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ON HEREDITARY INTERVAL ALGEBRAS
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We show that each hereditary interval algebra has a countable density and not conversely.
Moreover, we show that, for an interval algebra, having countable density and being subal-
gebra of the interval algebra over the real line are equivalent statements.
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1. Introduction. Boolean algebras that are generated by subchains, that is, subsets
that are linearly ordered under the Boolean partial order, were introduced in 1939
by Mostowski and Tarski [7] and have been extensively studied since then. Nowadays
they are called interval algebras. All basic facts about these algebras can be found
in [6, Section 15]. We remark, at this stage, that a subalgebra of an interval algebra
need not be an interval algebra. For instance, one can consider the algebra of finite
and co-finite subsets of the first uncountable cardinal. This leads us to the study of
hereditary interval algebras, that is, those algebras of which any subalgebra is an in-
terval algebra. The main concern of this note is to shed more light on these algebras.
This note is organized as follows. Section 2 deals with definitions. Section 3 is a pre-
sentation of the main theorem. In Section 4, some consequences of this theorem are
given.

2. Preliminaries. A partial ordered set (T, <) is called a tree (resp., a pseudotree)
whenever, for each element ¢t in T, {u € T : u < t} is a well-founded chain (resp., a
chain). Throughout this note, we denote by B(T) the tree algebra (resp., the pseudotree
algebra on T), that is, the subalgebra of the power set ?(T) generated by {b; :t € T},
where b, def {fueT:t<u}.

Theorem 16.7 in [6] enables us to look at trees with a single root without losing
generality. Furthermore, if T’ is a subtree of T, then B(T’') embeds into B(T) by [6,
Theorem 16.9]. These two facts remain valid for pseudotree algebras; for indications
about the modifications of the arguments in [6] and for more on pseudotree algebras,
we refer the reader to [2, 4]. If T is a chain, say L, then we usually denote B(T) by Int(L)
and we call Int(L) the interval algebra over L.

Now, let C be a given chain and a < b in C. We say that b covers a in C whenever
[a,b[ = {a}. We then set Gap(C) def {x :3a,b € C[b covers a and x € {a,b}]}. Next,
recall the interval topology 1o on C generated by the set of open intervals (a,b), a,b €
C* =C+{o0}; see[4]. Also, we say that a subset X of C is ordinarily dense in C whenever
X is topologically dense in (C,Tp) and Gap(C) < X.
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Next, consider the following cardinal invariant on a Boolean algebra B: 1 (B) = the
algebraic density of B = the minimal size of a dense subset of B, dB = the topological
density of B = the minimal size of a dense subset of the Stone space of B, Ult(B) (= the
set of ultrafilters of B endowed with Tychonoff’s topology).

Also, for any topological space X, putdX = Min{|D| : D dense in X}.For more details,
we refer the reader to [5]. Finally, recall that a separable topological space is a space
that has a countable dense topological subspace, and for any subset A of a topological
space X, we denote by cl(A) the topological closure of A in X; see [4].

3. Main result. We start with a definition.

DEFINITION 3.1. An infinite Boolean algebra is a hereditary interval algebra (h.i.-
algebra) whenever any subalgebra of it is an interval algebra.

Next, we state the main theorem of this note.

THEOREM 3.2. Let B be an interval algebra and consider the following statements:
(i) B is an h.i.-algebra,
(i) 7 (B) = 8¢ and B is an interval algebra,
(iii) B =Int(L), where L is an infinite subset of the real line.
Then (ii) and (iii) are equivalent and (i) implies (ii).

The proof of this theorem will be a consequence of the following lemmas and propo-
sitions.

PROOF OF (i) IMPLIES (ii)
PROPOSITION 3.3. If A is an h.i.-algebra, then neither w, nor w; embeds in A.

PROOF. Assume the contrary. Without loss of generality, we may assume w; < A def
Int(L) (since A is an h.i.-algebra). Let (a : @ < w;) be an increasing continuous enu-
meration of w; and put T = {ay: & < w1}.

Next, define by = aq:+1 ® —ay for o« < w; and put Ty def {by:x < wi}(c A). Hence
By = (Tp) is an uncountable subalgebra of A which is isomorphic to an interval algebra
since A is an h.i.-algebra, but this is a contradiction since all chains in By are countable.

O

PROPOSITION 3.4. Let B(T) be a tree algebra not embedding w; or wy. Then every
chain in B(T) is at most countable.

PROOF. Assume the proposition does not hold and let C be a chainin B(T) of size 8.
Then, by [6, Theorem 16.20], w; or w; embeds in B(T), which leads to a contradiction.
O

PROPOSITION 3.5 (S. Koppelberg, J. D. Monk). Every interval algebra has a dense
tree algebra.

PROOF. LetB =Int(L).Hence B is minimally generated by [3] and, by [3, Theorem 4.3]
and the remark after [4, Corollary 2.4], B has a dense subalgebra which is isomorphic
to a tree algebra. |
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Next, to end up the proof of (i) implies (ii), let B be an h.i.-algebra. By Proposition 3.5,
B has a dense tree algebra, say B(T). So it would be sufficient to show that B(T) is
countable. Indeed, by Proposition 3.3, w; and w; do not embed in B. Hence w;, wj do
not embed in B(T). Now, by Proposition 3.4, every chain in B(T) is countable. Again,
since B is an h..-algebra, B(T) is in fact an interval algebra in which every chain is
countable; that means B(T) is countable. So, 71 (B) = X¢. This completes the proof of (i)
implies (ii). O

PROOF OF (iii) IMPLIES (ii). Let L be isomorphic to a subchain C of R. Hence B =

Int(L) = Int(C) < Int(R). But r(Int(C)) = 8o by [1, Proposition 1.5]. So, t(B) = Ro. [

PROOF OF (ii) IMPLIES (iii). Next, we state the well-known result about the set of real
line. See, for example, [12, Corollary 3.2].

LEMMA 3.6. The following statements are equivalent for any infinite set A:
(i) A is a subchain of R,
(ii) there is B < A countable and ordinarily dense in A.

Let B be an interval algebra such that m(B) = 8o, B = Int(L) for some chain L. Now
pick By a countable dense subalgebra of B, and for any a € By, written under its normal
form,

a =

=

[xi,vil, xi,yi€L* =L+ {co}. (3.1)

i=1

We set rel(a) def {xi,vi:i=1,...,n}. Now, if b covers a in L, by denseness of B,
in Int(L), there is a nonzero element xo € By such that xg < [a,b[ = {a}. Hence xy =
[a,b[€ By. So the set Ly = {rel(x) : x € By} is at most countable (since |By| = Rg) and
Gap(L) < Ly.

Now, by the above lemma, it is sufficient to show that Ly is topologically dense in L.
To this end, let xo € L and let (a,b) be an open interval in L containing x,.

We need to show that (a,b) NLy + &.

CASE 1. Xx( covers a or b covers xy.

In this case, xg € Ly, and hence (a,b) nLy # @. This takes care of Case 1.

CASE 2 (Case 1 fails). Therearea’,b’ € L suchthata<a' <xo<b’'<b.Thus[a’,b'[€
Int(L), and then, by denseness of By in Int(L), pick a nonzero element y, € By such that
yo S [a’,b'[.So [a’,b'[nLy + @. Thus (a,b) nLy + &. This takes care of Case 2.

Hence the proof of (ii) implies (iii) is finished. 0

4. Consequences. In this section, some corollaries of the main theorem are given.

COROLLARY 4.1. IfB(T) is an uncountable h.i.-algebra, then n < B(T), where n is the
order type of the set of rationals under their natural ordering.

PROOF. B(T) is an h.i.-algebra, say Int(L). Hence, by Proposition 2.3, w; and w7 do
not embed in L. Hence, by [11, Corollary 5.30], n < L, and therefore n < B(T). |
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COROLLARY 4.2. IfB is an interval algebra of uncountable density, that is, Tt (B) # Ry,
then there is a subalgebra By of B which is not an interval algebra.

COROLLARY 4.3. There is an interval algebra satisfying the condition in Corollary
4.2.

To see this, take, for example, Int(L) with L = w;. Notice that Int(w;) is a super-
atomic algebra. For an atomless interval algebra, one can take Int(L) with L = n -
w1.

REMARK 4.4. First notice that in the main theorem, we showed that (i) implies (ii)
and by a result of Nikiel (see, e.g., [8, Theorem 3.1]), (i) and (ii) are not equivalent
statements in the main theorem. For instance, an erratum appeared in [9] showing
that the proof of [8, Theorem 3.1] is wrong. To see this, we consider the following
counterexample that appeared in [10] and that was communicated to us by Professor
L. Heindorf.

Let Q denote the subset of all rational numbers and P the subset of all irrational
numbers of ]0,1[. Let Y = ([0,1] x {0}) U (P x {1}), let < denote the lexicographic or-
dering on Y, and take Y with its order topology. Then Y is a linearly ordered compact
space and Q x {0} is a dense subset.

Let X = Y U Q with the following topology: the points of Q are isolated and basic
neighborhoods of each (t,i) € Y are of the form Uu{s € Q:s =t and (s,i) € U}, where
U is an open neighborhood of (t,i) in Y. One can see that X is a boolean separable
space, a continuous image of an orderable space, and yet not orderable.
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