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ON HEREDITARY INTERVAL ALGEBRAS
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We show that each hereditary interval algebra has a countable density and not conversely.
Moreover, we show that, for an interval algebra, having countable density and being subal-
gebra of the interval algebra over the real line are equivalent statements.
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1. Introduction. Boolean algebras that are generated by subchains, that is, subsets

that are linearly ordered under the Boolean partial order, were introduced in 1939

by Mostowski and Tarski [7] and have been extensively studied since then. Nowadays

they are called interval algebras. All basic facts about these algebras can be found

in [6, Section 15]. We remark, at this stage, that a subalgebra of an interval algebra

need not be an interval algebra. For instance, one can consider the algebra of finite

and co-finite subsets of the first uncountable cardinal. This leads us to the study of

hereditary interval algebras, that is, those algebras of which any subalgebra is an in-

terval algebra. The main concern of this note is to shed more light on these algebras.

This note is organized as follows. Section 2 deals with definitions. Section 3 is a pre-

sentation of the main theorem. In Section 4, some consequences of this theorem are

given.

2. Preliminaries. A partial ordered set (T ,≤) is called a tree (resp., a pseudotree)

whenever, for each element t in T , {u ∈ T : u ≤ t} is a well-founded chain (resp., a

chain). Throughout this note, we denote by B(T) the tree algebra (resp., the pseudotree

algebra on T ), that is, the subalgebra of the power set �(T) generated by {bt : t ∈ T},
where bt

def= {u∈ T : t ≤u}.
Theorem 16.7 in [6] enables us to look at trees with a single root without losing

generality. Furthermore, if T ′ is a subtree of T , then B(T ′) embeds into B(T) by [6,

Theorem 16.9]. These two facts remain valid for pseudotree algebras; for indications

about the modifications of the arguments in [6] and for more on pseudotree algebras,

we refer the reader to [2, 4]. If T is a chain, say L, then we usually denote B(T) by Int(L)
and we call Int(L) the interval algebra over L.

Now, let C be a given chain and a < b in C . We say that b covers a in C whenever

[a,b[ = {a}. We then set Gap(C) def= {x : ∃a,b ∈ C[b covers a and x ∈ {a,b}]}. Next,

recall the interval topology τ0 on C generated by the set of open intervals (a,b), a,b ∈
C+ = C+{∞}; see [4]. Also, we say that a subsetX of C is ordinarily dense in C whenever

X is topologically dense in (C,τ0) and Gap(C)⊆X.
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Next, consider the following cardinal invariant on a Boolean algebra B: π(B) = the

algebraic density of B = the minimal size of a dense subset of B, dB = the topological

density of B = the minimal size of a dense subset of the Stone space of B, Ult(B) (= the

set of ultrafilters of B endowed with Tychonoff’s topology).

Also, for any topological spaceX, putdX =Min{|D| :D dense in X}. For more details,

we refer the reader to [5]. Finally, recall that a separable topological space is a space

that has a countable dense topological subspace, and for any subset A of a topological

space X, we denote by cl(A) the topological closure of A in X; see [4].

3. Main result. We start with a definition.

Definition 3.1. An infinite Boolean algebra is a hereditary interval algebra (h.i.-

algebra) whenever any subalgebra of it is an interval algebra.

Next, we state the main theorem of this note.

Theorem 3.2. Let B be an interval algebra and consider the following statements:

(i) B is an h.i.-algebra,

(ii) π(B)= ℵ0 and B is an interval algebra,

(iii) B = Int(L), where L is an infinite subset of the real line.

Then (ii) and (iii) are equivalent and (i) implies (ii).

The proof of this theorem will be a consequence of the following lemmas and propo-

sitions.

Proof of (i) implies (ii)

Proposition 3.3. If A is an h.i.-algebra, then neither ω1 nor ω∗
1 embeds in A.

Proof. Assume the contrary. Without loss of generality, we may assume ω1 ≤A def=
Int(L) (since A is an h.i.-algebra). Let 〈aα : α < ω1〉 be an increasing continuous enu-

meration of ω1 and put T = {aα :α<ω1}.
Next, define bα = aα+1 •−aα for α < ω1 and put T0

def= {bα : α < ω1}(⊆ A). Hence

B0 = 〈T0〉 is an uncountable subalgebra of A which is isomorphic to an interval algebra

since A is an h.i.-algebra, but this is a contradiction since all chains in B0 are countable.

Proposition 3.4. Let B(T) be a tree algebra not embedding ω1 or ω∗
1 . Then every

chain in B(T) is at most countable.

Proof. Assume the proposition does not hold and let C be a chain in B(T) of size ℵ1.

Then, by [6, Theorem 16.20],ω1 orω∗
1 embeds in B(T), which leads to a contradiction.

Proposition 3.5 (S. Koppelberg, J. D. Monk). Every interval algebra has a dense

tree algebra.

Proof. Let B = Int(L). Hence B is minimally generated by [3] and, by [3, Theorem 4.3]

and the remark after [4, Corollary 2.4], B has a dense subalgebra which is isomorphic

to a tree algebra.
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Next, to end up the proof of (i) implies (ii), let B be an h.i.-algebra. By Proposition 3.5,

B has a dense tree algebra, say B(T). So it would be sufficient to show that B(T) is

countable. Indeed, by Proposition 3.3,ω1 andω∗
1 do not embed in B. Henceω1,ω∗

1 do

not embed in B(T). Now, by Proposition 3.4, every chain in B(T) is countable. Again,

since B is an h.i.-algebra, B(T) is in fact an interval algebra in which every chain is

countable; that means B(T) is countable. So, π(B)= ℵ0. This completes the proof of (i)

implies (ii).

Proof of (iii) implies (ii). Let L be isomorphic to a subchain C of R. Hence B =
Int(L)� Int(C)≤ Int(R). But π(Int(C))= ℵ0 by [1, Proposition 1.5]. So, π(B)= ℵ0.

Proof of (ii) implies (iii). Next, we state the well-known result about the set of real

line. See, for example, [12, Corollary 3.2].

Lemma 3.6. The following statements are equivalent for any infinite set A:

(i) A is a subchain of R,

(ii) there is B ⊆A countable and ordinarily dense in A.

Let B be an interval algebra such that π(B) = ℵ0, B = Int(L) for some chain L. Now

pick B0 a countable dense subalgebra of B, and for any a∈ B0, written under its normal

form,

a=
n⋃

i=1

[
xi,yi

[
, xi,yi ∈ L+ = L+{∞}. (3.1)

We set rel(a) def= {xi,yi : i = 1, . . . ,n}. Now, if b covers a in L, by denseness of B0

in Int(L), there is a nonzero element x0 ∈ B0 such that x0 ⊆ [a,b[ = {a}. Hence x0 =
[a,b[∈ B0. So the set L0 = {rel(x) : x ∈ B0} is at most countable (since |B0| = ℵ0) and

Gap(L)⊆ L0.

Now, by the above lemma, it is sufficient to show that L0 is topologically dense in L.

To this end, let x0 ∈ L and let (a,b) be an open interval in L containing x0.

We need to show that (a,b)∩L0 ≠∅.

Case 1. x0 covers a or b covers x0.

In this case, x0 ∈ L0, and hence (a,b)∩L0 ≠∅. This takes care of Case 1.

Case 2 (Case 1 fails). There are a′,b′ ∈ L such that a<a′<x0<b′<b. Thus [a′,b′[∈
Int(L), and then, by denseness of B0 in Int(L), pick a nonzero element y0 ∈ B0 such that

y0 ⊆ [a′,b′[. So [a′,b′[∩L0 ≠∅. Thus (a,b)∩L0 ≠∅. This takes care of Case 2.

Hence the proof of (ii) implies (iii) is finished.

4. Consequences. In this section, some corollaries of the main theorem are given.

Corollary 4.1. If B(T) is an uncountable h.i.-algebra, then η≤ B(T), where η is the

order type of the set of rationals under their natural ordering.

Proof. B(T) is an h.i.-algebra, say Int(L). Hence, by Proposition 2.3, ω1 and ω∗
1 do

not embed in L. Hence, by [11, Corollary 5.30], η≤ L, and therefore η≤ B(T).
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Corollary 4.2. If B is an interval algebra of uncountable density, that is, π(B)≠ ℵ0,

then there is a subalgebra B0 of B which is not an interval algebra.

Corollary 4.3. There is an interval algebra satisfying the condition in Corollary

4.2.

To see this, take, for example, Int(L) with L = ω1. Notice that Int(ω1) is a super-

atomic algebra. For an atomless interval algebra, one can take Int(L) with L = η ·
ω1.

Remark 4.4. First notice that in the main theorem, we showed that (i) implies (ii)

and by a result of Nikiel (see, e.g., [8, Theorem 3.1]), (i) and (ii) are not equivalent

statements in the main theorem. For instance, an erratum appeared in [9] showing

that the proof of [8, Theorem 3.1] is wrong. To see this, we consider the following

counterexample that appeared in [10] and that was communicated to us by Professor

L. Heindorf.

Let Q denote the subset of all rational numbers and P the subset of all irrational

numbers of ]0,1[. Let Y = ([0,1]×{0})∪ (P×{1}), let ≤ denote the lexicographic or-

dering on Y , and take Y with its order topology. Then Y is a linearly ordered compact

space and Q×{0} is a dense subset.

Let X = Y ∪Q with the following topology: the points of Q are isolated and basic

neighborhoods of each (t,i)∈ Y are of the form U∪{s ∈Q : s ≠ t and (s,i)∈U}, where

U is an open neighborhood of (t,i) in Y . One can see that X is a boolean separable

space, a continuous image of an orderable space, and yet not orderable.

Acknowledgments. The authors would like to thank the referee and also Profes-

sor L. Heindorf for their helpful comments and suggestions.

References

[1] M. Bekkali, Chains and antichains in interval algebras, J. Symbolic Logic 59 (1994), no. 3,
860–867.

[2] , Pseudo treealgebras, Notre Dame J. Formal Logic 42 (2001), no. 2, 101–108.
[3] S. Koppelberg, Minimally generated Boolean algebras, Order 5 (1989), no. 4, 393–406.
[4] S. Koppelberg and J. D. Monk, Pseudo-trees and Boolean algebras, Order 8 (1991/1992),

no. 4, 359–374.
[5] J. D. Monk, Cardinal Functions on Boolean Algebras, Lectures in Mathematics ETH Zürich,

Birkhäuser Verlag, Basel, 1990.
[6] J. D. Monk and R. Bonnet (eds.), Handbook of Boolean Algebras. Vol. 3, North-Holland Pub-

lishing, Amsterdam, 1989.
[7] A. Mostowski and A. Tarski, Boolesche ringe mit geordneter basis, Fund. Math. 32 (1939),

69–86 (German).
[8] J. Nikiel, Orderability properties of a zero-dimensional space which is a continuous image

of an ordered compactum, Topology Appl. 31 (1989), no. 3, 269–276.
[9] , Erratum: “Orderability properties of a zero-dimensional space which is a continuous

image of an ordered compactum”, Topology Appl. 36 (1990), no. 1, 93.
[10] J. Nikiel, S. Purisch, and L. B. Treybig, Separable zero-dimensional spaces which are contin-

uous images of ordered compacta, Houston J. Math. 24 (1998), no. 1, 45–56.
[11] J. G. Rosenstein, Linear Orderings, Pure and Applied Mathematics, vol. 98, Academic Press,

New York, 1982 .



ON HEREDITARY INTERVAL ALGEBRAS 1885
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