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Using symmetry arguments only, we show that every spacetime with mirror-symmetric spa-
tial sections is necessarily conformally flat. The general form of the Ricci tensor of such
spacetimes is also determined.
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1. Introduction. It is well known that the curvature tensor of any four-dimensional

differentiable manifold has only 20 algebraically independent components. Ten out of

these 20 components can be associated with its Weyl tensor, the remaining ten mak-

ing up its Ricci tensor. When the four-dimensional manifold corresponds to an empty

spacetime, its Ricci tensor becomes identically zero. The Weyl tensor can thus be seen

as describing that part of the curvature of the spacetime which is not due to the pres-

ence of matter. The spacetime is said to be conformally flat when its Weyl tensor is

identically zero (see, e.g., [4, Chapter 8]).

In this note, we are interested in the conditions on the curvature tensor R of a space-

time �4 which follow from the assumption that �4 has mirror-symmetric spatial sec-

tions. We will show that any such �4 is conformally flat. We will also obtain the general

form of the corresponding Ricci tensor.

2. Mirror symmetry. To mathematically translate the assumption concerning the

existence of a mirror symmetry for the spatial sections of �4, we now introduce a

system of coordinates on �4. Let xi, i= 0,1,2,3, be a coordinate system such that the

spatial sections of �4 are described by x0 = constant. We also consider a change of

coordinate system for �4 and designate by xi, i= 0,1,2,3, the new coordinate system.

Since we are only interested in the application of a mirror symmetry to the spatial

sections of �4, we can assume that this change of coordinate system leaves invariant

the time coordinate. Without loss of generality, we can also assume that the spatial

mirror symmetry is defined with respect to the symmetry hyperplane x1 = 0. This

implies that the space coordinates transform according to the matrix

A= diag(−1,1,1). (2.1)

The coordinates of �4 then transform as

(
x0,x1,x2,x3)T =�

(
x0,x1,x2,x3)T , (2.2)
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where

�= diag(1,A). (2.3)

For the spatial sections of �4 to be invariant under the transformation A, the cur-

vature tensor R of the whole spacetime �4 must be invariant under the change of

coordinate (2.2). It follows that the algebraically independent components of R, at any

given point of �4, will also be invariant under the same transformation. This property

will then hold for the ten independent components of the Weyl tensor and the ten inde-

pendent components of the Ricci tensor, which form the 20 independent components

of the most general form of R.

3. Weyl tensor. A condition the Weyl tensor C must satisfy for the corresponding

spacetime to be invariant under the transformation (2.2) results from the Petrov matrix

expression of the independent components of C. To obtain this condition, we use the

following correspondence between pairs of tensor indices of C and single Petrov indices:

Tensor indices : ijkl = 23, 31, 12, 10, 20, 30; Cijkl

Petrov index : A,B = 1, 2, 3, 4, 5, 6; CAB

(3.1)

The matrix of the independent components of C can be simplified yet further if, instead

of the fully covariant components Cijkl, one considers the mixed components Cijkl ↔
CAB . Here, we have CAB =GACCCB , where the matrix (GAC)= diag(I3×3,−I3×3), and I3×3

is the 3×3 identity matrix. The ten independent components of C are then given by

(
CAB

)= ( M N
−N M

)
, (3.2)

where M = (mij) and N = (nij) are symmetric traceless 3×3 matrices.

To the coordinate transformation (2.2) corresponds a similarity transformation of

the matrix �= (CAB). Denoting with an overbar the components of the Weyl tensor in

the barred coordinate system xi, i= 0,1,2,3, one indeed obtains (see [1, page 178])

Cijkl =
∑

(mn,pq)↔Petrov

(
2
∂xi

∂xm
∂xj

∂xn

)
Cmnpq

(
2
∂xp

∂xk
∂xq

∂xl

)
, (3.3)

where the sum is taken only over the pairsmn and pq corresponding to Petrov indices.

If the Petrov indices A, B, C , D correspond, respectively, to the pairs of tensor indices

ij, kl, mn, pq, then (3.3) is equivalent to

CAB = SACCCDS̃DB, (3.4)

where

SAC = 2
∂xi

∂xm
∂xj

∂xn
, A,C = 1,2, . . . ,6, (3.5)
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and the expressions S̃DB are the components of S̃, the inverse of the matrix S = (SAB),
when this inverse exists. The tensor C will be invariant under the transformation (2.2)

if CAB = CAB for A,B = 1,2, . . . ,6. Equation (3.4) thus becomes

CAB = SACCCDS̃DB, (3.6)

which amounts to

�S = S�. (3.7)

We will now apply (3.7) to the case of a mirror symmetry with respect to the hy-

perplane x1 = 0, that is, when the coordinate transformation is given by (2.3). The

expression of the corresponding matrix S is

S = 2diag(1,−1,−1,−1,1,1). (3.8)

It is then straightforward to show that all components of the matrices M and N in

(3.2) vanish identically. This implies that C also vanishes identically, that is, that �4 is

four-dimensional conformally flat.

4. Ricci tensor. To obtain a condition that the Ricci tensor (Rij) of �4 must satisfy

in order for �4 to be invariant under the transformation (2.2), we first observe that

(Rij) can be considered as the matrix realization of a bilinear form on �4. It follows

that the change of coordinate (2.2) transforms (Rij) according to

(
Rij

)=�
(
Rij

)
�T . (4.1)

Since the invariance of (Rij) under the transformation (2.2) implies that (Rij) = (Rij),
we obtain

(
Rij

)=�
(
Rij

)
�T . (4.2)

Substituting (2.3) into (4.2) directly leads to

(
Rij

)=

R00 0 R02 R03

0 R11 0 0

R02 0 R22 R23

R03 0 R23 R33

 . (4.3)

5. Conclusion. We have shown that every spacetime having mirror-symmetric spa-

tial sections is conformally flat. This result applies in particular to spherically and

cylindrically symmetric spacetimes, in rotation or not. It also applies to many of the

simply or multiconnected spacetimes considered in cosmic crystallography [2, 3].
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