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We consider Poisson’s equation in an n-dimensional exterior domain G (n≥ 2) with a suf-
ficiently smooth boundary. We prove that for external forces and boundary values given
in certain Lq(G)-spaces there exists a solution in the homogeneous Sobolev space S2,q(G),
containing functions being local in Lq(G) and having second-order derivatives in Lq(G).
Concerning the uniqueness of this solution we prove that the corresponding nullspace has
the dimension n+1, independent of q.
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1. Introduction. Let G ⊂Rn (n≥ 2) be an exterior domain with a smooth boundary

∂G of class C2. We consider Poisson’s equation concerning some scalar function u:

−∆u= f in G, u|∂G = Φ. (1.1)

Here f is given in G and Φ is the boundary value prescribed on ∂G. As usual, ∆ denotes

the Laplacian in Rn.

It is well known that in unbounded domains the treatment of differential equations

causes special difficulties, and that the usual Sobolev spacesWm,q(G) are not adequate

in this case: even for the Laplacian in Rn we find [4] that the operator ∆ :Wm,q(Rn)→
Wm−2,q(Rn) is not a Fredholm operator in general, as it is in the case of bounded

domains. Thus in exterior domains, (1.1) have mostly been studied in connection with

weight functions. Either (1.1) has been solved in weighted Sobolev spaces directly [8,

13, 15], or it has first been multiplied by some weights and then solved in standard

Sobolev spaces [20].

It is the aim of the present paper to prove the solvability of (1.1) in the homogeneous

Sobolev spaces S2,q(G) (1< q <∞) of the following type [5, 12]. Let Lq(G) be the space

of functions defined almost everywhere in G such that the norm

‖f‖q,G :=
(∫

G

∣∣f(x)∣∣qdx)1/q
(1.2)

is finite. Then S2,q(G) is the space of all functions being local in Lq(G) and having

all second-order distributional derivatives in Lq(G). We show that for f ∈ Lq(G) and

some boundary value Φ ∈ W 2−1/q,q(∂G) (see the notations below) there exists always

a solution u ∈ S2,q(G). Concerning the uniqueness of this solution, we prove that the

space of all u ∈ S2,q(G) satisfying (1.1) with f = 0 and Φ = 0 has the dimension n+1,
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independent of q. This also holds for the case n= 2. Similar results in slightly different

spaces have been investigated by completely different methods in [17].

Throughout this paper,G ⊂Rn (n≥ 2) is an exterior domain, that is, a domain whose

complement is compact. Let G denote its closure in Rn and ∂G its boundary, which we

assume to be of class C2 [1, page 67].

In the following, all function spaces contain real-valued functions. Let D ⊂Rn be any

domain with a compact boundary ∂D of class C2, or let D = Rn. Besides the spaces

Lq(D), we need the well-known functions spaces C∞(D), C∞0 (D), and the space C∞0 (D),
containing the restrictions f|D of functions f ∈ C∞0 (Rn).

We call a function u local in Lq(D) (1< q <∞) and write u∈ Lqloc(D) if u∈ Lq(D∩B)
for every open ball B ⊂Rn. Note that this space does not coincide with the usual space

Lqloc(D) in general (except for D = Rn). For D ≠ Rn we find Lq(D) ⊂ Lqloc(D) ⊂ Lqloc(D)
and, if D is bounded, Lq(D)= Lqloc(D) and Lq(D)⊂ Lqloc(D).

ByWm,q(D) (m= 0,1,2; W 0,q(D)= Lq(D))we mean the usual Sobolev space of func-

tions u such that Dαu∈ Lq(D) for all multi-indices α = (α1, . . . ,αn)∈Nn0 = {0,1, . . .}n
with |α| :=α1+···+αn ≤m [1]. Here we used

Dαu=Dα1
1 D

α2
2 ···Dαnn u, Di = ∂

∂xi

(
i= 1, . . . ,n; x = (x1, . . . ,xn

)∈Rn). (1.3)

The spaces Wm,q
loc (D) and Wm,q

loc (D) are defined analogously.

We need the fractional-order space W 2−1/q,q(∂D), which contains the trace u|∂D of

all u∈W 2,q
loc (Rn) [1, page 216]. The norm in W 2−1/q,q(∂D) is denoted by ‖·‖2−1/q,q,∂D .

The term ∇u = (Dju)j=1,...,n is the gradient of u and ∇2u = (DiDju)i,j=1,...,n means

the system of all second-order derivatives of u. For these terms we define the semi-

norms

‖∇u‖q,D :=

 n∑
k=1

∥∥Dku∥∥qq,D

1/q

,
∥∥∇2u

∥∥
q,D :=


 n∑
j,k=1

∥∥DjDku∥∥qq,D

1/q

, (1.4)

and introduce for m= 1,2 and 1< q <∞ the homogeneous Sobolev spaces

Sm,q(D)= {u∈ Lqloc(D) |
∥∥∇mu∥∥q,D <∞}. (1.5)

Finally, concerning the norms and seminorms, we sometimes omit the domain of defi-

nition if it is obvious and use ‖·‖q or ‖·‖2−1/q,q instead of ‖·‖q,G or ‖·‖2−1/q,q,∂G, for

example.

2. Potential theory. Besides the Poisson equation (1.1) we also consider the special

case of Laplace’s equation with Dirichlet boundary condition

−∆u= 0 in G, u|∂G = Φ. (2.1)

These equations have mostly been studied with methods of potential theory (see, e.g.,

[9, 18]). We collect some well-known facts in this section.
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Let En (n ≥ 2) in the following denote the fundamental solution of the Laplacian

such that −∆En(x)= δ(x), where δ is Dirac’s distribution in Rn. It is well known that

E2(x)=− ln|x|
ω2

, En(x)= |x|2−n
(n−2)ωn

(n≥ 3), (2.2)

where ωn is the area of the (n−1)-dimensional unit sphere in Rn (n≥ 2).

Lemma 2.1. Let G ⊂Rn (n≥ 2) be an exterior domain with boundary ∂G of class C2,

and let a ∈ R and Φ ∈ C(∂G) be given. Then there is at most one u ∈ C∞(G)∩C(G)
satisfying (2.1) in G, if we require in addition for |x| →∞:

u(x)−a ln |x| =O(1) (n= 2), u(x)=O(|x|2−n) (n≥ 3), (2.3)

∇mu(x)=O(|x|2−n−m) (n≥ 2; m= 1,2). (2.4)

Proof. Let u = u1−u2 be the difference of two solutions u1 and u2 with the re-

quired decay properties above. Define the bounded domain Gr = G∩ Br (O), where

Br (O)⊂Rn denotes an open ball with center at zero and radius r such that ∂G ⊂ Br (O).
Thus in Gr we may apply Green’s first identity, obtaining

∫
Gr
|∇u|2dx =

∫
∂Br

(
∂Nu

)
udo, (2.5)

because the boundary integral over ∂G vanishes. Here N denotes the outward (with

respect to Gr ) unit normal vector on the boundary ∂Br = ∂Br (O) and ∂Nu is the normal

derivative of u. Now due to the decay properties of u, the right-hand side in (2.5) tends

to zero as r → ∞. This is obvious if n ≥ 3. For n = 2, using the expansion theorem

for harmonic functions at infinity [18, page 523], we find u(x) = O(1) and ∇u(x) =
O(|x|−2) as |x| → ∞, which implies the assertion above, too. It follows that ∇u =
0 in G, hence u = 0 in G because u vanishes on the boundary ∂G. This proves the

uniqueness.

To show the existence of a solution with the required decay properties, we use the

boundary integral equations’ method. We define the single-layer potential

(
EnΘ

)
(x)=

∫
∂G
En(x−y)Θ(y)doy (x ∉ ∂G), (2.6)

the double-layer potential

(
DnΘ

)
(x)=−

∫
∂G
∂N(y)En(x−y)Θ(y)doy (x ∉ ∂G), (2.7)

and the normal derivative of the single-layer potential

(
HnΘ

)
(x)=−

∫
∂G
∂N(x)En(x−y)Θ(y)doy (x ∉ ∂G). (2.8)

Here and in the following,N =N(z) is the outward (with respect to the bounded domain

Gb =Rn\G) unit normal vector in z ∈ ∂G, andΘ∈ C(∂G) is the unknown source density.
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Then we have the continuity relation

(
EnΘ

)e = (EnΘ)i = EnΘ on ∂G (2.9)

and, due to the regularity of the boundary, the jump relations

DnΘ−(DnΘ)e = (DnΘ)i−DnΘ= 1
2
Θ on ∂G, (2.10)

HnΘ−(HnΘ)e = (HnΘ)i−HnΘ=−1
2
Θ on ∂G. (2.11)

Here the indices e and i stand for the limits from the exterior domainG and the interior

domain Gb :=Rn\G, respectively.

Now we first assume n≥ 3. Following [3, 11] (here for the case of Helmholtz’s equa-

tion), for the solution of (2.1) we choose in G the mixed ansatz

u=DnΘ−αEnΘ (0<α∈R) (2.12)

consisting of a double- and a single-layer potential. Then by means of (2.9) and (2.10),

we obtain the second-kind Fredholm boundary integral equation

Φ =−1
2
Θ+DnΘ−αEnΘ on ∂G (2.13)

for the unknown source density Θ ∈ C(∂G). To see that (2.13) is uniquely solvable for

all boundary values Φ ∈ C(∂G), let 0 ≠ Ψ be a solution of the homogeneous adjoint

integral equation

0=−1
2
Ψ+HnΨ−αEnΨ on ∂G. (2.14)

By (2.9) and (2.11), this implies α(EnΨ)i = (HnΨ)i =−(∂NEnΨ)i, and Green’s first iden-

tity yields

∫
Gb

∣∣∇(EnΨ)∣∣2dx =
∫
∂G

(
EnΨ

)i(∂NEnΨ)ido =−α
∫
∂G

∣∣EnΨ∣∣2do, (2.15)

hence EnΨ = 0 inGb. This implies (EnΨ)e = 0 using (2.9), and the uniqueness statement

above yields EnΨ = 0 in G, too. Thus EnΨ = 0 in the whole Rn, which implies HnΨ = 0

in G and in Gb, and we obtain Ψ = 0 by (2.11), as asserted. This proves the existence in

the case n≥ 3 by the Fredholm alternative theorem.

Now let n= 2. As in [10] (for the case of Stokes’ equations) we use in G the ansatz

u=−a ω2

|∂G|E
21+D2Θ−αE2MΘ−βΘM (0<α∈R, 0≠ β∈R). (2.16)
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Here a∈R is the prescribed constant from (2.3), |∂G| := ∫∂G do is the surface area, E21

is the single-layer potential with constant density Ψ = 1, and the projectorM is defined

by

Θ �→MΘ :=Θ−ΘM (2.17)

with the surface mean value

ΘM := 1
|∂G|

∫
∂G
Θ(y)do, (2.18)

which implies

(MΘ)M = 1
|∂G|

∫
∂G

(
Θ(y)−ΘM

)
do =ΘM−ΘM = 0. (2.19)

This ansatz indeed satisfies the prescribed decay condition u(x)−a ln |x| = O(1) as

|x| →∞, which can be seen as follows:

−a ω2

|∂G|E
21(x)= a 1

|∂G|
∫
∂G

ln|x−y|doy

= a ln|x|+a 1
|∂G|

∫
∂G

ln
|x−y|
|x| doy

= a ln|x|+o(1) as |x| �→∞.

(2.20)

For the other terms, we find

D2Θ(x)=
∫
∂G

(x−y)·N(y)
ω2|x−y|2 Θ(y)doy =O

(|x|−1),
E2MΘ(x)= 1

ω2

∫
∂G

ln
1

|x−y| (MΘ)(y)doy+
1
ω2

ln|x|
∫
∂G
(MΘ)(y)doydoy

= 1
ω2

∫
∂G

ln
|x|

|x−y| (MΘ)(y)doy = o(1),

(2.21)

and finally ΘM =O(1) as |x| →∞, which implies the required decay condition (2.3).

Now using (2.9) and (2.10) again, we obtain the second-kind Fredholm boundary in-

tegral equation

Φ+ aω2

|∂G|E
21=−1

2
Θ+D2Θ−αE2MΘ−βΘM on ∂G. (2.22)

To see that (2.22) has a unique solution Θ ∈ C(∂G) for all boundary values Φ ∈ C(∂G)
and all a∈R, let 0≠ Ψ solve the homogeneous adjoint integral equation

0=−1
2
Ψ+H2Ψ−αME2Ψ−βΨM on ∂G. (2.23)
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Because for any constant c ∈Rwe have−(1/2)c+D2c = 0 [18, page 511] and E2Mc = 0,

we find

0=
〈
c,−1

2
Ψ+H2Ψ−αME2Ψ−βΨM

�

=
〈
− 1

2
c+D2c−αE2Mc,Ψ

�
−β〈c,ΨM〉

=−β〈c,ΨM〉,
(2.24)

where here

〈ψ,φ〉 :=
∫
∂G
ψ(y)φ(y)do (2.25)

denotes the corresponding duality. It follows that ΨM = 0 and MΨ = Ψ , hence Ψ is a

solution of

0=−1
2
Ψ+H2Ψ−αME2Ψ on ∂G, (2.26)

too. Using (2.11), this implies

(
H2Ψ

)i =−1
2
Ψ+H2Ψ =αME2Ψ on ∂G, (2.27)

and from Green’s first identity, we obtain∫
Gb

∣∣∇E2Ψ
∣∣dx = ∫

∂G
E2Ψ ·∂nE2Ψ do =−

∫
∂G
E2Ψ ·(H2Ψ

)ido
=−α

∫
∂G
E2Ψ ·ME2Ψ do =−α

∫
∂G

∣∣ME2Ψ
∣∣2do.

(2.28)

Since α > 0, it follows that ME2Ψ = 0 on ∂G, which means E2Ψ = (E2Ψ)M = const. on

∂G. By Lemma 2.1, this implies E2Ψ = const. in Gb, hence (H2Ψ)i = 0 on ∂G and thus,

using (2.11) again, (H2Ψ)e = Ψ on ∂G. On the other hand, ME2Ψ is a solution of the

exterior problem (2.1) with Φ = 0 on ∂G satisfying the decay condition (2.3) (prescribe

a = 0) due to ΨM = 0. By Lemma 2.1 this implies E2Ψ = (E2Ψ)M = const. in G, hence

(H2Ψ)e = Ψ = 0 on ∂G, as asserted. Thus the following theorem is proved.

Theorem 2.2. Let G ⊆ Rn (n≥ 2) be an exterior domain with boundary ∂G of class

C2, and let Φ ∈ C(∂G) be given. In addition, if n= 2, let a∈R be given. Then there is one

and only one function u ∈ C∞(G)∩C(G) satisfying (2.1) in G and the decay conditions

(2.3). This solution admits in G the following representation: if n≥ 3, then for any α with

0<α∈R,

u=DnΘ−αEnΘ, (2.29)

where Θ∈ C(∂G) is the uniquely determined solution of the boundary integral equation

Φ =−1
2
Θ+DnΘ−αEnΘ on ∂G. (2.30)
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If n= 2, then for any α, β with 0<α∈R, 0≠ β∈R,

u=−a ω2

|∂G|E
21+D2Θ−αE2MΘ−βΘM. (2.31)

Here a∈R is the above-given constant appearing in (2.3), E21 is the single-layer potential

with constant density Ψ = 1, and the projector M is defined by Θ�MΘ := Θ−ΘM with

the surface mean value ΘM := (1/|∂G|)∫∂GΘ(y)do, where Θ ∈ C(∂G) is the uniquely

determined solution of the boundary integral equation

Φ+a ω2

|∂G|E
21=−1

2
Θ+D2Θ−αE2MΘ−βΘM on ∂G. (2.32)

3. Extension to homogeneous Sobolev spaces. The first theorem ensures the solv-

ability of Laplace’s equation (2.1) in the homogeneous spaces S2,q(G), defined by (1.5),

in the case n= 2.

Theorem 3.1. LetG ⊆R2 be an exterior domain with boundary ∂G of class C2, and let

Φ ∈W 2−1/q,q(∂G), 1< q <∞, and a∈ R given. Then there is one and only one function

u∈ S2,q(G)∩C∞(G) satisfying (2.1) and the decay conditions (2.3) for n= 2.

Proof. Because for n = 2 we have (2−1/q) q = 2q−1 > 1 = n−1, and Sobolev’s

Lemma [1] implies Φ ∈ C(∂G), we can apply Theorem 2.2, obtaining a uniquely deter-

mined function Θ ∈ C(∂G) satisfying the boundary integral equation (2.32). The func-

tion u∈ C∞(G)∩C(G) defined by (2.31) fulfills (2.1) as well as the decay condition (2.3)

for n= 2, as shown above. Because the uniqueness has been established in Lemma 2.1,

it remains to show u∈ S2,q(G).
To do so, let Gr := G ∩ Br (0) as in the proof of Lemma 2.1. We obtain u ∈

W 2−1/q,q(∂Gr ), because u ∈ C∞(G) implies u ∈ W 2−1/q,q(∂Br ) (see [7, page 238]), and

because u = Φ ∈ W 2−1/q,q(∂G) on ∂G. Due to u ∈ C∞(Gr )∩C(Gr ) this implies u ∈
W 2,q(Gr ) (see [7, page 232], which is based on [16, page 184]), and it remains to esti-

mate the second-order derivatives of u for |x| ≥ r .

Using (2.31), we see that |DkDju(x)| ≤ cr |x|−2 for all x with |x| ≥ r (k,j = 1,2),
which gives DkDju ∈ Lq(R2\Br ) for all 1 < q < ∞. Thus u ∈ S2,q(G) as asserted and

the theorem is proved.

The preceding arguments could be used for the case n ≥ 3 and q > n/2 as well,

because, due to (2−1/q)q > n−1, Sobolev’s lemma [1] would imply Φ ∈ C(∂G) as for

n= 2. The case n≥ 3 and q ≤n/2, however, would not be included. Therefore, to prove

the next theorem we use another approach which works for any q with 1< q <∞ and

any n≥ 3.

Theorem 3.2. Let G ⊆ Rn (n≥ 3) be an exterior domain with boundary ∂G of class

C2, and let Φ ∈ W 2−1/q,q(∂G), 1 < q < ∞, be given. Then there is one and only one

function u∈ S2,q(G)∩C∞(G) satisfying (2.1) and the decay conditions (2.3) for n≥ 3.

Proof. To prove uniqueness, let u = u1−u2 be the difference of two solutions u1

and u2 with the required decay properties above. Define the bounded domain Gr =
G∩Br (O), where Br (O) ⊂ Rn denotes an open ball with center at zero and radius r
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such that ∂G ⊂ Br (O). From the local regularity theory, we find u ∈ W 2,2
loc (G). Thus in

Gr we may apply Green’s first identity, and the uniqueness follows as in the proof of

Lemma 2.1.

To prove existence, for Θ∈ Lq(∂G), we set

TqΘ :=DnΘ−αEnΘ (0<α∈R). (3.1)

Then an easy calculation using Hölder’s inequality shows that Tq : Lq(∂G)→ Lq(∂G) is

well defined and bounded. Now let Θ∈ Lq(∂G) be a solution of

−1
2
Θ+TqΘ= 0. (3.2)

Then we find Θ∈ Lp(∂G) for some p >n−1. To see this we use the Hardy-Littlewood-

Sobolev inequality [19, page 119] obtaining in case of 1< q < n−1 that TqΘ ∈ Ls(∂G)
with

∥∥TqΘ∥∥s,∂G ≤ cq‖Θ‖q,∂G
(

1
s
= 1
q
− 1
n−1

)
. (3.3)

Here we find s > q, and repeating this procedure a finite number of times, we obtain

Θ∈ Lp(∂G) for some p >n−1. Next we show that Θ is bounded on ∂G. Since ∂G ∈ C2

we have

∣∣Θ(x)∣∣= 2
∣∣TqΘ(x)∣∣≤ c∫

∂G
|x−y|2−n∣∣Θ(y)∣∣doy

≤ c
(∫

∂G
|x−y|(2−n)p′doy

)1/p′(∫
∂G

∣∣Θ(y)∣∣pdoy
)1/p

,
(3.4)

where the first integral on the right-hand side is finite due to (n−2)p′ < n−1 since

p > n− 1 (1/p+ 1/p′ = 1). Now from the boundedness of Θ we obtain that TqΘ is

continuous on ∂G (cf. [9, page 42] for n= 3), and (3.2) implies the continuity of Θ. Thus

Theorem 2.2 implies

{
Θ∈ Lq(∂G) | −1

2
Θ+TqΘ= 0

}
=
{
Θ∈ C(∂G) | −1

2
Θ+DnΘ−αEnΘ= 0

}
= {0}.

(3.5)

Moreover, using a suitable cutoff procedure we obtain that the operator Tq : Lq(∂G)→
Lq(∂G) is compact, and applying the Fredholm alternative and the open mapping the-

orem we find that for any Φ ∈ Lq(∂G) there is one and only one Θ ∈ Lq(∂G) satisfying

Φ =−(1/2)Θ+TqΘ on ∂G and the estimate

‖Θ‖q,∂G ≤ cq
∥∥∥∥− 1

2
Θ+TqΘ

∥∥∥∥
q,∂G

= cq‖Φ‖q,∂G. (3.6)

Now we return to (2.1). Because of Φ ∈W 2−1/q,q(∂G) there are functions Φk ∈ C2(∂G),
k∈N, such that

∥∥Φk−Φ∥∥2−1/q,q,∂G �→ 0 as k �→∞. (3.7)
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Let Θk be the solution of the boundary integral equation (2.30) with Φ replaced by Φk,
corresponding to Theorem 2.2. Then this implies

Φk =−1
2
Θk+TqΘk. (3.8)

Moreover, let Θ∈ Lq(∂G) denote the unique solution of

Φ =−1
2
Θ+TqΘ. (3.9)

Then, using (3.6),

∥∥Θ−Θk∥∥q,∂G �→ 0 as k �→ 0. (3.10)

For x ∈G and k∈N we define

uk(x)=DnΘk(x)−αEnΘk(x),
u(x)=DnΘ(x)−αEnΘ(x). (3.11)

Then, as shown above, uk ∈ C∞(G)∩C(G) satisfies (2.1) with Φ = Φk, and, in particular,

uk ∈ C2(∂Gr ), where Gr = G∩Br (0). Thus we conclude that uk ∈ W 2,q(Gr ) with the

following estimate:

∥∥(uk−ul)∥∥2,q,Gr ≤ cq,r
(∥∥uk−ul∥∥2−1/q,q,∂G+

∥∥uk−ul∥∥2−1/q,q,∂Br

)
, (3.12)

(see [6, page 340], which is based on [16, page 184]). Because uk−ul = Φk−Φl on ∂G,

the first term on the right-hand side of (3.12) tends to zero as k,l→∞. For the second

term we find

∥∥uk−ul∥∥2−1/q,q,∂Br ≤ cq,r
(∥∥Θk−Θl∥∥q,∂G) (3.13)

(cf. [7, page 238]). Thus, due to (3.10), uk is a Cauchy sequence in W 2,q(Gr ). Moreover,

Hölder’s inequality together with (3.10) shows that for any x ∈ G we have uk(x) →
u(x) as k → ∞, hence u ∈ W 2,q(Gr ) with ‖u−uk‖2,q,Gr → 0 as k → ∞. This implies

‖u−uk‖2−1/q,q,∂G → 0 as k → ∞, and because uk = Φk on ∂G, (3.7) yields u = Φ ∈
W 2−1/q,q(∂G) on ∂G. Because u ∈ C∞(G) with ∆u = 0 in G, and because u satisfies

the decay properties (2.3) for n ≥ 3, the second-order derivatives DkDju(x) (k,j =
1, . . . ,n) for all x with |x| ≥ r can be estimated as in the case n = 2 (see the proof of

Theorem 3.1). Thus u∈ S2,q(G) and the theorem is proved.

The next theorem ensures the solvability of Poisson’s equation (1.1) in the spaces

S2,q(G), defined by (1.5).

Theorem 3.3. Let G ⊂ Rn (n≥ 2) be an exterior domain with boundary ∂G of class

C2, and let 1< q <∞. Then for every f ∈ Lq(G) and Φ ∈W 2−1/q,q(∂G) there exists some

u∈ S2,q(G) satisfying the Poisson equation (1.1) in G.

Proof. Setting f = 0 in Rn\G we obtain some function f̃ ∈ Lq(Rn) with f̃|G = f in

G. Let f̃i ∈ C∞0 (Rn) denote a sequence such that f̃i → f̃ in Lq(Rn) as i→∞. Consider
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now for fixed i the equation −∆ũi = f̃i in Rn. We can solve it by convolution with En
(see (2.2)), obtaining in x ∈Rn the representation

ũi(x)=
(
En∗ f̃i

)
(x)=

∫
Rn
En(x−y)f̃i(y)dy. (3.14)

Moreover, by the theorem of Calderón and Zygmund [4], for the second-order deriva-

tives we obtain the estimate ‖∇2ũi‖q ≤ c‖f̃i‖q with some constant c independent of

i∈N, which implies ‖∇2(ũi−ũk)‖q → 0 as i,k→∞.

Next consider a sequence of open balls (Bj)j with Bj ⊂ Bj+1 and
⋃∞
j=1Bj = Rn. We

define the space

P= {P : x �→ P(x)= a+b ·x | b,x ∈Rn, a∈R} (3.15)

of linear functions P :Rn→R. Then by the generalized Poincaré inequality (cf. [12, page

22] or [14, page 112]) we obtain for every v ∈ S2,q(Rn) the estimate

‖v‖Lq(Bj)/P := inf
P∈P

‖v+P‖Lq(Bj) ≤ cj
∥∥∇2v

∥∥
Lq(Bj)n

2 (3.16)

with some constants cj > 0. Because ũi ∈ S2,q(Rn), we conclude that (ũi)i is a Cauchy

sequence with respect to the norm ‖·‖Lq(B1)/P on the left-hand side of (3.16) for fixed

j = 1. This implies the existence of linear functions Pi ∈ P such that (ũi+Pi)i is Cauchy

sequence in Lq(B1). Repeating this argument now for j = 2, there exist linear functions

Qi ∈ P such that ũi+Qi is a Cauchy sequence in Lq(B2), hence in Lq(B1), and using the

representation

Pi(x)=αi+βi ·x, Qi(x)= γi+δi ·x, (3.17)

we obtain that (αi−γi)i and (βi−δi)i are Cauchy sequences inR and inRn, respectively.

From this we find that (Pi−Qi)i is a Cauchy sequence in Lq(B2), and thus also (ũi+
Pi)i = (ũi +Qi)i + (Pi −Qi)i. Repeating this procedure it follows that (ũi + Pi)i is a

Cauchy sequence in Lq(Bj) for all j = 1,2, . . . . Thus we can find some ũ∈ S2,q(Rn) such

that

(
ũi+Pi

)
�→ ũ in Lqloc

(
Rn
)
,

∥∥∇2(ũ−ũi)∥∥q,Rn �→ 0 as i �→∞. (3.18)

Moreover, ũ satisfies −∆ũ = f̃ in Rn and the estimate ‖∇2ũ‖q ≤ c‖f̃‖q. Since ũ ∈
W 2,q

loc (Rn) we conclude from the usual trace theorem [1, page 217] that ũ|∂G ∈
W 2−1/q,q(∂G). Following Lemma 2.1 there is a functionw ∈ S2,q(G) satisfying the equa-

tions

−∆w = 0 in G, w|∂G = ũ|∂G−Φ, (3.19)

where Φ ∈W 2−1/q,q(∂G) is the prescribed boundary value. Now setting u= ũ|G−w, we

obtain the desired solution and the theorem is proved.
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Because functionsu∈ S2,q(G) have no suitable decay properties at infinity, in general

we cannot expect uniqueness for the solution of (1.1) constructed in Theorem 3.1. Thus

we consider in G the homogeneous equations and define the nullspace of (1.1) by

Nq(G)=
{
u∈ S2,q(G) | −∆u= 0 in G, u|∂G = 0

}
. (3.20)

Theorem 3.4. Let G ⊂ Rn (n≥ 2) be an exterior domain with boundary ∂G of class

C2, and let 1 < q < ∞. Then for the dimension dimNq(G) of the nullspace defined in

(3.20), dimNq(G)=n+1 independent of q.

Proof. Consider the space P of linear functions defined in (3.15). Because for every

P ∈ P we have P(x) = a+b ·x with some a ∈ R and some vector b ∈ Rn, we find

dimP=n+1. Let uP denote the uniquely determined solution of the equation

−∆u= 0, u|∂G =−P|∂G (3.21)

with P ∈ P, according to Lemma 2.1. Here in the case n= 2 we require

u(x)−a ln |x| =O(1) as |x| �→∞, (3.22)

where the constant a is chosen from P(x)= a+b ·x. Setting

Mq(G)=
{
uP +P|G | P ∈ P

}
, (3.23)

we obtainMq(G)⊂Nq(G), obviously. Furthermore, we have dimMq(G)= dimP=n+1,

which can be shown as follows. Let P(x)= a+b·x and let uP+P|G = 0 in G. Then from

the decay properties of uP and ∇uP established in Lemma 2.1 we find a= 0 and b = 0,

hence P = 0. Here in the case n = 2 we obtain a = 0 due to the special choice of the

number a in (3.22). Together with the uniqueness statement in Lemma 2.1, this means

that, if B is a basis of P, then

Bq(G)=
{
uP +P|G | P ∈ B

}
(3.24)

is a basis of Mq(G). Thus it remains to show that

Nq(G)⊂Mq(G). (3.25)

To do so, we first determine the nullspace

Nq
(
Rn
)= {u |u∈ S2,q(Rn) with −∆u= 0 in Rn

}
. (3.26)

From ∆u = 0, hence ∆∇2u = 0 with D2
jku ∈ Lq(Rn) (j,k = 1, . . . ,n) we obtain ∇2u = 0

in Rn, which implies u= P for some P ∈ P. Thus we have shown that

Nq
(
Rn
)= P. (3.27)
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Now let u∈Nq(G). We extend u on the whole space obtaining a function ũ∈ S2,q(Rn)
with ũ|G =u [1, page 83]. Moreover, this function satisfies inRn the identity−∆ũ= f̃ ∈
Lq(Rn), where the function f̃ has a compact support in the bounded domain Rn \G.

Consider the equation

−∆w = f̃ in Rn. (3.28)

Again, it can be solved by convolution with the fundamental solution En of the Lapla-

cian: we obtain w = En∗ f̃ in Rn and the Calderón-Zygmund theorem implies D2
jkw ∈

Lr (Rn) for all 1< r ≤ q (j,k= 1, . . . ,n). Here we used f̃ ∈ Lr (Rn)n for all 1< r ≤ q due

to its compact support. Now using a well-known estimate of Hardy-Littlewood-Sobolev-

type [2, page 242] we find w ∈ Ls(Rn) for some s ≥ q, hence w ∈ Lsloc(Rn) ⊂ Lqloc(Rn).
Thus we have constructed some solution w of (3.28) such that w ∈ S2,q(Rn). Setting

W = ũ−w, we obtain W ∈ Nq(Rn), and (3.27) leads to ũ =w+P for some P ∈ P. Be-

cause ũ|∂G = 0 and since ũ|G =u, we find u∈Mq(G), which proves (3.25) and thus the

theorem.
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