ON THE CLASSIFICATION OF THE LIE ALGEBRAS $L_{r,t}^s$

L. A-M. HANNA

Received 24 February 2003

The Lie algebras $L_{r,t}^s$ introduced by the author (2003) are classified from an algebraic point of view. A matrix representation of least degree is given for each isomorphism class.

2000 Mathematics Subject Classification: 17B10, 17B81, 35Q40, 81V80.

1. Introduction. The aim of this note is to classify a family of Lie algebras, $L_{r,t}^s$, which were introduced in [4] as a generalization of the Tavis-Cummings model, $L_{2,1}^1$. The Lie algebras $L_{r,t}^s$ were presented by generators K_1 , K_2 , K_3 , K_4 and relations

$$[K_1, K_2] = sK_3, \quad [K_3, K_1] = rK_1, \quad [K_3, K_2] = -rK_2,$$

$$[K_3, K_4] = 0, \quad [K_4, K_1] = -tK_1, \quad [K_4, K_2] = tK_2, \quad \text{for } r, s, t \in \mathbb{R}.$$
 (1.1)

From [1], $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$, and $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ are representation matrices of a faithful representation of $L_{2,1}^1$, for K_1 , K_2 , K_3 , and K_4 , respectively. Thus, the Lie algebras $L_{2,1}^1$ and $\mathfrak{gf}(2,\mathbb{R})$ are isomorphic.

Note that the Lie subalgebra L_r^s , of $L_{r,t}^s$, generated by K_1 , K_2 , K_3 and relations

$$[K_1, K_2] = sK_3, \qquad [K_3, K_1] = rK_1, \qquad [K_3, K_2] = -rK_2$$
(1.2)

was introduced in [2, 3, 6] as a generalization of the coupled quantized harmonic oscillators [7], namely, the model of light amplifier L_1^{-2} , and the model of two-level optical atom L_1^2 , whose Hamiltonian model $H = K_0 + \lambda(K_+ + K_-)$, λ is the coupling parameter. The matrix representations of L_r^s of least degree satisfying the physical properties $K_2 = K_1^{\dagger}$ († stands for Hermitian conjugation and K_0 is a real diagonal operator representing energy) were discussed in [2, 3, 6].

Faithful matrix representations of least degree of $L_{r,t}^s$ for appropriate values of r, s, and t were given in [4], subject to the physical conditions, namely, $K_2 = K_1^{\dagger}$, and K_3 , K_4 are real diagonal operators representing energy. It was found that

- (1) for rs > 0, $t \in \mathbb{R}$, $L_{r,t}^s$ has faithful representations of degree 2 as the least degree, where the matrices $\begin{bmatrix} 0 & a \pm i \sqrt{rs/2-a^2} \\ 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 & a \pm i \sqrt{rs/2-a^2} \\ a \pm i \sqrt{rs/2-a^2} & 0 \end{bmatrix}$, $\begin{bmatrix} r/2 & 0 \\ 0 & -r/2 \end{bmatrix}$, and $\begin{bmatrix} b & 0 \\ 0 & b + t \end{bmatrix}$ are representation matrices for K_1 , K_2 , K_3 , and K_4 , respectively, with $a, b \in \mathbb{R}$, $b \neq -t/2$, and $|a| \le \sqrt{rs/2}$, $i = \sqrt{-1}$,
- (2) for r = s = t = 0, $L_{0,0}^0$ has faithful representation of degree 4 as the least degree, where the representation matrices are linearly independent diagonal matrices, while the representation matrices of K_3 and K_4 are real matrices.

These are the only cases where $L_{r,t}^s$ has faithful representations satisfying the mentioned physical conditions.

The Lie algebras $L_{r,t}^s$, r, s, $t \in \mathbb{R}$, are classified from an algebraic point of view. A matrix representation of least degree is given for each isomorphism class. The classification is given by the following theorem.

THEOREM 1.1. Let r, s, t be any nonzero real numbers; then

- (1) $L_{r,t}^s \simeq L_{r,0}^s \simeq \mathfrak{gl}(2,\mathbb{R}),$
- (2) $L_{0,t}^s \simeq L_{0,1}^1$,
- (3) $L_{r,t}^{0} \simeq L_{1,1}^{0}$,
- (4) $L_{r,0}^{0} \simeq L_{0,t}^{0}$,
- (5) $L_{0,0}^s \simeq L_{0,0}^1$,
- (6) the Lie algebras $\mathfrak{gl}(2,\mathbb{R})$, $L_{0,1}^1$, $L_{1,1}^0$, $L_{1,0}^0$, $L_{0,0}^1$, and $L_{0,0}^0$ are nonisomorphic Lie algebras.

COROLLARY 1.2. A system of representatives for the isomorphism classes of the Lie algebras of the form $L_{r,t}^s$ consists of $\mathfrak{gl}(2,\mathbb{R})$, $L_{0,1}^1$, $L_{1,1}^0$, $L_{1,0}^0$, $L_{0,0}^1$, and $L_{0,0}^0$.

Unless otherwise stated, whenever *X* and *Y* are Lie algebras and *f* is a mapping $f: X \to Y$, then *X* is the Lie algebra of type $L_{r,t}^s$ for the assigned values of *r*, *s*, *t* and is generated by K'_1, K'_2, K'_3 , and K'_4 satisfying (1.1), respectively, and *Y* is the Lie algebra of type $L_{r,t}^s$ for the assigned values of *r*, *s*, *t* and is generated by K_1, K_2, K_3 , and K_4 satisfying (1.1), respectively, K_1, K_2, K_3 , and K_4 satisfying (1.1), respectively.

2. Isomorphism classes for $rs \neq 0$

THEOREM 2.1. The Lie algebras $L_{r,t}^s$ and $L_{r,0}^s$ are isomorphic to the general linear Lie algebra $\mathfrak{gl}(2,\mathbb{R})$ for $r, s, t \in \mathbb{R}^*$.

PROOF. The mapping $\phi: L_{r,0}^s \to L_{r,t}^s$ defined by $\phi(K_i') = K_i$, i = 1, 2, 3, and $\phi(K_4') = (1/r)K_3 + (1/t)K_4$ is a Lie algebra isomorphism. It was found in [5] that when $rs \neq 0$, the Lie algebras L_r^s and L_{rs}^1 are isomorphic, and the lie algebras L_d^1 and L_c^1 are isomorphic whenever $cd \neq 0$, where, in particular, an element $u \in L_c^1$ should satisfy that adu has eigenvalues 0, d, and -d. Using [5, Lemma 5 and Theorem 6], the isomorphism $\phi_1: L_{r,t}^s \to \mathfrak{gf}(2,\mathbb{R})$ defined by $\phi_1(K_1') = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $\phi_1(K_2') = \begin{bmatrix} 0 & 0 \\ rs & 0 \end{bmatrix}$, $\phi_1(K_3') = \begin{bmatrix} r & 0 \\ 0 & -r \end{bmatrix}$, and $\phi_1(K_4') = \begin{bmatrix} 0 & 0 \\ 0 & t \end{bmatrix}$, where $rst \neq 0$, can be suggested.

3. Isomorphism classes for rst = 0. The case when t = 0 and $rs \neq 0$ is discussed in the previous section.

LEMMA 3.1. For $st \neq 0$, the Lie algebras $L_{0,t}^s$ and $L_{0,1}^1$ are isomorphic. Moreover, $L_{0,t}^s$ is not isomorphic to $\mathfrak{gl}(2,\mathbb{R})$ and has faithful representation of degree 3 as the least degree.

PROOF. In gf(2, \mathbb{R}), a central element has trace zero if and only if it is the zero element. Since in $L_{0,1}^1$, $K_3 = [K_1, K_2]$ is a central element and of trace zero, thus $L_{0,t}^s \neq$ gf(2, \mathbb{R}). The mapping $\phi : L_{0,t}^s \to L_{0,1}^1$ defined by $\phi(K'_i) = K_i$, $i = 1, 2, \phi(K'_3) = (1/s)K_3$, and $\phi(K'_4) = (1/t)K_4$ is a Lie algebra isomorphism. Clearly, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$,

2270

and $\begin{bmatrix} 0 & 0 & 0 \\ 0 & t & 0 \\ 0 & 0 & 0 \end{bmatrix}$ are representation matrices for K_1, K_2, K_3 , and K_4 , respectively, of a faithful representation of least degree of $L_{0,t}^s$.

LEMMA 3.2. For $rt \neq 0$, the Lie algebras $L_{r,t}^0$ and $L_{1,1}^0$ are isomorphic. Moreover, $L_{r,t}^0$ is not isomorphic to $\mathfrak{gl}(2,\mathbb{R})$ and has faithful representation of degree 3 as the least degree.

PROOF. The mapping $\phi : L_{r,t}^0 \to L_{1,1}^0$ defined by $\phi(K'_i) = K_i$, i = 1, 2, $\phi(K'_3) = rK_3$, and $\phi(K'_4) = tK_4$ is a Lie algebra isomorphism. The elements $K_1 + K_2$, $K_1 - K_2$, $K_3 + K_4$ are linearly independent generators of an abelian Lie subalgebra of $L_{r,t}^0$. Thus, $L_{r,t}^0$ has no faithful representation of degree 2. Thus, $L_{r,t}^0 \neq \mathfrak{gl}(2,\mathbb{R})$. Obviously, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} -t & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -2t \end{bmatrix}$ are representation matrices for K_1 , K_2 , K_3 , and K_4 , respectively, of a faithful representation of least degree of $L_{r,t}^0$.

LEMMA 3.3. For $rt \neq 0$, the Lie algebras $L_{r,0}^0$ and $L_{0,t}^0$ are isomorphic. Moreover, $L_{0,t}^0$ is not isomorphic to $\mathfrak{gl}(2,\mathbb{R})$ and has faithful representation of degree 3 as the least degree.

PROOF. The mapping $\phi : L_{r,0}^0 \to L_{0,t}^0$ defined by $\phi(K'_i) = K_i$, i = 1, 2, $\phi(K'_3) = -(r/t)K_4$, and $\phi(K'_4) = K_3$ is a Lie algebra isomorphism. The elements K_1, K_2, K_3 are linearly independent generators of an abelian Lie subalgebra of $L_{0,t}^0$. Thus, $L_{0,t}^0 \neq \mathfrak{gl}(2,\mathbb{R})$. Clearly, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} t & 0 & 0 \\ 0 & 0 & -t \end{bmatrix}$ are representation matrices for K_1, K_2, K_3 , and K_4 , respectively, of a faithful representation of least degree of $L_{0,t}^0$.

LEMMA 3.4. For $s \neq 0$, the Lie algebras $L_{0,0}^s$ and $L_{0,0}^1$ are isomorphic. Moreover, $L_{0,0}^s$ is not isomorphic to $\mathfrak{gl}(2,\mathbb{R})$ and has faithful representation of degree 3 as the least degree.

PROOF. The mapping $\phi : L_{0,0}^s \to L_{0,0}^1$ defined by $\phi(K_i') = K_i, i = 1, 3, 4$, and $\phi(K_2') = sK_2$ is a Lie algebra isomorphism.

The elements K_1 , K_3 , K_4 are linearly independent generators of an abelian Lie subalgebra of $L_{0,0}^s$. Thus, $L_{0,0}^s \neq \mathfrak{gl}(2,\mathbb{R})$. Obviously, $\begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$, and $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ are representation matrices for K_1 , K_2 , K_3 , and K_4 , respectively, of a faithful representation of least degree of $L_{0,0}^s$.

THEOREM 3.5. The Lie algebras $L_{0,1}^1$, $L_{1,1}^0$, $L_{0,1}^0$, $L_{0,0}^1$, and $L_{0,0}^0$ are not isomorphic.

PROOF. The Lie algebra $L_{0,0}^0$ is an abelian Lie algebra, while $L_{0,1}^1$, $L_{0,1}^0$, $L_{0,1}^0$, and $L_{0,0}^1$ are nonabelian Lie algebras. From (1.1), the dimension of the center of $L_{0,0}^1$ is 2. Let $Z = a_1K_1 + a_2K_2 + a_3K_3 + a_4K_4$ be a central element of $L_{0,1}^0$. Since $[Z, K_1] = 0$, then $a_4 = 0$, and since $[Z, K_4] = 0$, then $a_1K_1 - a_2K_2 = 0$. For the linear independence of K_1 and K_2 , we must have $a_1 = a_2 = 0$. Thus, the center of $L_{0,1}^0$ can be generated by K_3 . Thus, $L_{0,0}^1 \neq L_{0,1}^0$. Similarly, it can be proved that the center of $L_{1,1}^0$ is trivial. Thus, $L_{1,1}^1$ is not isomorphic to either $L_{0,0}^1$ or $L_{0,1}^0$. Thus, the Lie algebras $L_{1,1}^0$, $L_{0,1}^0$, and $L_{0,0}^1$ are not isomorphic.

The dimensions of $[L_{1,1}^0, L_{1,1}^0]$, $[L_{0,0}^1, L_{0,0}^1]$, and $[L_{0,1}^0, L_{0,1}^0]$ are 2, 1, and 2, respectively, while the dimension of $[L_{0,1}^1, L_{0,1}^1]$ is 3. Thus, $L_{0,1}^1$ is not isomorphic to any of the Lie algebras $L_{1,1}^0, L_{0,1}^0$, and $L_{0,0}^1$.

ACKNOWLEDGMENT. The author acknowledges the fruitful discussions with Sorin Dascalescu while reading the manuscript, the fruitful discussions with Professor S. S. Hassan, and the support of Kuwait University.

REFERENCES

- [1] M. A. Bashir and M. S. Abdalla, *The most general solution for the wave equation of the transformed Tavis-Cummings model*, Phys. Lett. A **204** (1995), no. 1, 21–25.
- [2] L. A-M. Hanna, On the matrix representation of Lie algebras for quantized Hamiltonians and their central extensions, Riv. Mat. Univ. Parma (5) 6 (1997), 5–11.
- [3] _____, A note on the matrix representations of the Lie algebras L_s^s for quantized Hamiltonians where rs = 0, Riv. Mat. Univ. Parma (6) 1 (1998), 149–154.
- [4] _____, On representations of Lie algebras of a generalized Tavis-Cummings model, J. Appl. Math. 2003 (2003), no. 1, 55-64.
- [5] _____, On the classification of the Lie algebras L_r^s , Linear Algebra Appl. **370** (2003), 251–256.
- [6] L. A-M. Hanna, M. E. Khalifa, and S. S. Hassan, On representations of Lie algebras for quantized Hamiltonians, Linear Algebra Appl. 266 (1997), 69-79.
- [7] R. J. C. Spreeuw and J. P. Woerdman, *Optical atoms*, Progress in Optics. Vol. XXXI (E. Wolf, ed.), North-Holland Publishing, Amsterdam, 1993, pp. 263–319.

L. A-M. Hanna: Department of Mathematics and Computer Science, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait

E-mail address: hannalam@mcs.sci.kuniv.edu.kw