.6), and (2.7).

THEOREM 2.1. Let k be a positive integer and let $c_{k}=s_{k}^{2}+1$, where $\left(s_{k}\right)$ is a binary recursive sequence. If the statement that all solutions of a system of simultaneous Pellian equations

$$
\begin{equation*}
z^{2}-c_{k} x^{2}=c_{k}-1, \quad 5 z^{2}-c_{k} y^{2}=c_{k}-5 \tag{2.8}
\end{equation*}
$$

are given by $(x, y, z)=\left(0, \pm 2, \pm s_{k}\right)$ is valid for $k \leq 31$, then it is valid for all positive integer k.

Remark 2.2. The theorem is true when $k=0$ [5] and $k=1$ (see [$1,7,8$]). So we will suppose that $k \geq 2$. For simplicity, we will omit the index k and we will divide the proof of the theorem into many lemmas.
3. A system of Pellian equations. There are finite sets

$$
\begin{gather*}
\left\{z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}: i=1,2, \ldots, i_{0}\right\} \tag{3.1}\\
\left\{z_{1}^{(j)} \sqrt{5}+y_{1}^{(j)} \sqrt{c}: j=1,2, \ldots, j_{0}\right\},
\end{gather*}
$$

of elements of $Z\lfloor\sqrt{c}\rfloor$ and $Z\lfloor\sqrt{5 c}\rfloor$, respectively, such that all solutions of (2.8) are given by

$$
\begin{gather*}
z+x \sqrt{c}=\left(z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}\right)(2 c-1+2 s \sqrt{c})^{m}, \quad i=1, \ldots, m \geq 0, \tag{3.2}\\
z \sqrt{5}+y \sqrt{c}=\left(z_{1}^{(j)} \sqrt{5}+y_{1}^{(j)} \sqrt{c}\right)\left(10 c_{k}-1+2 t \sqrt{5 c}\right)^{n}, \quad i=1, \ldots, n \geq 0, \tag{3.3}
\end{gather*}
$$

respectively (see [6]).
From (3.2), we conclude that $z=v_{m}^{(i)}$ for some index i and integer m, where

$$
\begin{equation*}
v_{0}^{(i)}=z_{0}^{(i)}, \quad v_{1}^{(i)}=(2 c-1) z_{0}^{(i)}+2 s c x_{0}^{(i)}, \quad v_{m+2}^{(i)}=(4 c-2) v_{m+1}^{(i)}-v_{m}^{(i)}, \tag{3.4}
\end{equation*}
$$

and from (3.3), we conclude that $z=w_{n}^{(j)}$ for some index j and integer n, where

$$
\begin{equation*}
w_{0}^{(j)}=z_{1}^{(j)}, \quad w_{1}^{(j)}=(10 c-1) z_{1}^{(j)}+2 t c y_{1}^{(j)}, \quad w_{n+2}^{(j)}=(20 c-2) w_{n+1}^{(j)}-w_{n}^{(j)} . \tag{3.5}
\end{equation*}
$$

Thus we reformulated system (2.8) to finitely many Diophantine equations of the form

$$
\begin{equation*}
v_{m}^{(i)}=w_{n}^{(j)} \tag{3.6}
\end{equation*}
$$

If we choose representatives $z_{0}^{(i)}+x_{0}^{(i)} \sqrt{c}$ and $z_{1}^{(j)} \sqrt{5}+y_{1}^{(j)} \sqrt{c}$ such that $\left|z_{0}^{(i)}\right|$ and $\left|z_{1}^{(j)}\right|$ are minimal, then, by [9, Theorem 108a], we have the following estimates:

$$
\begin{align*}
& 0<\left|z_{0}^{(i)}\right| \leq \sqrt{\frac{1}{2} 2 c(c-1)}<c \tag{3.7}\\
& 0<\left|z_{0}^{(i)}\right| \leq \sqrt{c \cdot(c-5)}<c
\end{align*}
$$

4. Application of congruence relations. In the following lemma, we prove that if (2.2) has a nontrivial solution, then the initial terms of sequences $v_{m}^{(i)}$ and $w_{n}^{(j)}$ are restricted.

Lemma 4.1. Let $k \geq 2$ be the least positive integer (if it exists) for which the statement of Theorem 2.1 is not valid. Let $1 \leq i \leq i_{0}, 1 \leq j \leq j_{0}$, and let $v_{m}^{(i)}$ and $w_{n}^{(j)}$ be the sequences defined in (3.4) and (3.5). If the equation $v_{m}^{(i)}=w_{n}^{(j)}$ has a solution, then $\left|z_{0}^{(i)}\right|=\left|z_{1}^{(j)}\right|=s$.

Proof. From (3.4) and (3.5), it follows easily by induction that

$$
\begin{align*}
v_{2 m}^{(i)} & \equiv z_{0}^{(i)}(\bmod 2 c), \\
w_{2 n}^{(j)} & \equiv z_{1}^{(j)}(\bmod 2 c), \\
v_{2 m+1}^{(i)} & \equiv-z_{0}^{(i)}(\bmod 2 c), \tag{4.1}\\
w_{2 n+1}^{(j)} & \equiv-z_{1}^{(j)}(\bmod 2 c) .
\end{align*}
$$

Therefore, if the equation $v_{m}^{(i)}=w_{n}^{(j)}$ has a solution in integers m and n, then we must have $\left|z_{0}^{(i)}\right|=\left|z_{1}^{(j)}\right|$. Now, let $d_{0}=\left(\left(z_{0}^{(i)}\right)^{2}+1\right) / c$; then we have

$$
\begin{align*}
d_{0}-1=\left(x_{0}^{(i)}\right)^{2}, & 5 d_{0}-1=\left(y_{1}^{(j)}\right)^{2}, \quad c d_{0}-1=\left(z_{0}^{(i)}\right)^{2} \\
& d_{0} \leq \frac{c^{2}-c+1}{c}<c . \tag{4.2}
\end{align*}
$$

Assume that $d_{0}>1$. It follows from (4.2) that there exists a positive integer $l<k$ such that $d_{0}=c_{l}$. But now the system

$$
\begin{equation*}
z^{2}-c_{l} x^{2}=c_{l}-1, \quad 5 z^{2}-c_{l} y^{2}=c_{l}-5 \tag{4.3}
\end{equation*}
$$

has a nontrivial solution $(x, y, z)=\left(s_{k}, t_{k}, z_{0}^{(i)}\right)$, contradicting the minimality of k. So, $d_{0}=1$ and $\left|z_{0}^{(i)}\right|=s$.

The following lemma can be proved easily by induction (we will omit the superscripts (i) and (j)).

Lemma 4.2. Let $\left\{v_{m}\right\}$ and $\left\{w_{n}\right\}$ be the sequences which have the initial terms in Lemma 4.1; then

$$
\begin{align*}
& v_{m} \equiv(-1)^{m}\left(z_{0}-2 c m^{2} z_{0}-2 c \operatorname{csm} x_{0}\right)\left(\bmod 8 c^{2}\right), \\
& w_{n} \equiv(-1)^{n}\left(z_{1}-10 c n^{2} z_{1}-2 \operatorname{ctn} y_{1}\right)\left(\bmod 8 c^{2}\right) . \tag{4.4}
\end{align*}
$$

Remark 4.3. Since we may restrict ourselves to positive solutions of system (2.8), we may assume that $z_{0}=z_{1}=s$. Notice that $x_{0}=0$ and $y_{1}= \pm 2$.

Lemma 4.4. If $v_{m}=w_{n}$, then m and n are both even or odd.
Proof. Suppose m is odd and n is even and let $m=2 r$ and $n=2 l+1$. Lemma 4.2 and the relation $z_{0}=z_{1}=s$ imply

$$
\begin{equation*}
s \equiv c s(2 l+1)^{2}+20 c r^{2} s \pm 4 c t r\left(\bmod 4 c^{2}\right) \tag{4.5}
\end{equation*}
$$

and we have a contradiction to the fact that c does not divide s.
The same proof holds for the case where m is even and n odd.
Lemma 4.5. If $v_{m}=w_{n}$, then $n \leq m \leq n \sqrt{5}$.
PROOF. From relations (3.4) and (3.5), $w_{1}>v_{1}$. Let $w_{l}>v_{l}$, where $l>0$; then

$$
\begin{equation*}
w_{l+2}<(20 c-2) w_{l+1}-v_{l}=(20 c-2) w_{l+1}-\left[(4 c-2) v_{l+1}-v_{l+2}\right], \tag{4.6}
\end{equation*}
$$

hence

$$
\begin{equation*}
w_{l+2}-v_{l+2}<(20 c-2) w_{l+1}-(4 c-2) v_{l+1} . \tag{4.7}
\end{equation*}
$$

But $(20 c-2) w_{l+1}-(4 c-2) v_{l+1}>0$, which implies $w_{l+2}<v_{l+2}$. So, if the equation $v_{m}=$ w_{n} has a solution and $n \neq 0$, then $v_{n}<v_{m}=w_{n}$. But the sequence v_{m} is increasing, so $m>n$.

Now, from (3.4), we have

$$
\begin{equation*}
v_{m}=\frac{s}{2}\left[(2 c-1+2 s \sqrt{c})^{m}+(2 c-1-2 s \sqrt{c})^{m}\right]>\frac{1}{2}(2 c-1+2 s \sqrt{c})^{m}, \tag{4.8}
\end{equation*}
$$

and from (3.5), we have

$$
\begin{align*}
w_{n} & =\frac{1}{2 \sqrt{5}}(s \sqrt{5} \pm 2 \sqrt{c})\left[(10 c-1+2 t \sqrt{5 c})^{n}+(10 c-1-2 t \sqrt{5 c})^{n}\right] \\
& <\frac{s \sqrt{5}+2 \sqrt{c}+1}{2 \sqrt{5}}(10 c-1+2 t \sqrt{5 c})^{n}<\frac{1}{2}(10 c-1+2 t \sqrt{5 c})^{n+1 / 2} . \tag{4.9}
\end{align*}
$$

Since $k \geq 2$, therefore from (2.5), (2.6), and (2.7), we have $c \geq 3026$. Thus $v_{m}=w_{n}$ implies

$$
\begin{equation*}
\frac{m}{n+1 / 2}<\frac{\ln (10 c-1+2 t \sqrt{5 c})}{\ln (2 c-1+2 s \sqrt{c})}<1.1712 \tag{4.10}
\end{equation*}
$$

If $n=0$, then $m=0$, and if $n \geq 1$, then (4.10) implies

$$
\begin{equation*}
m<1.1712 n+0.5856<n \sqrt{5} . \tag{4.11}
\end{equation*}
$$

Lemma 4.6. If $v_{m}=w_{n}$ and $n \neq 0$, then $n>(1 / 2) \sqrt[4]{c}$.
Proof. (1) The case where m and n are both even.
We assume that $n<(1 / 2) \sqrt[4]{c}$. Using Lemma 4.2 and from $v_{m}=w_{n}$, we get

$$
\begin{equation*}
2 c(2 m)^{2} s+2 c s(2 m) x_{0} \equiv 10 c(2 n)^{2} s-2 c t(2 n) y_{1}\left(\bmod 8 c^{2}\right) . \tag{4.12}
\end{equation*}
$$

But $x_{0}=0$ and $y_{1}= \pm 2$, so

$$
\begin{equation*}
8 c m^{2} s \equiv 40 c n^{2} s \pm 8 c t n\left(\bmod 8 c^{2}\right), \tag{4.13}
\end{equation*}
$$

which implies

$$
\begin{equation*}
s\left(5 n^{2}-m^{2}\right) \equiv \pm t n(\bmod c) \tag{4.14}
\end{equation*}
$$

On the other hand, we have, from Lemma 4.5,

$$
\begin{equation*}
\left|s\left(5 n^{2}-m^{2}\right)\right| \leq \sqrt{c} 4 n^{2}<4 \sqrt{c}\left(\frac{1}{2} \sqrt[4]{c}\right)^{2}=c \tag{4.15}
\end{equation*}
$$

Also, since $c>\sqrt{5 / 4} \sqrt[4]{c^{3}}$, then

$$
\begin{equation*}
t n<\sqrt{5 c} n<\sqrt{5} \sqrt{c} \frac{1}{2} \sqrt[4]{c}=\sqrt{\frac{5}{4}} \sqrt[4]{c^{3}}<c \tag{4.16}
\end{equation*}
$$

So, from (4.14), (4.15), and (4.16), we get

$$
\begin{equation*}
s\left(5 n^{2}-m^{2}\right)= \pm t n \tag{4.17}
\end{equation*}
$$

Also, from (4.14), we have

$$
\begin{equation*}
s^{2}\left(5 n^{2}-m^{2}\right)^{2} \equiv t^{2} n^{2}(\bmod c) \tag{4.18}
\end{equation*}
$$

But $s^{2} \equiv t^{2}(\bmod c)$, so (4.18) becomes

$$
\begin{equation*}
\left(m^{2}-5 n^{2}\right)^{2} \equiv n^{2}(\bmod c) . \tag{4.19}
\end{equation*}
$$

Now, since

$$
\begin{align*}
&\left(5 n^{2}-m^{2}\right)^{2} \leq\left(4 n^{2}\right)^{2} \tag{4.20}\\
& n<\frac{1}{2} \sqrt[4]{c} \Rightarrow n^{4} \leq 16 \cdot\left(\frac{1}{2} \sqrt[4]{c}\right)^{4}=c \\
& n \sqrt{c}<c
\end{align*}
$$

so, from (4.19), (4.20), we get

$$
\begin{equation*}
\left(5 n^{2}-m^{2}\right)^{2}=n^{2} . \tag{4.21}
\end{equation*}
$$

Finally, from (4.17) and (4.21), we get $t^{2}=s^{2}$, which is impossible.
(2) The case where m and n are both odd.

We assume that $n<(1 / 2) \sqrt[4]{c}$. Using Lemma 4.2 and from $v_{m}=w_{n}$, where $x_{0}=0$ and $y_{1}= \pm 2$, we get

$$
\begin{equation*}
s\left(5 n^{2}-m^{2}\right) \equiv \pm 2 t n(\bmod c) \tag{4.22}
\end{equation*}
$$

As above,

$$
\begin{equation*}
\left|s\left(5 n^{2}-m^{2}\right)\right|<c \tag{4.23}
\end{equation*}
$$

and since

$$
\begin{equation*}
2 t n<2 \sqrt{5 c} n<\sqrt{5 c} \sqrt[4]{c}<c \tag{4.24}
\end{equation*}
$$

therefore (4.22), (4.23), and (4.24) imply

$$
\begin{equation*}
s\left(5 n^{2}-m^{2}\right)= \pm 2 t n \tag{4.25}
\end{equation*}
$$

Also, from (4.22), we have

$$
\begin{equation*}
s^{2}\left(5 n^{2}-m^{2}\right)^{2} \equiv 4 t^{2} n^{2}(\bmod c), \tag{4.26}
\end{equation*}
$$

which implies $\left(m^{2}-5 n^{2}\right)^{2} \equiv 4 n^{2}(\bmod c)$. But $\left(5 n^{2}-m^{2}\right)^{2}<c$ and $4 n^{2}<c$, so

$$
\begin{equation*}
\left(5 n^{2}-m^{2}\right)^{2}=4 n^{2} \tag{4.27}
\end{equation*}
$$

Finally, from (4.25) and (4.27), we get $t^{2}=s^{2}$, which is impossible.

5. Linear forms in logarithms

Lemma 5.1. If $v_{m}=w_{n}$, then
$0<n \log (10 c-1+2 t \sqrt{5 c})-m \log (10 c-1+2 t \sqrt{5 c})+\log \frac{s \sqrt{5} \pm 2 \sqrt{c}}{\sqrt{5} c}<(4 c)^{1-n}$.
Proof. We suppose that

$$
\begin{equation*}
p=s(2 c-1+2 s \sqrt{c})^{m}, \quad q=\frac{1}{\sqrt{5}}(s \sqrt{5} \pm 2 \sqrt{c})(10 c-1+2 t \sqrt{5 c})^{n} . \tag{5.2}
\end{equation*}
$$

If $v_{m}=w_{n}$, then, from (4.8) and (4.9), we get

$$
\begin{equation*}
p+s^{2} p^{-1}=q+\frac{c-5}{5} q^{-1} . \tag{5.3}
\end{equation*}
$$

It is clear that $p>1$ and $q>1$; also

$$
\begin{equation*}
p-q=\frac{c-5}{5} q^{-1}-s^{2} p^{-1}<(c-1) q^{-1}-(c-1) p^{-1}=(c-1)(p-q) p^{-1} q^{-1} . \tag{5.4}
\end{equation*}
$$

If $p>q$, then from (5.4), we get $p q<c-1$, which is impossible since $q>1$ and $p>$ $(4 s \sqrt{c}) s=4 s^{2} \sqrt{c}=4(c-1) \sqrt{c}>c>c-1$. Hence $q>p$, and we may assume that $m \geq 1$. Furthermore

$$
\begin{equation*}
0<\log \left(\frac{p}{q}\right)^{-1}=-\log \left(\frac{p}{q}\right)=-\log \left(1-\frac{q-p}{q}\right) \tag{5.5}
\end{equation*}
$$

Since $-\log (1-x)<x+x^{2}$, therefore, from (5.5), we get

$$
\begin{equation*}
0<\log \left(\frac{q}{p}\right)<\frac{q-p}{q}+\left(\frac{q-p}{q}\right)^{2} \tag{5.6}
\end{equation*}
$$

But from (5.3), we deduce that $p>q-(c-1) p^{-1}>q-(c-1)$, so

$$
\begin{equation*}
p^{-1}<(q-(c-1))^{-1} \tag{5.7}
\end{equation*}
$$

hence, from (5.3) and (5.7), we get

$$
\begin{equation*}
q-p<(c-1)(q-(c-1))^{-1}-\frac{c-5}{5} q^{-1}<\frac{4 c q+c^{2}+5}{q(5 q-5 c+5)}<\frac{4 c q+c^{2}+5}{q} \tag{5.8}
\end{equation*}
$$

But $q>(s \sqrt{5}-2 \sqrt{c})(4 c)$ implies

$$
\begin{equation*}
\frac{c^{2}}{q}<\frac{c^{2}}{(s \sqrt{5}-2 \sqrt{c})(4 c)}<\frac{c^{2}}{4 c}=\frac{c}{4}, \tag{5.9}
\end{equation*}
$$

so (5.8) becomes

$$
\begin{equation*}
\frac{q-p}{q}<\left[4 c+\frac{c^{2}}{q}+\frac{5}{q}\right] q^{-1}<\left[4 c+\frac{c}{4}+5\right] q^{-1}=\left(\frac{17}{4} c+5\right) q^{-1} . \tag{5.10}
\end{equation*}
$$

From (5.6) and (5.10), we get

$$
\begin{equation*}
0<\log \frac{q}{p}<\left(\frac{17}{4} c+5\right) q^{-1}+\left(\frac{17}{4} c+5\right)^{2} q^{-2} . \tag{5.11}
\end{equation*}
$$

Now, we will estimate $((17 / 4) c+5) q^{-1}$. From (2.5), (2.6), and (2.7), we have $c>20$, so

$$
\begin{equation*}
\left(\frac{17}{4} c+5\right) q^{-1}<\left(\frac{17}{4} c+5\right) c^{-1}=\frac{17}{4}+\frac{5}{c}<\frac{17}{4}+\frac{1}{4}=\frac{9}{2} . \tag{5.12}
\end{equation*}
$$

Thus (5.11) becomes

$$
\begin{align*}
0 & <\log \frac{q}{p}<\left(\frac{17}{4} c+5\right) q^{-1}+\left(\frac{17}{4} c+5\right)^{2} q^{-2} \\
& =\left(\frac{17}{4} c+5\right) q^{-1}\left[1+\left(\frac{17}{4} c+5\right) q^{-1}\right]<\frac{11}{2}\left(\frac{17}{4} c+5\right) q^{-1} \\
& =\frac{11}{2}\left(\frac{17}{4} c+5\right) \frac{\sqrt{5}}{s \sqrt{5} \pm 2 \sqrt{c}}(10 c-1+2 t \sqrt{5 c})^{-n} \\
& <11 \sqrt{5}\left(\frac{17}{8} c+\frac{5}{2}\right)(10 c-1+2 t \sqrt{5 c})^{-n} \tag{5.13}\\
& <11(\sqrt{5})\left(3 c+\frac{5}{2}\right)(4 \sqrt{5 c-1} \sqrt{5 c})^{-n} \\
& <11(\sqrt{5})\left(3 c+\frac{5}{2}\right)(4 c)^{-n} \\
& <4 c(4 c)^{-n} .
\end{align*}
$$

But

$$
\begin{equation*}
\log \frac{q}{p}=n \log (10 c-1+2 t \sqrt{5 c})-m \log (10 c-1+2 t \sqrt{5 c})+\log \frac{s \sqrt{5} \pm 2 \sqrt{c}}{\sqrt{5} c} \tag{5.14}
\end{equation*}
$$

So, (5.13) and (5.14) complete the proof of the lemma.
Now, to prove the theorem, we apply the following theorem.
Theorem 5.2 [2]. For a linear form $\Omega \neq 0$ in logarithms of l algebraic numbers $\alpha_{1}, \ldots, \alpha_{l}$ with rational coefficients b_{1}, \ldots, b_{l},

$$
\begin{equation*}
\log |\Omega| \geq-18(l+1)!l^{l+1}(32 d)^{l+2} h^{\prime}\left(\alpha_{1}\right) \cdots h^{\prime}\left(\alpha_{l}\right) \log (2 l d) \log B \tag{5.15}
\end{equation*}
$$

where $B=\max \left(\left|b_{1}\right|, \ldots,\left|b_{l}\right|\right)$ and where d is the degree of the number field generated by $\alpha_{1}, \ldots, \alpha_{l}$.

Here

$$
\begin{equation*}
h^{\prime}(\alpha)=\frac{1}{r} \max (h(\alpha),|\log \alpha|, 1) \tag{5.16}
\end{equation*}
$$

and $h(\alpha)$ denotes the standard logarithmic Weil height of α.
6. Proof of Theorem 2.1. (1) The case where m and n are both even.

We consider the equation $v_{2 m}=w_{2 n}$ with $n \neq 0$. We apply the above theorem and we have $l=3, d=4, B=2 m$, where

$$
\begin{align*}
& \alpha_{1}=10 c-1+2 t \sqrt{5 c} \\
& \alpha_{2}=2 c-1+2 s \sqrt{c} \tag{6.1}\\
& \alpha_{3}=\frac{s \sqrt{5}+2 \sqrt{c}}{\sqrt{5} s}
\end{align*}
$$

The equations satisfied by $\alpha_{1}, \alpha_{2}, \alpha_{3}$ are

$$
\begin{gather*}
\alpha_{1}^{2}-(20 c-2) \alpha_{1}+1=0 \\
\alpha_{2}^{2}-(4 c-2) \alpha_{2}+1=0 \tag{6.2}\\
(5 c-5) \alpha_{3}^{2}-(10 c-10) \alpha_{3}+c-5=0 \Longleftrightarrow \alpha_{3}^{2}-2 \alpha_{3}+\frac{c-5}{5 c-5}=0 .
\end{gather*}
$$

Hence

$$
\begin{align*}
& h^{\prime}\left(\alpha_{1}\right)=\frac{1}{2} \log \alpha_{1}<\frac{1}{2} \log 20 c, \\
& h^{\prime}\left(\alpha_{2}\right)=\frac{1}{2} \log \alpha_{2}<\frac{1}{2} \log 4 c, \tag{6.3}\\
& h^{\prime}\left(\alpha_{3}\right)=\frac{1}{2} \log \frac{s \sqrt{5}+2 \sqrt{c}}{\sqrt{5} s}<\frac{1}{2} \log (1+2 c) .
\end{align*}
$$

From Lemma 5.1, where n is even, we have

$$
\begin{equation*}
\log \Omega<(4 c)^{1-2 n}=-(2 n-1) \log 4 c \tag{6.4}
\end{equation*}
$$

So, from Theorem 5.2, we get
$(2 n-1) \log 4 c \leq 18 \times 4!\times 3^{4}(32 \times 4)^{5} \times \frac{1}{2} \log (20 c) \times \frac{1}{2} \log (4 c) \times \frac{1}{2} \log (2 c+1) \log 24 \times \log 2 m$.
Now, using Lemmas 4.5 and 4.6, we get

$$
\begin{equation*}
(2 n-1) \leq 2.07431 \times 10^{14} \times \log 8000 n^{4} \times \log \left(800 n^{4}+1\right) \times(\log 2 \sqrt{5 n}), \tag{6.6}
\end{equation*}
$$

which implies that

$$
\begin{equation*}
n<2 \times 10^{19} \tag{6.7}
\end{equation*}
$$

and finally,

$$
\begin{equation*}
c<256\left(10^{76}\right) \tag{6.8}
\end{equation*}
$$

To find k in the first class, substitute in (2.5); hence

$$
\begin{equation*}
k \log (161+72 \sqrt{5})<\log 256+77 \log 10-\log (7-3 \sqrt{5}) \tag{6.9}
\end{equation*}
$$

which implies $k \leq 31$. Similarly, we find that in the other two classes, $k \leq 31$.
(2) The case where m and n are both odd.

In this case, using Lemma 5.1, where n is odd, relation (6.4) becomes

$$
\begin{equation*}
\log \Omega<(4 c)^{-2 n}=-(2 n-1) \log 4 c \tag{6.10}
\end{equation*}
$$

Hence (6.6) becomes

$$
\begin{equation*}
2 n \leq 2.07431 \times 10^{14} \times \log 8000 n^{4} \times \log \left(800 n^{4}+1\right) \times(\log 2 \sqrt{5 n}), \tag{6.11}
\end{equation*}
$$

which implies that $n<2 \times 10^{19}$, and finally $c<256\left(10^{76}\right)$, hence $k \leq 31$.

References

[1] F. S. Abu Muriefah and A. Al-Rashed, On the Diophantine triple $\{1,5,442\}$, to appear in Arab. J. Sci. Eng. Sect. A Sci.
[2] A. Baker and G. Wüstholz, Logarithmic forms and group varieties, J. reine angew. Math. 442 (1993), 19-62.
[3] E. J. Barbeau, Pell's Equation, Problem Books in Mathematics, Springer-Verlag, New York, 2003.
[4] I. G. Bashmakova (ed.), Diophantus of Alexandria, Arithmetics and the Book of Polygonal Numbers, Nauka, Moscow, 1974.
[5] E. Brown, Sets in which $x y+k$ is always a square, Math. Comp. 45 (1985), no. 172, 613-620.
[6] A. Dujella, Complete solution of a family of simultaneous Pellian equations, Acta Math. Inform. Univ. Ostraviensis 6 (1998), no. 1, 59-67.
[7] K. S. Kedlaya, Solving constrained Pell equations, Math. Comp. 67 (1998), no. 222, 833-842.
[8] S. P. Mohanty and A. M. S. Ramasamy, The simultaneous Diophantine equations $5 y^{2}-20=$ X^{2} and $2 y^{2}+1=Z^{2}$, J. Number Theory 18 (1984), no. 3, 356-359.
[9] T. Nagell, Introduction to Number Theory, John Wiley \& Sons Inc., New York, 1951.
Fadwa S. Abu Muriefah: Mathematics Department, Girls College of Education, P.O. Box 60561, Riyadh 11555 , Saudi Arabia

E-mail address: abumuri efah@yahoo.com
Amal Al-Rashed: Mathematics Department, Girls College of Education, P.O. Box 60561, Riyadh 11555, Saudi Arabia

