A REMARK ON THE EXTENSION OF THE CONCEPT OF INCIDENCE ALGEBRAS TO NONLOCALLY FINITE PARTIALLY ORDERED SETS

BONIFACE I. EKE

Received 4 March 2003

An incidence algebra of a nonlocally finite partially ordered set Q is a very rare concept, perhaps nonexistent. In this note, we will attempt to construct such an algebra.

2000 Mathematics Subject Classification: 06A11.

1. Introduction. Let *P* be a partially ordered set (poset) and *K* a field of characteristic 0. The functions $f : P \times P \to K$, such that $x \notin y$ implies f(x, y) = 0, are called the incidence functions of *P* over *K*. The set of such functions is denoted by $\vartheta(K, P)$. *P* is called locally finite if for every $x, y \in P$ the interval $[x, y] = \{t \in P \mid x \le t \le y\}$ is finite. When *P* is locally finite, $\vartheta(K, P)$ becomes a *K*-algebra under a multiplication (*) defined by convolution:

$$f * g(x, y) = \sum_{x \le t \le y} f(x, t)g(t, y), \qquad (1.1)$$

and the algebra $\mathcal{P}(K, P)$ is called the incidence algebra of *P* over *K* [1, 2].

If *P* is not locally finite, the expression (1.1) may not make sense. So, one does not often hear of an incidence algebra of a nonlocally finite poset. Our purpose in this note is to show that if *Q* is any nonlocally finite poset and *P* is a locally finite poset, we can form a nonlocally finite poset QS(P) for which an incidence algebra $\vartheta(K, QS(P))$ can be constructed.

Moreover, the posets Q and P are both embeddable in QS(P), while the set $\vartheta(K,Q)$ and the algebra $\vartheta(K,P)$ are both embeddable in $\vartheta(K,QS(P))$, and if $|P| \le |Q|$, then |QS(P)| = |Q|. Besides, for the fixed posets P and Q, the incidence algebra $\vartheta(K,QS(P))$ is unique up to isomorphism. All these are established in Section 2.

In Section 3, we isolate the auxiliary locally finite poset P and try to deal directly with Q. However, because of the problem still posed by (1.1), we can only construct a sequence of what are called truncated incidence algebras for the nonlocally finite poset Q. For this purpose, we will need an additional hypothesis that Q is well ordered.

2. The construction of QS(P) and $\mathcal{P}(K, QS(P))$. We will assume throughout that *P* is a locally finite poset, *Q* a nonlocally finite poset, and *K* is a field of characteristic 0. Let QS(P) be the Cartesian product $P \times Q$. We will denote the order relation in *P* by $\leq^{(1)}$ and the order relation in *Q* by $\leq^{(2)}$. Then we define an order relation \leq in QS(P) by

 $(x,r) \le (y,s)$ if and only if $x \le^{(1)} y$ and $r \le^{(2)} s$. It is clear that, with the relation \le , QS(P) is a partially ordered set. However, QS(P) is not locally finite.

We will define addition and scalar multiplication on $\vartheta(K, QS(P))$ as in [1]. We now need to define the convolution multiplication shown in (1.1) on $\vartheta(K, QS(P))$ so that it will make sense.

For a fixed $r \in Q$, denote $P \times \{r\}$ by P_r . If (x,r) and (y,s) are any two elements of QS(P), then $(x,r) \in P_r$, while $(y,s) \in P_s$. Moreover, P_r and P_s are locally finite subposets of QS(P). Denote (x,r) by u and (y,s) by v, and let $T = \{t \in P \mid x \leq^{(1)} t \leq^{(1)} y\}$. Then the set $T(u,v) = (T \times \{r\}) \cup (T \times \{s\}) \subseteq QS(P)$ is finite. Let J(u,v) = $[u,v] \cap T(u,v)$. We define the operation (*) on $\vartheta(K,QS(P))$ by the following: for all elements u and v in QS(P) and for all f,g in $\vartheta(K,QS(P))$,

$$f * g(u, v) = \sum_{z \in J_{(u,v)}} f(u, z) g(z, v).$$
(2.1)

Clearly, (2.1) is now well defined. The associativity follows from [1, Proposition 4.1]. Consequently, with (2.1), $\vartheta(K, QS(P))$ is an incidence algebra of QS(P) over *K*.

P is isomorphic to P_r for each $r \in Q$. Similarly, for each $y \in P$, *Q* is isomorphic to $Q_y = \{y\} \times Q$. Hence both *P* and *Q* are embeddable in QS(P). Moreover, the correspondence $\mu_r : f \mapsto f_r$, where f_r is defined by $f_r(x_r, y_r) = f(x, y)$, is an isomorphism of $\vartheta(K, P)$ onto $\vartheta(K, P_r)$. Consequently, $\vartheta(K, P)$ is embeddable in $\vartheta(K, QS(P))$. By a similar device, we find that $\vartheta(K, Q)$ is also embeddable in $\vartheta(K, QS(P))$. For the uniqueness of $\vartheta(K, QS(P))$, we will prove the following.

PROPOSITION 2.1. If P' and Q' are any posets such that P is isomorphic to P' and Q is isomorphic to Q', then $\vartheta(K, QS(P))$ is isomorphic to $\vartheta(K, Q'S(P'))$.

PROOF. Let $\sigma: P \to P'$ be an isomorphism while $\theta: Q \to Q'$ is an isomorphism. Define $\eta: QS(P) \to Q'S(P')$ by $\eta(x,r) = (\sigma(x), \theta(r))$. If $\eta(x,r) = \eta(y,s)$, then $(\sigma(x), \theta(r)) = (\sigma(y), \theta(s))$. By the definition of the order relation in Q'S(P'), we must have $\sigma(x) = \sigma(y)$ and $\theta(r) = \theta(s)$. Consequently, x = y and r = s. Hence, (x,r) = (y,s). This shows that η is injective. Clearly, also η is surjective. Therefore, η is an isomorphism. For each $u \in QS(P)$, denote $\eta(u)$ by u'. Now define $\beta: \vartheta(K, QS(P)) \to \vartheta(K, Q'S(P'))$ by $\beta(f) = f'$, where f' is defined by f'(u', v') = f(u, v) for all $u', v' \in Q'S(P')$. One can directly check that β is also an isomorphism. Hence, the proposition holds.

We observe that for the locally finite poset *P*, one could have chosen any nonempty finite subset of *Q* itself. We will call the algebra $\vartheta(K, QS(P))$ the incidence algebra of *Q* relative to *P*.

3. Truncated incidence algebras. Our interest now is to see what we can achieve by isolating the locally finite poset *P* and dealing directly with *Q*. However, (1.1) still poses a problem. Nevertheless, following the motivation received from Section 2, what we need is to try to use a finite number of elements of the interval [r,s] at a time, for any two elements *r* and *s* of the nonlocally finite poset *Q*. Then arises the question of how to choose the finite number of elements from [r,s]. The formula for choosing such elements is outlined below for the case where *Q* is well ordered. What makes it possible

is the property of a well-ordered set whereby not only does every nonempty subset of such a set have a first element, but also such a first element is unique [3, Theorems 64 and 65, page 76]. First, we show the existence of a well-ordered nonlocally finite poset Q.

EXAMPLE 3.1. Let $Q = \{1/n \mid n \in \mathbb{N}\} \cup \{O\}$, where \mathbb{N} is the set of natural numbers. Q is a poset subject to the usual relation " \geq " (greater than or equal to). Clearly, also Q is well ordered by " \geq ". However, for any $a \in Q$, $a \neq 0$, the interval [0, a] is infinite. Hence, Q is not locally finite.

Now let *W* be any well-ordered poset and let $r \le s \in W$. Set $W_0 = [r, s]$. Let $W_1 = W_0 - \{r\}$. Then, if $W_1 \ne \emptyset$, W_1 has a unique first element t_1 . Let $W_2 = w_1 - \{t_1\}$. If $W_2 \ne \emptyset$, then W_2 has a unique first element t_2 . In general, $W_i = W_{i-1} - \{t_{i-1}\}$, where $t_{i-1} =$ first element of W_{i-1} , and $t_0 \equiv r$.

For any fixed natural number *n*, let $T_n(r,s) = \{r, t_1, \dots, t_n, s\}$. Let

$$J_n(r,s) = \begin{cases} [r,s] & \text{if } [r,s] \text{ is finite,} \\ T_n(r,s) & \text{otherwise.} \end{cases}$$
(3.1)

Then define the convolution multiplication * on $\vartheta(K, W)$ by the following: for all $r, s \in W$ and for all $f, g \in \vartheta(K, W)$,

$$f * g(r,s) = \sum_{t \in J_n(r,s)} f(r,t)g(t,s).$$
(3.2)

Subject to (3.2), $\vartheta(K, W)$ is an incidence algebra. We denote this incidence algebra by $\vartheta_n(K, W)$, and $\vartheta_n(K, W)$ is called a *truncated incidence algebra* of W over K.

It is clear that $T_n(r,s) \subseteq T_{n+1}(r,s)$ for all $n \in \mathbb{N}$. We will call the incidence algebra $\mathfrak{P}_{n+1}(K,W)$ a *refinement* of the incidence algebra $\mathfrak{P}_n(K,W)$. The sequence $\{\mathfrak{P}_n(K,W)\}$ of incidence algebras is finite if and only if W is locally finite.

We now observe that a well-ordered nonlocally finite poset Q is associated with an infinite sequence of truncated incidence algebras, where each is a nontrivial refinement of the one before it. Unifying these algebras to form one incidence algebra of Q over K remains an open problem.

REFERENCES

- M. Aigner, *Combinatorial Theory*, Grundlehren der mathematischen Wissenschaften, vol. 234, Springer-Verlag, New York, 1979.
- R. P. Stanley, *Structure of incidence algebras and their automorphism groups*, Bull. Amer. Math. Soc. 76 (1970), 1236–1239.
- [3] P. Suppes, Axiomatic Set Theory, Dover Publications, New York, 1972.

Boniface I. Eke: Department of Mathematics, Morgan State University, Baltimore, MD 21251, USA

E-mail address: beke@morgan.edu