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The Lie algebras L; , introduced by the author (2003) are classified from an algebraic point
of view. A matrix representation of least degree is given for each isomorphism class.
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1. Introduction. The aim of this note is to classify a family of Lie algebras, Ly ;, which
were introduced in [4] as a generalization of the Tavis-Cummings model, L%yl. The Lie
algebras Li,t were presented by generators K1, K», K3, K4 and relations

[KI’KZ] - SK3’ [Kj’Kl] :TKI’ [KssKZ] = _TK2|

1.1
[Kg,K4] =0, [K4,K1] =—tK1, [K4,K2] =tK2, fOI'T,S,tER. ( )
From [11, [§ 51, [93], [§ %], and [§ 9] are representation matrices of a faithful rep-
resentation of L%vl, for Ky, K», K3, and K4, respectively. Thus, the Lie algebras L%yl and
gl (2,R) are isomorphic.
Note that the Lie subalgebra Lj, of Lilt, generated by K1, K», K3 and relations

[K1,K2] = sK3, [K3,K1] =7Ky, [K3,K2] = -7K> (1.2)

was introduced in [2, 3, 6] as a generalization of the coupled quantized harmonic oscilla-
tors [7], namely, the model of light amplifier L{Z, and the model of two-level optical atom
L?, whose Hamiltonian model H = Ky + A(K, + K_), A is the coupling parameter. The
matrix representations of L; of least degree satisfying the physical properties K» = K{f
(1 stands for Hermitian conjugation and K is a real diagonal operator representing
energy) were discussed in [2, 3, 6].

Faithful matrix representations of least degree of L; ; for appropriate values of 7, s,
and t were given in [4], subject to the physical conditions, namely, K, = K;r ,and K3, K4
are real diagonal operators representing energy. It was found that

(1) forrs >0, t € R, Li,t has faithful representations of degree 2 as the least de-

gree, where the matrices [8 “i"vVOS/Z’“Z ], [a:i YOS/Z,az 8], [Y(/)Z 79/2]1 and [g hgt]
are representation matrices for K, K, K3, and K4, respectively, with a,b € R,
b+—t/2,and |a| <rs/2,i=+—1,

(2) forr =s =t =0, L{, has faithful representation of degree 4 as the least degree,

where the representation matrices are linearly independent diagonal matrices,
while the representation matrices of K3 and K4 are real matrices.
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These are the only cases where L; ; has faithful representations satisfying the men-
tioned physical conditions.

The Lie algebras L} ;, 7,s,t € R, are classified from an algebraic point of view. A matrix
representation of least degree is given for each isomorphism class. The classification
is given by the following theorem.

THEOREM 1.1. Let7, s, t be any nonzero real numbers; then

(D) L, =Ly =9l (2,R),

) Lf],t = L(l),lf

3) Lg,t = L(l),lr

4) Lg,o = Lg,t'

(5) Ly = L(l),of

(6) the Lie algebras gl (2,R), Ly 1, LY |, LY, L} o, and L3, are nonisomorphic Lie alge-
bras.

COROLLARY 1.2. A system of representatives for the isomorphism classes of the Lie
algebras of the form L} ; consists of af (2,R), Ly, LY |, LY o, L§ o, and L .

Unless otherwise stated, whenever X and Y are Lie algebras and f is a mapping
f:X —Y, then X is the Lie algebra of type L; , for the assigned values of 7, s, t and is
generated by K, K5, K3, and K} satisfying (1.1), respectively, and Y is the Lie algebra
of type Li,t for the assigned values of 7, s, t and is generated by K;, K», K3, and K4
satisfying (1.1), respectively.

2. Isomorphism classes for rs = 0

THEOREM 2.1. The Lie algebras L} ; and L;. , are isomorphic to the general linear Lie
algebra of (2,R) forv,s,t € R*.

PROOF. The mapping ¢ : L}, — L; ; defined by ¢(K;) = K;, i =1,2,3, and ¢$(K}) =
(1/7v)K3+(1/t)Ky4is aLie algebraisomorphism. It was found in [5] that when 7s = 0, the
Lie algebras L} and L}, are isomorphic, and the lie algebras L} and L} are isomorphic
whenever c¢d =+ 0, where, in particular, an element u € L! should satisfy that adu
has eigenvalues 0, d, and —d. Using [5, Lemma 5 and Theorem 6], the isomorphism
¢1: Ly, — al(2,R) defined by ¢ (K7) = [§¢], p1(K5) = [% 0], P1(K3) =[5 5], and
¢b1(K}) = [9], where rst # 0, can be suggested. O

3. Isomorphism classes for st = 0. The case when t = 0 and rs # 0 is discussed in
the previous section.

LEMMA 3.1. For st 0, the Lie algebras L{, , and L, are isomorphic. Moreover, L, is
not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

PROOF. In g((2,R), a central element has trace zero if and only if it is the zero
element. Since in L(l)’l, K3 = [K1,K>] is a central element and of trace zero, thus Lf),t #
al (2,R). The mapping ¢ : L, — Ly, defined by ¢ (K;) = Ki, i = 1,2, p(K3) = (1/5)K3,

010 00 001/
and ¢(K}) = (1/t)Ky is a Lie algebra isomorphism. Clearly, [8é8], [§8(1>]’ [88 85]’
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000
and [8 (t) 8] are representation matrices for K1, K», K3, and K4, respectively, of a faithful
representation of least degree of Lj ;. O

LEMMA 3.2. Forrt + 0, the Lie algebras L) ; and L) | are isomorphic. Moreover, LY , is
not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

PROOF. The mapping ¢ : L), — LY | defined by ¢(K]) = K;, i = 1,2, ¢p(K3) = rK3,
and ¢ (K}) = tKy is a Lie algebra isomorphism. The elements K; + Kz, K1 — Kz, K3 + K4
are linearly independent generators of an abelian Lie subalgebra of L‘;’t. Thus, L%t has

0107 100
no faithful representation of degree 2. Thus, L?yt # gl (2,R). Obviously, [8 é 8], [8 8 é],

000 —t0 0 ) . )

[8 e 0], and [ 8 8 % t] are representation matrices for K, K», K3, and K4, respectively,
v _

of a faithful representation of least degree of LY ,. |

LEMMA 3.3. Forrt +0, the Lie algebras L , and LY, are isomorphic. Moreover, Ly ; is
not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

PROOE. The mapping ¢ : LY, — L§, defined by $(K;) = K;, i = 1,2, p(Kj) =
—(r/t)K4, and ¢ (K}) = K3 is a Lie algebra isomorphism. The elements K1, K, K3 are lin-
early independent generators of an abelian Lie subalgebra of Lgyt. Thus, Lg,t #gl(2,R).

0007 1000 100 £00 ) .
Clearly, [1 0 0], [o 0 1], [o 1 o], and [00 0 ] are representation matrices for Ki, Ky, K3,
0001 Loood" Loo1 00—t

and K4, respectively, of a faithful representation of least degree of L8,t. |

LEMMA 3.4. Fors =0, the Lie algebras L} , and Lj , are isomorphic. Moreover, L} , is
not isomorphic to gl (2,R) and has faithful representation of degree 3 as the least degree.

PROOF. The mapping ¢ : L{, — L{, defined by ¢(K;) = K;,i = 1,3,4, and $(K}) =
sK; is a Lie algebra isomorphism.
The elements K, K3, K4 are linearly independent generators of an abelian Lie sub-
algebra of LY ,. Thus, L} , # g((2,R). Obviously [8 0 8] [8 0 ?] [8 0 (1)] and [(1) 9 8] are
0.0 00 ’ "Loood” Loood” Loood’ 001
representation matrices for K1, K», K3, and K4, respectively, of a faithful representation

of least degree of L3 . |
THEOREM 3.5. The Lie algebras L} 1, LY |, LY |, L{, and L, are not isomorphic.

PROOF. The Lie algebra L, is an abelian Lie algebra, while L, L{ |, L§ |, and L{
are nonabelian Lie algebras. From (1.1), the dimension of the center of Lé,o is 2. Let
7 = a1K1 + axK» + asK3 + asK4 be a central element of Lg,l. Since [Z,K;] = 0, then
a4 =0, and since [Z,K4] = 0, then a,K; —a»K, = 0. For the linear independence of K;
and K>, we must have a; = ap = 0. Thus, the center of L8’1 can be generated by Ks.
Thus, L{, # L, . Similarly, it can be proved that the center of L} | is trivial. Thus, L,
is not isomorphic to either L{ ; or L ;. Thus, the Lie algebras L |, L{ |, and L , are not
isomorphic.

The dimensions of [L{ ,L9 ], [L},,Ld,], and [L ;, L), ] are 2,1, and 2, respectively,
while the dimension of [L§,,L{,] is 3. Thus, L, is not isomorphic to any of the Lie
algebras LY |, LY |, and L} . 0
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